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Abstract 

 

Immune checkpoint inhibitor immunotherapy has revolutionized the treatment of non-small cell lung 

cancer (NSCLC). Despite the immense success, still a significant proportion of patients do not 

develop durable responses, allowing disease progression accompanied by high mortality rates. 

Therefore, there is an imperative need for identification of reliable non-invasive predictive 

biomarkers to guide therapeutic decisions. Herein, we constructed a blood immunomap in NSCLC 

patients with metastatic disease, using a high-dimensional mass cytometry approach. Assessment of 

clinical responses to aPD1 immunotherapy revealed, among others, a significant expansion of 

CD8+PD-L1+ T cells in individuals not responding to immunotherapy. Of interest, CD8+PD-L1+ T 

cells were enriched in tumor biopsies and bronchoalveolar lavage of NSCLC individuals at early 

stages of disease as well as in pleural infusions of individuals with thoracic malignancies. 

Transcriptomic analysis revealed that CD8+PD-L1+ T cells exhibited a regulatory/exhausted 

phenotype, while various transcripts associated with the overall survival of NSCLC individuals, were 

mapped. Overall, our findings define an immunomap in the early stage and advanced NSCLC patients 

and identify immune-related events which may benefit the quest for identification of predictive 

biomarkers of immunotherapy responses.    
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Introduction 

Lung cancer represents the primary cause of cancer-related mortalities and morbidities worldwide 

with non-small cell lung carcinoma (NSCLC) accounting for 85% of lung cancer cases1. Regardless 

of the clinical accessibility of various treatments for NSCLC, including surgery, chemotherapy, 

radiotherapy, molecular targeted therapies, and immunotherapy, the 5-year survival rate remains 

unaffected due to the emergence of resistance to therapies. Genetic and epigenetic alterations, changes 

in the anti-tumor immune response pathways, tumor metabolic reprogramming, exhaustion of T-cell 

status and acquisition of a highly immunosuppressive tumor microenvironment (TME) are amongst 

the dominant mechanisms contributing to immunotherapy resistance2,3. Although the selection of the 

appropriate therapy for NSCLC patients largely remains stage dependent, the advent of immune 

checkpoint blockade (ICB) either as monotherapy or combination therapy, has reformed the 

management of locally advanced/metastatic NSCLC and has significantly improved our 

understanding regarding disease biology and mechanisms of tumor development and escape4.  Even 

though ICB has demonstrated immense clinical success rate over other therapies, only a small 

proportion of NSCLC patients experience durable survival and overall clinical benefit4. The 

substantial number of clinical failures observed in combination treatments underlies the unmet need 

to delineate the mechanisms through which the tripartite of the host’s immune system, tumor and 

TME affects response or resistance to immune-based therapies and more importantly, design more 

rational ones5. Furthermore, the therapeutic benefit from currently available NSCLC treatments will 

be significantly intensified through the discovery and establishment of predictive biomarkers that will 

dictate patient’s response to ICB therapy6. 

Despite the enormous expansion of therapeutic approaches in NSCLC, development of biomarkers 

that could guide personalized treatments, remain elusive. Current biomarkers, heavily rely on tumor 

biopsies and demonstrate low predictive value. To this end, intratumoral programmed death-ligand 1 

(PD-L1) expression is considered a standard predictive biomarker for ICB efficacy and is the only 

one used in clinical routine7-9. Nevertheless, a conclusive association between PD-L1 expression and 
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NSCLC patients’ overall survival has not been always witnessed10 and on top of that, an ICB 

treatment benefit was also observed in patients with < 1% PD-L111. Besides, the discrepancies 

regarding the optimal conditions of PD-L1 immunohistochemistry assay, the cut-off value of staining 

positivity and the regional and temporal differences in PD-L1 expression question the predictive 

performance of PD-L17. Tumor mutational burden (TMB) also emerged as an additional promising 

biomarker for predicting outcome to immunotherapy12,13. High TMB was associated with improved 

overall survival and extended PFS in advanced NSCLC patients independent of mismatch-repair 

deficiency, a mechanism that has been related to increased TMB14-17. Although initial reports were 

encouraging, latest studies argue the predictive value of TMB in NSCLC in regards to its arbitrary 

threshold18 and absence of positive correlation between TMB high phenotype and reliable survival 

advantage19,20. Considering that oncologists will have in the near future a large number of novel 

immunotherapies in the quiver, it is essential to identify robust prediction biomarkers that will 

improve treatment management in clinical practice. Although one could argue that the quest for 

predictive biomarkers should be focused on the tumor microenvironment, it is now established that 

this approach encompasses severe limitations. Among these the limited amount of tissue, the 

complications that occur during an invasive procedure, the under-representation of tumor 

heterogeneity and also the inaccessibility of tissue in difficult locations. Importantly, in majority of 

metastatic cases, in which tumor spread in various anatomic compartments, therapies are guided by 

the characteristics of the primary tumor which hold severe limitations. As blood is the most easily 

accessible tissue, the development of liquid biopsies has arisen as a promising, minimally invasive, 

and non-biased method to obtain sample for predictive biomarker identification21. Soluble and 

exosomal PD-L1, blood TMB, circulating non-coding RNA, peripheral blood (PB) cytokines, 

circulating free DNA and circulating immune cells are among numerous parameters being exploited 

as predictors of clinical benefit in NSCLC patients22,23. Despite the fact that numerous predictive 

circulating biomarkers have been evaluated in the last decades, very few, if any, met the demands of 
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the clinic. Therefore, identification of circulating predictors of response to ICB therapy is urgently 

needed.  

Herein, using a high-dimensionality mass cytometry approach, we created a blood immunomap in 

NSCLC patients with metastatic disease who underwent aPD1 treatment. Our findings identify 

increased frequencies of CD8+ PD-L1+ T cells in non-responders compared to responders to aPD1 

immunotherapy. Of interest, as shown by Imaging Mass Cytometry (IMC) data, CD8+ PD-L1+ T cells 

were enriched in tumor biopsies, pleural infusions and BAL of NSCLC individuals, proposing this 

cells subset as candidate not only for the advanced but also for early disease detection. Transcriptomic 

analysis revealed that CD8+ PD-L1+ T cells exhibited an exhausted/anergic phenotype associated with 

their increased frequencies to non-responders to immunotherapy, and gene signatures correlated with 

the overall survival of an independent cohort. Overall, our findings reinforce the importance of 

circulating immune cells in the prediction of immunotherapy responses in NSCLC and propose that 

combination of liquid markers will substantially strengthen the discovery of robust biomarkers 

displaying superior clinical and predictive value.  
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Results 

Study design and patient cohorts 

A total of 56 PBMC samples from patients with unresectable, advanced (Stages III and IV) NSCLC 

were selected for CyTOF analysis (Fig. 1a, Table 1 and Supplementary Table 1). The median age 

was 68 years with a male predominance (~ 4.5 M:F ratio). Specific cell types were isolated with 

FACS, and transcriptomic analysis was performed with RNA seq (n=9). A second cohort of patients 

consisted of 19 NSCLC individuals (Stages I and II) from which heparinized peripheral blood and 

primary human lung tumor tissue was taken. All samples were analysed with CyTOF, and selected 

lung tumor tissue samples (n=2) were also analysed with Imaging Mass Cytometry (IMC). The 

median age was 69 years (~ 1 M:F ratio). (Fig. 1b, Table 2 and Supplementary Table 2). A third 

cohort of NSCLC patients (n=10) (Stages I-IV) was used for Bronchoalveolar lavage fluid (BALF) 

BALF analysis and a fourth one for Pleural Fluid (PF) (n=6). The median age was 65.4 years (~ 1 

M:F ratio) (Fig. 1b Table 3, Supplementary Table 3 and 4).  

