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Abstract  

Background: Previous studies reported on the existence of atrophy-based Alzheimer's disease 

(AD) subtypes that associate with distinct clinical symptoms. However, the consistency of 

AD atrophy subtypes across approaches remains uncertain. This large-scale study aims to 

assess subtype concordance in individuals using two methods of data-driven subtyping. 

Methods: We included � � 10,011 patients across the clinical spectrum from 10 AD cohorts 

across Europe, United States, and Australia, and extracted regional volumes using Freesurfer 

v7.1.1. To characterise atrophy heterogeneity in the AD continuum, we introduced a hybrid 

two-step approach called Snowphlake (Staging NeurOdegeneration With PHenotype 

informed progression timeLine of biomarKErs) to identify subtypes and sequence of atrophy-

events within each subtype. We compared our results with SuStaIn (Subtype and Stage 

Inference) which jointly estimates both, and was trained and validated similarly. The training 

dataset included Aβ� participants (� � 1,195), and a control group of Aβ	 cognitively 

unimpaired participants (� � 1,692). We validated model staging within each subtype, in a 

held-out clinical-validation dataset �� � 6,362� comprising patients across the clinical 

spectrum irrespective of Aβ biomarker status and an independent external dataset (� � 762). 

Furthermore, we validated the clinical significance of the detected subtypes, in a subset of 

Aβ� validation datasets with � � 1,796 in the held-out sample and � � 159 in the external 

dataset. Lastly, we performed concordance analysis to assess the consistency between the 

methods. 

Results: In the AD dementia (AD-D) training data, Snowphlake identified four subtypes: 

diffuse cortical atrophy (21.1%, ��� 67.5 � 9.3), parieto-temporal atrophy 

(19.8%, ��� 60.9 � 7.9), frontal atrophy �24.8%, ��� 67.6 � 8.8� and subcortical atrophy 

(25.1%, 68.3 � 8.2). The subtypes assigned in Aβ� validation datasets were associated with 

alterations in specific cognitive domains (Cohen’s f: �0.15 	 0.33�), while staging correlated 

with Mini-Mental State Examination (MMSE) scores (R: �	0.51 �� 	 0.28]) in the validation 

datasets. SuStaIn also identified four subtypes: typical (55.7%, ��� 66.7 � 7.8), limbic-

predominant (24.2%, ��� 72.2 � 6.6), hippocampal-sparing (14.6%, ��� 62.8 � 6.9), and 

subcortical (0.8%, ��� 68.2 � 7.6). The subtypes assigned in Aβ� validation datasets using 

SuStaIn were also associated with alterations in specific cognitive domains (Cohen’s 

f: �0.17 	 0.34�), while staging correlated with MMSE scores in the validation datasets (R: 

�	0.54 �� 	 0.26]). However, we observed low concordance between Snowphlake and 
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SuStaIn, with 39.7% of AD-D patients consistently grouped in concordant subtypes by both 

the methods. 

Conclusion: In this multi-cohort study, both Snowphlake and SuStaIn identified four 

subtypes that were associated with different symptom profiles and atrophy-severity measures 

that were associated with global cognition. The low concordance between Snowphlake and 

SuStaIn suggests that heterogeneity may rather be a spectrum than discretised by subtypes. 
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Introduction 

Alzheimer’s disease (AD) is the leading cause of dementia.1 It is characterised by progressive 

loss of brain volume (atrophy) and cognitive decline. Across individuals with AD, there is 

substantial variability in severity and pattern of brain atrophy,2-5 as well as in the symptoms 

that AD patients manifest.6,7 Understanding the variability in brain atrophy between patients, 

and how they explain differences in  cognitive symptoms, could improve tailored patient care 

management. 

One approach to study heterogeneity in atrophy patterns is by data-driven analysis of 

structural magnetic resonance imaging (MRI) that quantify in-vivo atrophy patterns in AD 

patients. Previous studies taking this approach, using different techniques, identified either 

three subtypes8,9,10 or four subtypes4,11 of AD. The most frequently identified subtypes include 

a medial temporal lobe (MTL) atrophy subtype and hippocampal-sparing subtype.2,4,8,9,11 

Other subtypes that have been identified include subcortical atrophy subtype2,9, parieto-

occipital atrophy subtype4, cortical atrophy subtype2,4,9, and minimal atrophy subtype.4,11 

Although these findings suggest that atrophy-based subtypes may represent robust biological 

entities, there remains inconsistency in the specific subtypes found, number of subtypes 

found, and in their associations with clinical symptoms. Possibly, this may be explained by 

difference in methodology used for subtyping, but so far remains unclear to what extent 

different subtyping methodologies converge on identifying the same subtypes when 

performed in the same patient population.  