 

Single-cell Deep Immunophenotyping reveals a peripheral immunomap to distinguish 

advanced NSCLC individuals responding to aPD1 immunotherapy.  

Considering that blood constitutes the most accessible biological sample, we aimed to interrogate 

immune populations in the blood of patients with advanced NSCLC at baseline before the initiation 

of anti-PD1 immunotherapy. To this aim, we employed a high-dimensional, 33-marker, mass 

cytometry panel that allowed us to identify major immune cell populations such as T cells, B cells, 

NK cells and cells of the myeloid lineage as well as their subpopulations (Supplementary Table 5). 

This analysis was based on FlowSOM, a clustering and visualization algorithm, based on a self-

organizing map, employed to construct a peripheral blood immunomap to distinguish cell populations 

in an unsupervised way24,25.  

Dimensional reduction and clustering analysis of PBMCs from these patients revealed a dominance 

of CD4 (T4) and CD8 (T8) T cells that were subdivided in distinct subsets reflecting activation and 
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memory characteristics (Fig. 2a-b). We used the patterns of expression for markers CD45RA, 

CD45RO, CD127, CD25, CCR4 and CCR7 to annotate five clusters of T4 cells as T4 N (Naïve; 

CD45RA+, CD45RO-, CCR7+), T4 TE (Terminal Effector; CD45RA+, CD45RO+, CCR7-), T4 CM 

(Central Memory; CD45RA-, CD45RO+, CCR7+), T4 EM (Effector Memory; CD45RA+, CD45RO-, 

CCR7-)  and TREG (T Regulatory cells; CD25+, CD127low, CCR4+). Similarly, we annotated four 

subsets of T8 cells as T8 N, T8 TE, T8 CM and CD8 EM. We also identified and annotated other 

major families of lymphocytes such as TCR cells (-T; CD3+, CD4-, CD8low, TCR  +), double-

negative T cells (T DN; CD3+, CD4-, CD8-, TCRgd-),  NK-T cells (NKT; CD3+, CD4-, CD8-, TCR  

-, CD56+), B cells (B N; CD19+, CD20+, IgD+, memory B cells, MBC and activated B cell, atBC) and 

NK cells (Early-NK; CD56+CD16- and Late-NK; CD56+CD16+). Furthermore, cells of the myeloid 

lineage clustered into seven subsets that were annotated as classical/intermediate monocytes ( Mono 

cl/int, CD11c+, CD14+, CD16-/lo), non-classical monocytes (Mono nc, CD11c+, CD14-, CD16+), 

dendritic cell (DC; CD11c-, CD14-, HLA-DR+, IL-3R+), CD45 low expressing leukocytes ( CD45-/lo 

1 ; CD66b-, CCR4+) and  CD45-/lo 2 (CD66b+, CD33lo, CD14lo).  Patients were clinically evaluated 

based on RECIST 1.1 criteria and classified as responders (R) and non-responders (NR) 12 months 

post treatment initiation as shown in Table 1. When we compared the percentage of the identified 

immune cell signatures described above, we identified three clusters that were significantly different 

and in higher frequencies in non-responders (Fig. 2c). These were the T8 CM cells, the CD45-/lo 2 

cluster and the pDC cluster.  

Since the most striking differences were observed within T8 cells, we decided to interrogate more in 

depth the phenotype of these cells by performing a new clustering step (see Methods). Clustering 

analysis revealed 12 clusters with distinct phenotypes (Fig. 2d-e). We found that the group of non-

responders had significantly higher frequencies of T8 CM cells that expressed PD-L1 (Cluster C9, 

Fig. 2e).  

Furthermore, to provide predictive insights, we employed a "phenotype-associated subpopulations 

from single-cell data (PENCIL), which is a supervised learning framework designed to enhance the 
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accuracy and relevance of subpopulation analysis, based on rejection strategy learning26 27. PENCIL 

prediction revealed that higher proportion C9, identified as T8 CM cells that expressed PD-L1 are 

enriched in blood of non-responder patients (Fig. 2f). To validate the prediction of PENCIL, we used 

Stabl, a general machine learning method that can identify a reliable set of biomarkers28. The Stabl 

model also identifies cluster C9 as the feature most associated with non-responsiveness to ICB 

therapy (Fig. 2g). These findings not only contribute to our understanding of the immune landscape 

in NSCLC, but also highlight specific cellular biomarkers that could predict patient outcomes 

following immunotherapy.  

 

Validation of the blood immunomap findings by flow cytometry.  

While several hematopoietic and non-hematopoietic cells express PD-L1 at various levels, cells of 

myeloid origin and tumor cells are considered as the main contributors of PD-L1 in cancer. Since our 

data suggest that PD-L1-expressing CD8+ T cells could predict responses to aPD1 immunotherapy 

we sought to validate these results through flow cytometry analysis. To this end, gating on CD3+ T 

cells no major differences were observed in frequencies of total CD4+ and CD8+ T cells between the 

two groups of NSCLC individuals. Notably, assessment of PD-L1 expression, revealed a significant 

increase of PD-L1-expressing CD8+ T cells in blood of non-responders compared to responders 

(Supplementary Fig. 1a) confirming the mass cytometry results, whereas no significant differences 

in frequencies of PD1-expressing CD8+ T cells were observed between the two groups 

(Supplementary Fig. 1b). We also analysed monocytic cell subsets that abundantly express PD-L1 

and although no significant alterations in frequencies of CD16- CD14+ classical monocytes (CL), 

CD16+ CD14+ intermediate monocytes (INT) and CD16+ CD14- non-classical monocytes (NCL) were 

observed between responders and non-responders (Supplementary Fig. 1c-e), PDL-1-expressing 

NCL cells were significantly increased in non-responders while no difference was observed in regard 

to PD-L1-expressing CL population. To conclude, these results validate the blood immunomap 
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findings in NSCLC individuals and proposes that PD-L1-expressing CD8+ T cells may contribute to 

the prediction of response to aPD1 immunotherapy. 

 

PD-L1-expressing CD8+ T cells are enriched in the tumor biopsies from NSCLC individuals.  

Following the identification of circulating PD-L1-expressing CD8+ T cells as a potential predictive 

biomarker to aPD1 immunotherapy in advanced NSCLC individuals and considering that immune 

checkpoint immunotherapy obtained approval as first and second line therapies, we asked whether 

PD-L1+CD8+ T cells could be identified among tumor infiltrating leucocytes (TILs) at early stages of 

tumor development. For this, TILs and blood were collected form NSCLC patients (Table 2 and 

Supplementary Table 2) subjected to mass cytometry analysis using the same 33-marker panel as 

above. We used a similar analysis approach, like the one shown on the peripheral blood immunomap, 

that included cluster identification with FlowSOM, manual annotation based on canonical markers as 

well as markers indicative of cell activation and differentiation state and projection of the results on 

dimensionality reduction maps (Fig. 3a-b).  

Our comparative analysis between peripheral blood and TILs from NSCLC patients revealed distinct 

immune landscape, reflective of the complex interplay within the tumor microenvironment.  

We observed that lung TILs were dominated by effector T8 cells, T4 cells, as well activated B cells 

(clusters T8 TE, T8 EM,  T4 TE, B EFF, B MBscw and Plasmab) as opposed to the peripheral blood 

where naïve lymphocytic populations mostly prevailed (clusters T4 N, T8 N and B N) (Fig. 3b). In 

the TILs, the T4 compartment was characterized by an elevated relative frequency of regulatory T 

cells (TREG), suggesting a pronounced immunosuppressive environment that may impede effective 

anti-tumor responses. We observed no significant difference in the proportions of central memory 

(T4 CM) subsets within this compartment, pointing to a selective enrichment of Tregs. Moving to the 

T8 compartment, TILs exhibited a marked increase in terminal effector cell (T8 TE) frequencies, 

which could indicate a heightened, albeit potentially thwarted, cytotoxic response within the tumor 

milieu. We also observed marked differences in other immune cell populations, including NK cells, 
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(Early-NK and Late-NK), as well as most monocyte subsets. Moreover, non-classical monocytes 

(Mono nc) were more represented within the TILs, potentially signifying a unique migratory or 

survival pattern in the tumor context. (Fig. 3b).  

Focusing on CD8+ T cells across peripheral and tumor environments, we observed an emerging 

dichotomy in the differentiation stages and expression patterns of PD-1 and PD-L1 (Fig. 3c-f). 

Among PBMC, we observed higher percentages of central memory cells expressing PD-L1 and 

CD294 (C1; CD45RA-, CD45RO+, CCR7+, PD-L1+, CD294+), as well as terminal effector cells with 

variable CD57 expression (C8, C9, C10; CD45RA+, CCR7−), which exhibit notably low levels of 

PD-L1. This profile contrasts sharply with the T8 compartment in TILs, which is predominantly 

composed of effector memory subsets (C3, C4, and C7; CD45RA−, CD45RO−, CCR7−). Moreover, 

C3 and C7 clusters were highly positive for both PD-1 and PD-L1 (Fig. 3d-f). Pseudotime trajectory 

analysis confirmed that C3 and, to a lesser extent, C1 are at the terminal stage of the differentiation 

pathway, likely indicating their exhausted status (Fig. 3g).  

 

Tumor infiltrating PD-L1+ CD8+ T cells interact with myeloid and cancer cells and exhibited 

exhausted characteristics. 

Given that CD8+ PD-L1+ T cells have been found in both blood and the TME, we aimed to determine 

their localization within NSCLC. To analyze the cellular composition of NSCLC tumors while 

preserving spatial context, we employed imaging mass cytometry (IMC) to detect 22 proteins in two 

formalin-fixed, paraffin-embedded samples (Supplementary Table 5). We identified 124,765 cells 

in total, and using an unsupervised lineage assignment approach, we classified these into 15 distinct 

cell populations (Fig. 4a-b). Four of these populations (C6, C8, C12, C15) expressed Pan-keratin 

(Pan-K) along with E-cadherin (E-Cadh) and were classified as tumor cells (Fig. 4b). Cells expressing 

alpha smooth muscle actin (α-SMA; grouped into C2) were classified as stromal cells (Fig. 4b). Seven 

clusters of myeloid cells have been identified: dendritic cells (C11) expressing CD11c, macrophages 

(C1, C3, C5, C9, C13) expressing CD68, and monocytes (C14) expressing HLA-DR and intermediate 
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levels of CD16 (Fig. 4b). Within the lymphoid compartment, we observed a cluster of B-T cells (C4) 

forming ectopic structures known as tertiary lymphoid structures (TLS) and a cluster of Foxp3 

positive Treg cells (C10) (Fig. 4b). Additionally, we identified a cluster of CD8+ T cells expressing 

intermediate levels of PD-1 and PD-L1 (C7). Upon manual assessment of the IMC data, we confirmed 

the presence of PD-L1+ CD8+ T cells within the lung cancer tissue. Notably, these cells were found 

in close proximity to cancer cells (Pan-K+; green) or within TLS (CD20+, cyan) (Fig. 4c). To 

specifically characterize the interactions and communication patterns of PD-L1+ CD8+ T cells with 

other cell clusters, we quantified cell–cell spatial relationships. We reported strong interactions 

between PD-L1+ CD8+ T cells (C7) and macrophages/monocytes (C3, C9, and C14), stromal cells 

(C2), cancer cells (C6 and C8), and to a lesser extent with B-T cells (C4) (Fig. 4d). 

To validate the presence of PD-L1+ CD8+ T cells in both NSCLC and various other solid tumors, we 

performed additional investigations using three publicly accessible single-cell RNA sequencing 

(scRNA-seq) datasets (see Methods). In the first two datasets, which included cells from NSCLC and 

melanoma patients, we identified CD8+ T cells expressing CD274, the gene encoding PD-L1. These 

cells exhibited higher expression levels of genes associated with an exhausted phenotype, such as 

CTLA4, PDCD1 (PD-1), ICOS, LAG3, ENTPD1 (CD39), HAVCR2 (TIM-3), SDC4, IRF4 and 

CXCL13, compared to PD-L1 negative CD8+ T cells (Fig. 4e). We also considered a third dataset 

comprising cells from patients with resectable NSCLC, analyzed using CITE-seq technology to 

integrate protein and transcriptome measurements at a single cell level. CD8+ T cells were selected 

and analyzed using an unsupervised graph-based clustering approach, revealing six subpopulations 

(Fig. 4f, left). Among these, cluster 4 (C4) was the only one expressing exhausted genes such as 

PDCD1, CTLA4, LAG3, and ENTPD1. Due to the low sequencing depth of CITE-seq data (~0.1 

million paired-end reads per cell for CITE-seq compared to a median of ~1.4 million paired-end reads 

per cell for Smart-seq2), we were unable to detect PD-L1 at the transcript level (Fig. 4f right). 

However, at the protein level, we observed higher expression of PD-L1 in cluster 4, along with PD-
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1, ICOS, and CD39. These data suggest that PD-L1+ CD8+ T cells appear more exhausted compared 

to their PD-L1– counterparts (Fig. 4f right). 

 

Identification of PD-L1+CD8+ T cells in tissues associated with NSCLC diagnosis 

Since there is a significant gap in our knowledge on early diagnosis of NSCLC, together with the 

immunomap results which identify enriched frequencies of PD-L1+ CD8+ T cells in lung tumor 

tissues, we asked whether such cells could also be detected in bronchoalveolar lavage (BAL) and 

pleural fluid (PF) tissues that are easily accessible, semi-invasive and routinely monitored for 

diagnosis of lung cancer. To this end, using flow cytometry, we observed increased frequencies of 

PD-L1+ CD8+ T cells in the BAL of NSCLC individuals who underwent bronchoscopy compared to 

individuals with bronchiectasis serving as disease control (Fig.5a-b). In line with this, increased 

frequencies were also detected in PF of individuals with thoracic malignancies in comparison with 

individuals with pleural infection who served as the respective control group (Fig.5c-d). These 

findings raise the possibility of PD-L1+ CD8+ T cells to be considered in the diagnosis of NSCLC.  

 

Peripheral PD-L1+ CD8 T cells from non-responder patients represent a markedly 

dysfunctional subset. To shed light on the molecular identity of PD-L1+ CD8+ T cells, we performed 

transcriptomic analysis on sorted cells (Supplementary Fig. 2) and compared their gene signatures 

to those of PD-L1– CD8+ T cells obtained from the PBMCs of NSCLC individuals(see Methods In 

total, we identified 317 DEGs (FDR < 0.05). PD-L1+ CD8+ T cells expressed higher levels of genes 

associated with T cell immune suppression or exhaustion, including NR4A1, IGFBP2 and LAYN29-31, 

(Fig. 6a). In contrast, PD-L1– CD8+ T cells seems to be largely distinct, featuring elevate expression 

of genes promoting CD8+ stemness such as WNT132, effector functions such as SPRY133 and ATP 

generation such as PFKFB1 or ATP8B434 (Fig. 6a).  