Apart from distinct patterns of atrophy, studies have identified another dimension that 

contributes to atrophy heterogeneity i.e. severity of atrophy (also referred to as atrophy 

stage).2,3 Consequently, it remains a challenge to reliably identify data-driven subtypes that 

reflect meaningful phenotypic differences independent of disease severity, which might 

further explain the inconsistencies in atrophy subtypes observed across studies. To overcome 

this challenge, data-driven disease progression models (DPMs),12 such as SuStaIn2 and 

Disease Course Mapping13, have been developed to identify subtypes and severity jointly 

within a single framework. However, these methods remain computationally expensive and 

thus use a limited number of volumetric (or thickness) markers. Other studies have used 

regular machine-learning (ML) approaches for subtyping by selecting patients within the 

same clinical stage of AD4,9. While the regular ML approaches are computationally efficient 

as compared to DPMs and thus scalable to large cohorts and markers with greater spatial 
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resolution, regular ML methods do not account for atrophy severity. To address this 

drawback, in this work, we combined a well-validated ML approach for AD subtyping using 

non-negative matrix factorization (NMF)4,14 with a scalable disease progression model called 

discriminative event-based model (DEBM)15,16 for estimating severity. The resulting hybrid-

method was termed Snowphlake (Staging NeurOdegeneration With PHenotype informed 

progression timeLine of biomarKErs) and this was used to study AD heterogeneity and 

compare our results with those obtained using SuStaIn.  

In this large-scale multi-centre study including � �  10,011 participants from 10 cohorts 

across Europe, United States, and Australia, we first characterised atrophy heterogeneity in 

the AD continuum using Snowphlake and compared our results with SuStaIn, trained and 

validated similarly. Second, we studied how the data-driven estimates of atrophy 

heterogeneity for each method were related to the cognitive symptoms that patients 

experience. Finally, we examined the concordance between the subtype assigned by 

Snowphlake and SuStaIn.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.27.24312499doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.27.24312499
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 

Study participants 
We selected participants with a clinical diagnosis of AD dementia (AD-D), mild cognitive 

impairment (MCI), subjective cognitive decline (SCD), or were cognitively normal (CN) 

when they had a 3D T1w MRI scan available, from 10 cohorts across Europe, United States 

of America, and Australia. The included cohorts were: Amsterdam Dementia Cohort 

(ADC)17, Alzheimer’s Disease Neuroimaging Initiative (ADNI)18, Australian Imaging 

Biomarker & Lifestyle Flagship Study of Ageing (AIBL)19, National Alzheimer’s 

Coordinating Center (NACC)20, Open Access Series of Imaging Studies (OASIS)21, 

Alzheimer’s Repository Without Borders (ARWiBo)22, European DTI Study on Dementia 

(EDSD)23, Italian Alzheimer’s Disease Neuroimaging Initiative (I-ADNI)24, European 

Alzheimer’s Disease Neuroimaging Initiative (also known as PharmaCOG)25, and the Geneva 

memory-centre cohort (GMC)26. The characteristics of each cohort are summarized in 

Supplementary Table 1. ADNI data used in the preparation of this article were obtained from 

the database adni.loni.usc.edu. Further details about ADNI are mentioned in the 

Supplementary methods section S1.1. The institutional review boards of all participating 

institutes approved the protocol for data collection and its subsequent use in retrospective 

analyses. The clinical diagnosis of participants in each cohort was performed by the different 

study teams according to international criteria and have been described in detail in each of 

those cohorts. In the present study we grouped the CN and SCD participants together as 

cognitively unimpaired (CU).  