Gene set enrichment analysis (GSEA) further revealed that PD-L1– CD8+ T cells were characterized 

by transcripts associated with glycolysis, fatty acid metabolism, inflammatory response and 
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interferon signaling pathways, whereas PD-L1+ CD8+ T cells were characterized by the expression 

of genes associated with the oxidative phosphorylation signaling pathway, DNA repair and other 

mechanistic correlates of dysfunction, including MYC targets (Fig. 6b). To identify transcriptional 

regulators of PD-L1+ CD8+ T cells, we performed computational analysis of transcription factors 

(TF)-binding motif enrichment at the promoters (–950, +50 bp from the TSS) of DEGs obtained from 

bulk RNA-seq data. This analysis showed enrichment of binding motifs of TFs, including MAF and 

EOMES, both promoting CD8 T cell exhaustion35,36,. We additionally identified an enrichment for 

STAT3 and TEAD3, involved in inhibition of interferon expression, and induction of PD-L1 

expression37 (Fig. 6c). 

Given that higher percentages of PD-L1+ CD8+ T cells have been found in peripheral blood (PB) of 

non-responder patients, we compared the transcriptomes of these cells to those from responders to 

determine if they were transcriptionally different (see methods). Overall, we identified 85 

differentially expressed genes (supplementary table2). Cells from responders expressed high amounts 

of transcripts encoding molecules involved in effector function such as CD160, while cells from non-

responders were characterized by exhausted and immunosuppressive genes such as LAYN, TET1 and 

TET330,38 (Fig. 6d).  We then evaluated whether these genes possess prognostic value and correlate 

with better overall survival (OS) in NSCLC patients undergoing ICB therapy. Our analysis revealed 

that higher levels of CD160 expression were significantly associated with improved OS (P = 0.079), 

whereas elevated levels of LAYN were linked to poorer OS (P = 0.014; Fig. 6e).  
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Discussion  

Despite enormous efforts over the last decade to identify tissue or blood biomarkers to guide 

prognosis to ICI therapy in the treatment of NSCLC individuals, several limitations have hampered 

the clinical application of the suggested panels, leaving an important gap in the prediction of ICI 

responses. Herein, focusing on blood of NSCLC individuals with advanced disease, we structured an 

immunomap through a high-dimensional CyTOF approach which assisted to identify immune cell 

subsets with different representation in responders versus non-responders NSCLC individuals to 

aPD1 treatment. Our findings identify increased frequencies of CD8+ PD-L1+ T cells in periphery of 

non-responders compared to individuals that respond to ICI therapy. Notably, CD8+ PD-L1+ T cells 

were enriched in  tumor biopsies, pleural infusions, and BAL of NSCLC, placing this cell subset as a 

candidate for the early detection of NSCLC.  

Expression of PD-L1 by T cells has been described in various cancer settings. To this end, Diskin et 

al described increased frequencies of CD4+ and CD8+ T cells expressing PD-L1 in a mouse model of 

pancreatic ductal adenocarcinoma (PDA), while functional assessment of PD-L1 expression was 

performed only using CD4+ T cells 39 . In human settings, using an ex vivo lymph node assay, 

circulating PD-L1-expressing T cells (both CD4+ and CD8+) were shown to be prognostic on overall 

and progression-free survival in unresectable stage III and IV melanoma cohort40 , while in the same 

study CD8+ PD-L1+ T cells were proposed as a marker of resistance to aCTLA-4 treatment. In line 

with this, CD8+ PD-L1+ T cells were significantly increased in blood of melanoma patients close to 

experience disease relapse or disease-related death41. In lung cancer, levels of PD-L1 expression were 

evaluated on circulating CD3+, CD4+ and CD8+ T cell subsets, and was shown that NSCLC patients 

possessed increased frequencies of CD8+ PD-L1+ T cells compared to healthy individuals, and 

survival was decreased among patients with high frequencies of those cells42. Furthermore, PD-L1+ 

CD8+ T cells were enriched in primary lesion of a NSCLC cohort and exerted an immunosuppressive 

function of effector cytotoxic T cells43. However, whether such cells could predict immunotherapy 

responses in NSCLC has not been addressed. Our extensive phenotypic characterization revealed that 
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circulating CD8+ PD-L1+ T cells constitute a heterogeneous population and the subset of cells which 

correlate with aPD1 resistance and disease progression expresses markers such as CD127 and CD28, 

intermediate levels of CD25 while did not express PD-1, HLA-DR, CD38 and CD57.  

Attempting to shed light on the functional importance of these cells, we first focused on the 

phenotypic markers. Thus, the levels of CD127 expression are determined by its ligand IL-7, in which 

absence of IL-7 signalling results in increased CD127 expression by CD8+ T cells and associated with 

attenuated cytotoxic potential and exhausted phenotype in melanoma patients44. Expression of CD38 

by intratumoral CD8+ PD-L1+ T cells, was shown to correlate with poor responses to aPD1 

immunotherapy in preclinical models and melanoma patients45 suggesting an immunosuppressive 

role of this subset in the TME. Accordingly, we identify CD38+PD-L1+CD8+ TILs which are 

diminished in the periphery of the same NSCLC cohort. In contrast, the subset of CD8+ PD-L1+ T 

cells which is enriched in the periphery of non-responders to aPD1 ICI individuals, lack CD38 and 

HLADR. It was demonstrated that CD38+ and HLADR+ CD8+ T cells exhibit cytotoxic activity and 

inflammatory cytokine production in patients with infectious diseases and they decline upon 

resolution of the infection suggesting an effector T cell subset46. Although this literature allows the 

formulation of the hypothesis that peripheral CD38- HLA-DR- CD8+PD-L1+ T cells lack an effector 

function and may be anergic/exhausted/regulatory, direct evidence is still missing. Surprisingly, in 

support to this hypothesis, the peripheral CD8+ PD-L1+ T cells in non-responders in our study do not 

express PD1, which although in infectious diseases is considered as a surrogate marker of exhaustion, 

in tumor settings PD1 expression characterizes the activation stage of CD8+ T cells47,48 suggesting 

that lack of PD1 expression may indicate a dysfunctional T cell subset. Finally, the lack of CD57 

expression by CD8+ PD-L1+ T cells points towards an immunosuppressive stage of this subsets if we 

consider that CD57 expression correlated with expression of perforin and granzymes by CD8+ T cells 

which are essential for their cytotoxic activity49 . Overall and based on this extensive phenotype it is 

difficult to ascribe a functional state on CD8+PD-L1+ cells, it is possible that they exhibit a 

dysfunctional state similar to exhausted or regulatory T cells. This is further supported by the 
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transcriptomic analysis of these cells, which revealed genes associated with T cell dysfunction, such 

as NR4A1, IGFBP2 and LAYN29-31, to be upregulated in CD8+PDL1+ compared to CD8+PDL1- cells. 

Mechanistically, CD8+PDL1+ T cells, may directly suppress CD4+ or CD8+ T cells responses upon 

engagement of PD-L1 to PD1 expressed by effector cells39  or other inhibitory receptors such as the 

inhibitory killer cell immunoglobulin-like receptors (KIRs)50, may inhibit antigen presentation 

considering that myeloid cells express PD151, and also could downregulate PD1 expression to avoid 

targeting of aPD1 ICI immunotherapy and to promote tumor immune evasion. The latter is further 

supported by our findings which reveal that CD8+PDL1+ T cells strongly interacted with monocytes 

in the TME. In addition to monocytes, our imaging cytometry data reveal a favourable interaction of 

CD8+PDL1+ T cells with cancer cells and stromal cells. How those interactions imprint on the 

functional status of CD8+ T cells expressing PDL1 remains unknown. Nevertheless, stromal cells 

recently showed to promote a tumor-permissive TME through formation of synapsis with Treg cells52 

and thus interaction with CD8 T cell subsets could also envisioned.  

Using the same immunomap approach in an independent cohort of NSCLC patients at the early stages 

of disease, several CD8+ T cells subsets were identified to express PD-L1 among TILs. CD8+ PD-

L1+ TILs cells with a similar phenotype to the circulating counterparts, observed in metastatic 

NSCLC patients were in lower frequencies but still significantly higher at the periphery of this 

independent cohort.  CD8+ TIL subsets express even higher levels of PD-L1, but express high levels 

of CD38 and HLA-DR while they do not express CD57. Nevertheless, considering the plasticity of 

the T cell compartment, including the CD8+ T cells, whether these phenotypes reflect “permanent” 

functional cell states and if they adopt a different phenotype upon exposure to TME remail to be 

determined.  

In spite of the urgent demand for the identification of non-invasive predictive biomarkers for ICI 

immunotherapy responses and the enormous number of studies which propose potential blood 

biomarkers, their translation into clinical practice remains an unmet need. Most likely the “perfect” 

biomarker will consist of a panel of molecules and genes expressed by hematopoietic and non-
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hematopoietic cells if we consider that such cells circulate and eventually populate the TME. Our 

efforts towards this direction, focused on the construction of a blood immunomap of advanced 

NSCLC individuals responding or not to aPD1 ICI immunotherapy. We identified CD8+ PD-L1+ T 

cells to dominate in non-responder cells while these cells were enriched among TILs, in pleural 

infusions and BAL of independent disease cohorts. Incorporation of our findings to existing 

knowledge together with studies in larger cohorts and independent validations may pave the way for 

development of predictive and/or prognostic non-invasive biomarkers for prediction of ICI responses 

in NSCLC individuals. 
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Methods 

Patient samples 

This study was based primarily on three cohorts of NSCLC individuals, one cohort of individuals 

with malignant pleural effusions, one with pleural infection and one with bronchiectasis. The first 

cohort entailed individuals with unresectable, advanced (Stages III and IV) NSCLC (n=56), recruited 

through the Department of Medical Oncology at the University General Hospital of Heraklion. 

Heparinized peripheral blood was obtained from this cohort and donors were treatment naïve at the 

time of surgery. Of the 56 individuals with advanced NSCLC, 36 were histopathologically annotated 

as lung adenocarcinoma, 17 as squamous cell carcinoma, 2 as pleomorphic carcinoma and 1 as 

adenocarcinoma and squamous cell carcinoma. Clinical characteristics including age, sex, smoking 

status, pathological subtypes and stages, oncogenic driver mutations, PD-L1 expression, line of 

therapy, treatment and mortality on all donors are listed in Table 1 and Supplementary Table 1. 

Written informed consent was obtained from all individuals and the study protocol was approved by 

the Institutional Review Board of University General Hospital of Heraklion (#17652). The second 

cohort consisted of NSCLC individuals (Stages I and II) who fulfilled the criteria to undergo surgery 

for therapeutic purposes at the Thoracic Dept of Athens Chest Hospital “Sotiria” (n = 19). Individuals 

selected were treatment naïve at the time of surgery and heparinized peripheral blood and primary 

human lung tumor tissue were obtained. Of the 19 individuals with NSCLC, 14 were 

histopathologically annotated as lung adenocarcinoma, 4 as squamous cell carcinoma and 1 was not 

otherwise specified (NOS). Clinical characteristics including age, sex, smoking status, pathological 

subtypes and stages and comorbidities on all donors were recorded at recruitment and are listed in 

Table 2 and Supplementary Table 2. A third cohort of NSCLC individuals (Stages I-IV) underwent 

fibre-optic bronchoscopy with endobronchial biopsy (n=10). Clinical characteristics including age, 

sex, smoking status, pathological subtypes, and stages on all donors were recorded at recruitment and 

are listed in Table 3 and Supplementary Table 3. Regarding the cohort of individuals with 

bronchiectasis (Table 3), they also underwent fibre-optic bronchoscopy with endobronchial biopsy 
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(n=10). The median age was 65.4, 60% were female and 50% current smokers. Prior to participation 

in the study, all individuals provided informed written consent and the protocol was approved by 

Athens Chest Hospital “Sotiria” research ethics committee [11504/20/04/21]. All studies were 

conducted according to the principles of the Declaration of Helsinki. The cohort that underwent 

thoracentesis was recruited through the Department of Critical Care and Pulmonary Medicine of 

Athens Evangelismos Hospital and consisted of individuals with NSCLC (n=3), small cell lung 

cancer (SCLC) (n=1), malignant mesothelioma (n=2) and pleural infection (n=4) (Supplementary 

Tables 4). Written informed consent was obtained from all individuals and the study protocol was 

approved by Evangelismos Hospital Ethics Committee (186/9-6-2022). 

 

PBMC and tumor infiltrating leukocyte cell fraction extraction  

Peripheral blood mononuclear cells (PBMCs) were obtained from NSCLC individuals by density-

gradient centrifugation (Lymphoprep, STEMCELL Technologies, Inc.). Primary lung tumor tissue 

was obtained from NSCLC individuals undergoing surgical resection. Tissues were minced and 

incubated with 0.14 units/ml Liberase TL (Sigma Aldrich) and 0.1mg/ml DNase I (Sigma Aldrich) 

in 37oC for 1h. Single-cell suspensions were prepared by passing the minced tissues through 70 µm 

cell strainers. Cells were resuspended in 40% percoll (Sigma Aldrich), laid over equal volume of 80% 

percoll and centrifuged at 600g for 25min without deceleration. The tumor infiltrating leukocyte cell 

fraction was collected at the interface between 40% and 80% discontinuous percoll gradient. PBMCs 

and the tumor infiltrating leukocyte cell fraction were cryopreserved in 90% FCS-10% DMSO 

freezing media until use.  

 

Fibre-optic bronchoscopy and sample collection. Individuals with bronchiectasis (n=10) or with 

suspected NSCLC or known, previously treated, NSCLC, now suspected with possible relapse 

(n=10), underwent fibre-optic bronchoscopy with endobronchial biopsy EBUS TBNB and 

bronchoalveolar lavage fluid (BALF) collection. Bronchoscopy was performed on an outpatient 
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basis, as previously described53. After inspection of the bronchial tree, bronchoalveolar lavage was 

performed and samples with a fluid recovery of ≥60% were retained for further analysis according to 

the ERS task force guidelines regarding measurements of acellular components in BAL54.  

 

Pleural fluid collection. Individuals with NSCLC (n=3), malignant mesothelioma (n=2), SCLC 

(n=1) or pleural infection (n=4) underwent thoracentesis using a 21g needle for diagnostic or 

therapeutic purposes. Pleural fluid was collected in 4 ml Ethylenediaminetetraacetic Acid 

Tetrasodium-coated Vacutainer tubes. Fluid samples were centrifuged at 400 x g for 10 min and cell 

pellets were resuspended in 1ml of Bambanker (Nippon Genetics, alternatively in 10% DMSO in 

FBS) and stored at -80oC until analysis. 