Study data, MRI processing and harmonization 
Across cohorts, baseline 3D T1w MRI scans were acquired with 44 different MRI scanners, 

with varied image acquisition protocols. Supplementary Table 2 gives an overview of the 

scanners included in this study. Cortical reconstruction and volumetric segmentation were 

performed with a Docker container of Freesurfer v7.1.1 in 3 different centres (ADC and 

NACC in Amsterdam, ADNI and AIBL in Brisbane, and the rest in Brescia) to extract 

volumes of 68 cortical regions as per the Desikan-Killiany atlas and 14 subcortical brain 

regions. Automated quality control for Freesurfer segmentations utilized the Euler 

number,27,28 with outlier thresholds determined independently for each scanner. These 

thresholds were based on the interquartile range (IQR) specific to each scanner, where outliers 

were identified as 1.5×IQR below the first quartile.27,28 Furthermore, subjects with total 

intracranial volume (TIV) greater than the threshold of 1.5×IQR above the third quartile 
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computed independently for males and females, were identified as outliers. These outliers 

were excluded from further analysis in this study. The number of participants excluded based 

on these two criteria were � �  1,198 �10.7%�, leaving a total number of scans of � �

10,011 participants included for subsequent analyses.  

We harmonized cortical and subcortical volumes by removing scanner related batch effects 

while preserving the effects of age, sex, and clinical stage. In our analysis, we used ComBat 

harmonization29 with empirical Bayes optimization to remove batch-related effects, with the 

largest single-scanner data from the ADNI cohort (Siemens TrioTim 3T scanner, � � 257) 

used as a reference batch. Finally, because SuStaIn  is a computationally intensive algorithm 

and prior subtyping studies using SuStaIn have used between 12 to 21 input features2,30, we 

reduced the number of cortical areas by constructing 24 composite regions, comprising 17 

composite cortical ROIs (details of the mapping to derive these composite ROI volume from 

Freesurfer cortical parcellation are tabulated in Supplementary Table 3) and 7 subcortical 

regions (namely: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and 

Accumbens-area). We corrected for the effects of total intracranial volume and normal aging 

by regressing out the effects that were estimated in the Aβ	 CU participants (see the next 

section for details on determining amyloid status). The harmonized volumes were combined 

using the sum of left and right counterparts. These volumes were converted to w-scores 

(covariate-adjusted z-score) based on the mean and standard deviation of Aβ	 CU 

participants in the study. 

Amyloid Status 
Where information about amyloid markers was available, individuals were labelled as having 

a normal or abnormal amyloid biomarker (Aβ	/ Aβ� for normal/abnormal respectively) 

based on either cerebrospinal fluid (CSF, available in ADC, ADNI, ARWiBo, EDSD, 

PharmaCog, and in NACC after 2015), positron emission tomography (PET) images, or 

pathological examination (NACC). CSF testing and PET imaging performed during the 

baseline visit (within a timeframe of 90 days of MRI) were considered for this purpose. 

Positivity in PET images was determined by either visual readouts by radiologists  (available 

in ADC and GMC), centiloid values (available in ADNI, AIBL, cut-off = 30),31 or a 

combination of the two (in NACC after 2015). The cut-off points for Aβ positivity based on 

CSF were defined for each cohort independently based on Aβ1–42 concentrations. The details 

of cut-off point selection and assays used are in Supplementary Section S1.2. Details of the 

Aβ PET processing pipeline and the tracers used are in Supplementary Section S1.3. In ADC, 
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ADNI, and NACC, participants were considered Aβ� if either one of CSF or PET were 

positive. In pre-2015 NACC cohort, due to the absence of either of these biomarkers, autopsy-

confirmed AD-related neuro-pathologic change (ADNC) based on ABC summary score32 

(comprising Aβ plaque score, modified Braak stage, modified CERAD score) was used to 

define Aβ positivity in patients, when available. These scores were categorized as either non-

AD, or graded as low, intermediate, or high ADNC in the NACC cohort. In this study, MCI 

and AD-D participants with low to high ADNC were termed Aβ positive. Participants for 

whom amyloid status was unavailable were excluded from training the models, and their 

inclusion in the validation experiments is detailed in the study design. 