 

Mass cytometry – CyTOF. For high dimensional immunophenotyping analyses we utilised the 

Maxpar Direct Immunophenotyping Assay (MDIPA), which comprises of 30 pre-conjugated 

antibodies in lyophilized form, Standard Biotools, San Francisco, CA55. The MDIPA backbone was 

complemented with antibodies against CD33, PD-1, and CD274/PD-L1. The antibody panel used, 

clones and metal tags are provided in Supplementary Table 5. The antibodies against CD33, PD-1 

and PD-L1 were titrated according to manufacturer’s instructions. For staining, PBMCs and TILs 

were thawed in prewarmed RPMI supplemented with 10% FBS, washed twice and then resuspended 

in fresh medium. For live/dead cell discrimination, cells were stained with 1 μM Cisplatin Cell-ID™ 

(Standard Biotools, San Francisco, CA) and washed with Maxpar cell staining buffer (CSB) followed 

by a blocking step (Human TruStain FcX, Biolegend). Then, cells were stained for cell surface 

markers with the MDIPA backbone as well as CD33, PD-1 and PD-L1 according to manufacturer’s 

instructions followed by two washes with CSB and fixation (1.6% filtered formaldehyde solution, 

Sigma) for 20 min at RT. Finally, cells were stained in DNA intercalator solution (1:1000 dilution of 

125 μM Cell-ID™ Intercalator-Ir,) in Maxpar Fix and Perm buffer (all from Standard BioTools, San 

Francisco, CA). The following day, cells were washed with CSB buffer and Cell Acquisition Solution 
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(CAS). Immediately before acquisition, cells were resuspended with EQ Passport beads (1:10 

dilution). To maximize data quality, acquisition rate on the Helios™ system (Standard BioTools, 

South San Francisco, CA, USA) was maintained at a rate of 350 to 400 events/s. Acquired data were 

normalized using Passport beads (Standard BioTools method) with CyTOF software (version 

10.7.1014). Prior to analysis, we performed data clean-up for gaussian parameters and live singlet 

cell events were used for downstream analyses. For these analyses, we used bivariate dot plots in 

FlowJo™ v10.8 Software (BD Life Sciences, Franklin Lakes, NJ, USA). FlowSOM clustering 

analysis and dimensionality reduction with UMAP were performed in R programming environment 

(Version 4.1.0, https://www.r-project.org/) following previously published, open source, validated 

workflows25.  For each sample, data from living CD45+ cells were selected and imported into R using 

the flowCore package v2.4.0. All CyTOF data were transformed using hyperbolic arcsinh with a 

cofactor of 5. The initial clustering and dimensional reduction were performed using the FlowSOM 

and UMAP algorithms, respectively, with 33 lineage markers to accurately identify the major 

populations. Next, memory CD8+ T cells were selected by excluding the naïve cell cluster (T8 N; 

CD45RA+ CCR7+ positive cells) and reanalysed separately using a panel of markers including 

CD45RO, CD45RA, CCR7, PD-1, CXCR3, PD-L1, CCR4, CD28, CD27, CD16, CD57, CCR6, 

CD38, HLA-DR, CD294, CD161, and CD56. 

 

Imaging Mass Cytometry (IMC) sample preparation and labelling. Formalin-fixed paraffin-

embedded lung tissues sections were dewaxed in xylene for 20 min, hydrated in descending grades 

of ethanol (100%, 90%, 70%) and washed in distilled water for 5 min. Subsequently, tissues were 

incubated for 20 min at 98oC in preheated antigen retrieval solution (Dako Target Retrieval Solution, 

pH 9). Afterwards, tissues were let to cool down at room temperature for 10 min and then washed in 

distilled water for 10 min. Next, tissues were incubated with PBS with Calcium and Magnesium 

(PBS+/+) supplemented with 3% BSA, 0.1% Triton X-100, 5% normal mouse serum, 5% normal 

rabbit serum and 5% normal goat serum for 45 min at room temperature in a hydration chamber. To 
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prepare the antibody cocktail, the total volume of antibodies at concentrations specific for the assay 

were calculated and diluted in PBS+/+ supplemented with 0.3% BSA, 0.01% Triton X-100, 0.5% 

normal mouse serum, 0.5% normal rabbit serum and 0.5% normal goat serum. Tissues were then 

incubated overnight with the antibody cocktail at 4 ˚C in a hydration chamber. All the carrier-free 

purified primary antibodies used for metal conjugation are shown in Supplementary Table 5. 

Following the overnight incubation, tissues were washed 4 times in 0.05% Tween-20 in PBS for 5 

min and stained with Intercalator-Ir191/193, 0.3 mM, in PBS for 30 min at room temperature in a 

hydration chamber. Next, tissues were washed 3 times in 0.05% Tween-20 in PBS for 3 min. Finally, 

tissues were washed in Ultrapure water for 30 seconds and airdry for 20 min.  

 

IMC data acquisition and analysis. Image acquisition was performed using the Hyperion imaging 

mass cytometry system (Standard Biotools). The system was tuned routinely to account for machine 

performance variability following manufacturer’s instruction. The ROIs of choice were ablated by 

setting the laser frequency and power to 200Hz and 2, respectively. Data were exported as MCD files 

and visualized using the MCD viewer (version 1.0, Standard Biotools). Steinbock was used to convert 

the original MCD file to TIFF format, perform cell segmentation using the pre-trained deep learning 

model DeepCell, and consolidate all object data (e.g., intensities, region properties) from all images 

into a single file56,57 . The ImcRtools (v. 1.8.0) and cytomapper (v. 1.10.1) packages were employed 

to read the single-cell data extracted using the Steinbock framework. Batch correction and integration 

of cells across samples were carried out using the Harmony algorithm58 . The bluster package was 

used to cluster cells using a shared nearest neighbor (SNN) graph with 𝑘=30. Cell-cell spatial 

interactions were computed using the testInteractions function, which calculates the average cell 

type/cell type interaction count and compares it against an empirical null distribution generated by 

permuting all cell labels59. Imaging Mass Cytometry experiments have been performed by the 

Multiscale Immuno-Imaging Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.  
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Flow cytometry and cell sorting. PBMCs were stained for 30 minutes at 4°C with the following 

monoclonal anti-human antibodies: CD3-APC-Cy7 (OKT3), CD4-PerCP-Cy5.5 (OKT4), CD8-

BV785 (RPA-T8), CD25-BV605 (BC96), CD127-BV510 (AO19D5), CD14-FITC (M5E2), CD16-

PE (3G8), CD279 (PD1)-PE-Cy7 (A17188B), PD-L1-BV421 (29E.2A.3), HLA-DR-Alexa Fluor 700 

(LN3), CD123-APC (6H6) all from Biolegend. BAL cells were stained for 30 minutes at 4°C with 

the following monoclonal anti-human antibodies: CD3-PE (HIT3a), CD8-PE-Cy7 (HIT8a), PD-1-

FITC (EH12.2H7) and PD-L1-BV421 (29E.2A3) all from Biolegend. Flow cytometry acquisition 

and analysis was performed with a BD FACSAria III (BD Biosciences) and BD FACSCelesta. FACS 

sorting under aseptic conditions was performed using 70-micron nozzle and 4-way purity DIVA 

software sorting precision protocol. During cell sorting PD-L1 positive CD8 T cells were collected  

in 1.5 ml collection tubes following the sorting strategy as shown in Supplementary Figure 2. 

Analysis of flow cytometry data were done with FlowJo™ v10.8 Software (BD Life Sciences, 

Franklin Lakes, NJ, USA).  

 

RNA Isolation and 3′ RNA sequencing. RNA from FACS-sorted CD8 PD-L1 positive cells (21x103 

on average) from responders (n=5) and non-responders (n=5) NSCLC individuals was isolated using 

Nucleospin RNA XS kit (Macherey-Nagel), according to the manufacturer instructions. The quality 

and quantity of isolated RNA was measured using  2100 Bioanalyser  (Agilent)  and RNA 6000 Pico 

Kit reagents (Agilent). RNA samples with RNA integrity number (RIN)>7 were used for library 

construction using the 3′ mRNA-Seq Library Prep Kit FWD for Illumina (QuantSeq-LEXOGEN) as 

per the manufacturer’s instructions. Amplification was controlled for obtaining optimal unbiased 

libraries across samples by assessing the number of cycles (ranging from 20-24) required by qPCR. 

DNA High Sensitivity Kit for bioanalyzer was used to assess the quantity and quality of libraries, 

according to the manufacturer’s instructions (Agilent). Libraries were multiplexed and sequenced on 

an Illumina Nextseq 500 at the genomics facility of IMBB FORTH according to the manufacturer’s 

instructions. 
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Differential Expression Analysis (DEA) of bulk RNA sequencing data.  

The quality of the FASTQ files was assessed with the FastQC software. Reads were aligned to the 

human (hg38) genome with the Hisat2 aligner37 (hisat2 -p32 -x $REFERENCE_GENOME -q 

fastq/$FILE_ID.fastq -S $FILE_ID.sam --score-min L,0,-0.5 -k 2). Htseq-counts was utilized to 

summarize reads at the gene level (htseq-count -f bam -s yes -i gene_id bam/$FILE_ID.bam 

data/refs/Homo_sapiens/UCSC/hg38/Annotation/Genes/genes.gtf>$COUNTS_DIR/NGS$FILE_ID

). Differential expression analysis (DEA) was conducted by running EdgeR60 via SARTools 1.5.061 . 

For the comparison of PD-L1+ vs. PD-L1− CD8 positive sorted cells, DEGs in either group of the 

comparison were defined by applying the following thresholds: |Log2FC| >1.5 and p-value <0.05, 

which was considered statistically significant. For the comparison of NR and R, PD-L1+ CD8 T cell 

samples were divided according to the RECIST 1.1 criteria. DEGs in either group were identified 

using the thresholds |Log2FC| > 0.5 and p-value < 0.05, which were considered statistically 

significant. Heatmaps and boxplots were created in R with an in-house–developed script which is 

based on the complex heatmap R package62. 

 

Motif enrichment analysis 

The PScan software tool (version 1.6) was used for the in silico computational analysis of 

overrepresented TF binding sites within the 5′-promoter regions of genes upregulated within the PD-

L1+ CD8+ T cells63 . PScan was executed on the [–950, +50] bp upstream regions using the Homo 

sapiens JASPAR 2018_NR database64 . The results were summarized with a scatter plot, where p-

values were plotted against Z-scores on the vertical axis using GraphPad Prism 8. 

 

Gene set enrichment analysis (GSEA) and motif enrichment analysis 

GSEA was performed in R using the fgsea package (v. 1.24.0) with a gene list ranked by log2 fold 

changes. The analysis was conducted in preranked mode with 1,000 permutations. The maximum 

gene set size was set to 500 genes, and the minimum gene set size was set to 15 genes. The gene 
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signature was retrieved from the H collection (h.all.v7.5.1.symbols.gmt) of the Molecular Signatures 

Database (MSigDB v7.5.1)65. 

 

Survival analysis. 

DEGs identified between R and NR samples were used to generate survival curves. The Kaplan-

Meier Plotter online tool66  was employed for statistical analysis and survival curve generation, 

utilizing the NSCLC immunotherapy cohort. 

 

PENCIL and Stabl prediction analysis 

The PENCIL method is based on LWR, a machine learning technique that incorporates rejection 

labels into prediction results26. For PENCIL, we used hyperbolic arcsine-transformed single-cell mass 

cytometry intensity matrices along with relevant cell metadata, such as cluster ID and UMAP 

coordinates of T8 memory cells. These data were sourced from CATALYST and imported into 

Seurat67 (v. 5.0.3) via the CreateSeuratObject function. We adhered to the standard workflows for 

making predictions as outlined on the PENCIL GitHub page. Analyses with PENCIL were performed 

using Python 3.11.4 with GPU acceleration (NVIDIA Quadro RTX 5000), and default settings were 

applied for the shuffle rate, lambda L1, and lambda L2 tuning parameters. For StablL feature 

selection, we used the binary classification mode (Jupyter Notebook) with the matrix containing the 

T8 memory cluster frequencies as input values. The following tuning parameters were used for the 

analysis: lambda_grid = “0.1, 1, 30”; hard_threshold = 0.5; random_state= 42; n_bootstraps=1,000; 

fdr_threshold_range= “0.1, 1, 0.01”. 

 

In silico scRNA-seq data analysis 

Tumor infiltrating CD8+ T cells were retrieved from GSE99254(NSCLC, stage I-IV), GSE120575 

(NSCLC, stage I-IV), GSE154826 (NSCLC, stage I-IIB) dataset. All three datasets have been 

normalized using the R package Seurat (v. 5.0.3) applying SCTransform function68. For GSE99254 
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and GSE120575 dataset CD8+ T cells were annotated as PD-L1+ applying the following thresholds 

on the expression level of CD274 gene (coding for PD-L1) > 3. Cells with CD274 below of threshold 

(<3) were classified as PD-L1−. Since the expression of CD274 was not retrieved for the dataset 

GSE154826 due to low sequencing depth, we proceeded with the standard workflow by analyzing 

both the transcripts and cell-surface proteins present within this dataset (CITE-seq technology). 

Surface protein expression was normalized using the 'CLR' method. We computed the principal 

components (PCs) and selected 20 PCs to run UMAP and perform graph-based clustering with a 

resolution ranging from 0.1 to 1. Clustertree was used to determine the optimal resolution69. 

Differences in gene expression between PD-L1+ and PD-L1− CD8+ T cells were assessed using a 

Wilcoxon Rank Sum test. 

 

Data availability. All the data supporting the findings of this study are available from the 

corresponding authors upon request. 
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Figure legends 

 

Fig. 1| Study outline. a) PBMCs from NSCLC patients (stage III-IV) before the initiation of aPD1 

immunotherapy were analysed with CyTOF. Patients were clinically evaluated at 12 months and 

classified as responders (R) or non-responders (NR) to immunotherapy. Computational cytometry 

analysis tools were used to construct an immunomap and select key features for immunotherapy 

response prediction and further investigation with flow cytometry and RNAseq.  b) PBMCs and lung 

tumor from NSCLC patients (stage I-II) were analysed with CyTOF and IMC. BALF and PF was 

also collected from individuals with thoracic malignancies, bronchiectasis or pleural infections for 

flow cytometry analysis. Created with BioRender.com. 

 

Fig. 2| Identification of peripheral blood immune signatures in NSCLC patients prior to the 

initiation of immunotherapy. a) UMAP plot of concatenated blood circulating CD45+ cells from 

responder (R; n = 25) and non-responder (NR; n = 25) samples from patients with NSCLC prior ICB. 

b) Heatmap of the median marker intensities of the 33 lineage markers across the 24 cell populations 

obtained using the FlowSOM algorithm after manual metacluster merging. The colors in the 

cluster_id column corresponds to those used for labeling the UMAP plot clusters as in a. The heatmap 

colors represent the median arcsinh marker expression (scaled 0–1) calculated from cells across all 

samples, blue indicating lower expression and red indicating higher expression. The light gray bar 

along the rows (clusters) and the values in brackets indicate the relative sizes of the clusters. c) Dot 

plots show the frequencies (% of live singlet PBMCs) of identified clusters among R (n=24) and NR 

(n=26). The central bar represents the mean ± SEM. Generalized linear mixed model (GLMM) test 

was used for the statistical analysis. Adjusted P-values are reported in the figure. d) Heatmap of the 

median marker intensities of the 17 lineage markers across the 12 cell populations obtained using the 

FlowSOM algorithm during the reclustering of T8 cells. e) Dot plots display the frequencies of T8 

clusters in R and NR. The central bar represents the mean ± SEM. Statistical analysis was performed 

using a generalized linear mixed model (GLMM) test, with adjusted p-values reported in the figure. 
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f) UMAP plot of R and NR T8 cells embedded with PENCIL prediction, confidence score of PENCIL 

prediction and FlowSOM clusters. In gray non classified cells (rejected), in blue cells associated with 