Cognitive-data preparation 
Neuropsychological test batteries assessing the cognitive domains of episodic memory, 

attention and executive function, language, and visuospatial function were used to compute 

composite scores for these domains. Cognitive tests performed during the baseline visit 

(within a timeframe of 90 days of MRI) were considered for this purpose. Aβ	 CU 

participants’ data were used as a reference group for computing these composite scores. The 

methodological details of computing the cognitive domain scores in each of our cohorts are 

included in Supplementary material Section S1.4. We computed the domain scores in the 

cohorts of ADC, ADNI, AIBL, NACC, and GMC in our analysis. Cognitive test data in the 

remaining cohorts were not available to us. In the GMC cohort, the language domain score 

was not computed as the cognitive test battery in that cohort did not include any associated 

tests for assessing language. Since the different cohorts had different neuropsychological tests 

to assess the patients, we computed the domain scores independently in the different cohorts, 

with the Aβ	 CU participants in that cohort serving as a reference group to compute z-scores 

for individual tests. Subsequently, for each domain, multiple test scores belonging to a 

specific domain were averaged to compute the domain score. 

Study design 
We divided our combined cohorts into three different datasets: training dataset, held out 

clinical-validation dataset, and an independent external dataset. A subset of the clinical-

validation dataset and the external dataset with Aβ� participants was further selected for a 

few experiments (Aβ� validation dataset). Figure 1 gives a graphical overview of the study 

design described here.  
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The training dataset comprised 40% of the combined Aβ� participants randomly selected 

from six cohorts (ADC, ADNI, AIBL, NACC, ARWiBO, EDSD). With the aim of creating 

atrophy-based subtyping models that are equally generalizable to AD patients across all ages, 

we ensured the training set had a uniform age distribution. Hence the participants were 

selected in the training dataset based on weighted random sampling without replacement, with 

weights inversely proportional to the age distribution in each clinical stage. Moreover, we also 

included Aβ	 CU participants in all the cohorts except GMC to serve as a reference group for 

training the models. 

The held-out clinical-validation dataset consisted of all the participants not included in the 

training dataset or the reference group from ADC, ADNI, AIBL, NACC, ARWiBO, EDSD, I-

ADNI, OASIS, and PharmaCOG. The GMC cohort was chosen as the independent external-

validation dataset. The difference between the held-out clinical-validation dataset and the 

independent external-validation dataset is that for the training dataset all the Aβ� participants 

from the GMC cohort were excluded.  

The Aβ� validation datasets comprised the remaining 60% Aβ� participants not included in 

training from the aforementioned six cohorts (ADC, ADNI, AIBL, NACC, ARWiBO, EDSD) 

and 100% Aβ� participants in the external dataset. 

Characterising atrophy heterogeneity 
We used two data-driven approaches for estimating atrophy subtypes and severity: 

Snowphlake and SuStaIn. Snowphlake is a hybrid method we introduce using non-negative 

matrix factorization (NMF)4,14 for subtyping followed by DEBM15,16 for estimating sequence 

of atrophy-events within each subtype. Although each component of this approach has 

independently been validated before, this is the first study to jointly use them for the purpose 

of subtype and severity estimation. To ensure easy reproducibility of this approach, we built a 

python software toolbox: https://github.com/snowphlake-dpm/snowphlake. SuStaIn is a 

disease progression modelling technique developed previously2, with an existing python 

software package.33 The key conceptual difference is that Snowphlake is a two-step subtype-

then-stage approach, while SuStaIn estimates both subtype and stage jointly. 

Snowphlake: The subtyping model was trained on Aβ� AD-D participants, using the non-

smooth variant of non-negative matrix factorization (ns-NMF)4,34 with KL-divergence as a 

distance metric. Ns-NMF is a stochastic dual-clustering approach that is designed to estimate 

sparse clusters in the data. With different random initializations resulting in slightly different 
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subtypes, ns-NMF was run  ���� times on the training data, where ���� � 25 �  �����. 

Here, ����� was the number of Aβ� AD-D participants in the training data. The run with the 

least residual of subtyping (�� �) was chosen as the optimal solution, where ! is  the number 

of subtypes. For choosing the optimal number of subtypes (��	
), a random permutation of 

the training data was subsequently subtyped. !�	
 is chosen such that ∆�� #$%�& �  �� ��� 	

�� � for the training data is higher than that in the random permutations. On subtyping, each 

participant is assigned a weight for each subtype. These subtype weights were further used to 

detect outliers within each subtype based on minimum covariance determinant algorithm35 

with Mahalanobis distance metric. 