ICB response (R) and in red cells associated with ICB non-response. g) Stability path graphs denote 

clusters of T8 cells selected by StablL. The data-driven computed reliability threshold θ is indicated 

by a dotted line. Features selected by StablL (red lines) are shown 

 

Fig. 3| Distinct subsets of CD8+ PD-L1+ cells are present in the periphery and lung tissue of 

NSCLC patients. a) UMAP plot of concatenated CD45+ T cells from peripheral blood (n = 38) and 

tumor (n = 38) samples from early-stage NSCLC patients color-coded by FlowSOM clusters (Top 

panel) or tissue origin (Bottom panel). b) Heatmap of the median marker intensities of the 33 lineage 

markers across the 32 cell populations obtained using the FlowSOM algorithm after manual 

metacluster merging. The colors in the cluster_id column correspond to those used for labeling the 

UMAP plot clusters as in a. The heatmap colors represent the median arcsinh marker expression 

(scaled 0–1) calculated from cells across all samples, with white indicating lower expression and dark purple 

indicating higher expression. The light gray balloon plot along the rows (clusters) indicates the relative 

sizes of the clusters among blood and tumor tissue. c) UMAP plot as in a depicting the selected T8 

memory cells (blue dots). d) Heatmap of the median marker intensities of the 17 lineage markers 

across the 10 cell populations obtained using the FlowSOM algorithm during the reclustering of T8 

memory cells. e) UMAP plot of T8 memory cells, with the top panel color-coded by FlowSOM 

clusters and the bottom panel color-coded by PD-1/PD-L1 expression. Red arrows indicate the C1 

and C3 clusters expressing PD-L1. f) Dot plots display the frequencies of T8 memory clusters in 

peripheral blood and tumor. The central bar represents the mean ± SEM. Statistical analysis was 

performed using a generalized linear mixed model (GLMM) test, with adjusted p-values reported in 

the figure as *p <0.05, **p <0.01, ***p<0.005, ****p<0.001.  g) UMAP plot as in e depicting the 

trajectory analysis (black arrow) of T8 memory cells color-coded by pseudotime value. 
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Fig. 4| Single-cell spatial localization of lung infiltrating PD-L1+ CD8+ T cells. a) Two-

dimensional UMAP representation of multiplexed proteomic data highlighted by cell phenotype 

(clusters; n =15) and sample id (n=2; total ROI = 6). Each dot represents one cell. b) Heatmap of 

median values of normalized protein expression per cell cluster. Markers and clusters were arranged 

by hierarchical clustering with Ward’s method. c) Representative multichannel IMC images (ROI: 

region of interest) from sample 2 (left) and sample 1 (right). Pan Keratin (Pan-K, green), CD3 (blue), 

CD8a (red), CD20 (cyan) and PD-L1 (yellow) were used to depict the structure of the tumor tissue 

along with the localization of TLS and PD-L1+ CD8+ T cells. d) Heatmap depicting significant 

pairwise cell–cell interaction (red) or avoidance (blue) between all cell types of the dataset. e) Violin 

plot showing the levels of manually selected exhaustion genes in PD-L1– vs. PD-L1+ CD8+ T cells 

from NSCLC (GSE99254, stage I-IV) and melanoma (GSE120575, stage III-IV) cohorts. f) (left) 

UMAP depicting CD8+ T-cell heterogeneity in the GSE154826 dataset (NSCLC patients, stage I-

IIB). Cells are colored according to the six clusters defined in an unsupervised manner; (right) violin 

plot illustrating both mRNA and protein expression of manually selected markers indicative of T cell 

dysfunction. 

 

Fig. 5| Flow cytometry analysis reveals increased percentages of PD-L1+ CD8+ T cells in the 

bronchoalveolar lavage (BAL) of NSCLC individuals and in pleural fluid (PF) of individuals 

with thoracic malignancies. a) Representative FACS Dot plots showing gating of  CD8+ PD-L1+ T 

cells in BALF from NSCLC individuals with bronchiectasis (n=10) b) Box and whiskers plots of 

collective flow cytometry data of CD8+ PD-L1+ cells in BALF. c) Representative FACS Dot plots 

showing gating of CD8+ PD-L1+ T cells in PF from individuals with thoracic malignancies (n=6) and 

pleural infections  (n=4) bronchiectasis (n=10 per group) d) Box and whiskers plots of collective flow 

cytometry data of CD8+ PD-L1+ cells in PF cells. Unpaired two tailed Mann-Whitney test *p <0.05, 

**p <0.01. 
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Fig. 6| Transcriptional profiling of PD-L1+ CD8+ T cells. a) Heatmap of differentially expressed 

genes (FDR < 0.05) between FACS-sorted PD-L1– (n = 9) vs. PD-L1+ (n = 9) CD8+ T cells subsets 

from the blood of patients with NSCLC, as obtained by bulk RNA-seq. Selected differentially 

expressed genes are indicated. b) Hallmark gene sets (MsigDB; as obtained by GSEA) significantly 

enriched in cells sorted as in a. c) Transcription factor binding motif (TFBM) enrichment analysis by 

pScan of RNA-seq data obtained as in (a). Only genes upregulated in PD-L1+ CD8+ T cells were 

used. Colored dots indicate significant hits. d) Heatmap of differentially expressed genes 

(FDR < 0.05) between FACS-sorted PD-L1+ CD8+ T cells from responder (n = 5) and non-responder 

(n = 4) NSCLC patients receiving ICB therapy. Selected differentially expressed genes are indicated. 

e) Kaplan–Meier overall survival (OS) curves in the immunotherapy dataset (KM plotter) of patients 

with NSCLC. The mean z-score value of reported genes was used to classify tumor samples into 

LOW and HIGH expression groups. P-values were calculated using the log-rank (Mantel–Cox) test. 

Hazard ratio (HR) and log-rank p-values are reported in the figures.  

 

Supplementary Figure legends 

 

Supplementary Fig. 1| Flow cytometry analysis reveals increased percentages of PD-L1+ CD8+ 

T cells in the peripheral blood of NSCLC patients resistant to anti-PD1 immunotherapy.  a) Dot 

plots showing gating strategy to analyse CD4+ and CD8+ T cells in PBMCs from NSCLC patients 

before the initiation of aPD1 immunotherapy, responders (R) and non-responders (NR) to aPD1 

immunotherapy and gating strategy for PD1 positive and PD-L1 positive CD8 T cells. (FMO : 

Fluorescence minus one control) b) Box and whiskers plots of collective flow cytometry data of 

PBMC from NSCLC patients  (n=20 patients per group), showing the abundance of  total CD3 T 

cells,  the percentage of  CD4 and CD8 subpopulations, the CD4/CD8 ratio and the percentage of 

PD1, PD-L1 CD8+ T cells. c) Representative FACS Dot plots for each group of individuals showing 

gating strategy for CD8+ PD-L1+ T cells. Unpaired two tailed Mann-Whitney test **p <0.01. 
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Supplementary Fig. 2| Gating strategy for flow cytometric sorting of CD8+ PD-L1+ cells from 

peripheral blood of NSCLC patients. Representative FACS Dot plots of the gating strategy to sort 

live (SSC-A vs FSC-A plot), singlets (FSC-W vs FSC-A plot), CD3+ (SSC-A vs CD3 plot), CD8+ 

(CD4 vs CD8 plot), PD-L1+ cells (CD8 vs PD-L1 plot) from PBMCs of NSCLC patients.  
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