Next, based on the identified subtypes, we assigned the subtypes of Aβ� '() and Aβ� (* 

participants in the training dataset. We then determined the sequences of atrophy-events for 

each subtype using co-initialized discriminative event-based model (DEBM).15,16 Briefly, 

Gaussian mixture modelling (GMM) was used to estimate the probabilities for each region to 

be abnormal for each participant, with Aβ	 CU group considered as a reference group for 

GMM. These probabilistic abnormality values were used to infer a sequence for each Aβ� 

participant in the training data. These individual estimates were aggregated using generalized 

Mallows model15 to estimate the sequence of atrophy-events for each subtype. Further details 

about training DEBM are in Supplementary Section S1.5. 

SuStaIn: We trained SuStaIn on the same training data as used in Snowphlake, with the 

pySuStaIn toolbox33. We used the cross-validation information criteria (CVIC) for selecting 

optimum number of subtypes, with + � 	1 and + � 	2 chosen as event thresholds. The 

methodological details of the SuStaIn approach has been described in detail in Young et al2. 

For the sake of completeness, the method has been briefly described in Supplementary 

Section S1.6.  

For both Snowphlake and SuStaIn, the trained models were used to assign atrophy-based 

subtype and stage to participant data in the different validation datasets. 

Statistical analysis to characterise subtypes and evaluate 
concordance of assigned subtypes 
The subtype and staging measures assigned in the Aβ� validation dataset, clinical-validation 

dataset, and external-validation dataset by both methods, were used further for investigating if 

these measures were associated with symptom profile and severity respectively. 

Experiment 1: Validating the estimated staging 
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To evaluate the staging system of Snowphlake and SuStaIn, the trained models were used to  

assign the subtypes and stages of all participants in the Aβ� validation dataset, clinical-

validation dataset, and external-validation dataset. The assigned stage within each subtype 

was used to compute Pearson’s correlation with Mini-Mental Status Examination (MMSE), as 

a proxy for disease severity. 

Experiment 2: Comparison of subtypes on cognitive symptoms 

In the absence of ground-truth in data-driven subtyping, we used the association of the 

identified subtypes with the patients’ cognitive-symptom profile, to determine their validity. 

We performed analysis of variance (ANOVA) tests in MCI and AD-D patients in Aβ� 

validation dataset and Aβ� subset of the external-validation dataset to determine if subtypes 

differed in terms of deficits in specific cognitive domains, after correction for confounding 

effects of age, sex, and level of education. These statistical tests were performed for both 

subtyping methods in the validation datasets, independently in each of ADC, ADNI, NACC, 

AIBL, and GMC. Lastly, we performed random-effect meta-analysis pooling the results of 

independent cohorts and accounted for multiple testing using false discovery rate (FDR) 

correction.  

Experiment 3: Concordance between Snowphlake and SuStaIn 

The motivation to investigate concordance between the methods was to go beyond group-

level definitions of subtypes to individuals assigned to these subtypes. High concordance 

between the two methods would indicate individual patients in different subtypes have 

distinct atrophy pattern much like their group-level definitions, while low concordance would 

indicate individual atrophy patterns vary substantially even within each subtype. To quantify 

the concordance between the two methods, we constructed contingency matrices of 

participant subtypes by Snowphlake and SuStaIn for Aβ� CU, MCI, and AD-D in the 

training and in the validation dataset. Concordant subtype-pairs are defined as the 

Snowphlake subtype most frequently co-occurring with SuStaIn subtypes identified in Aβ� 

AD-D patients.  

We performed additional analyses for identifying atrophy pattern determinants for 

participants to not be grouped into concordant subtype-pairs. To this end, we created average 

w-score volume maps for all AD-D participants in the concordant subtype-pairs and their less 

frequently co-occurring counterparts. We performed a t-test between these average w-score 
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maps, to investigate if there are significant differences in atrophy patterns that influence 

concordance between the two methods. The null hypothesis in this test is that there is no 

difference in average w-scores of participants within a specific SuStaIn subtype, grouped in 

different subtypes of Snowphlake. Lastly, we estimated the sequence of atrophy-events in the 

concordant subtype-pairs using DEBM, the methodological equivalent of Snowphlake with 1-

subtype and w-score EBM, the methodological equivalent of SuStaIn with 1-subtype. 
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Results 

The demographics of participants and their amyloid status are summarized in Table 1. 

Overall, our combined dataset (from 10 cohorts) consisted of � � 3,150 Aβ� participants 

����� � 1,525 ; ��
� �  1,150 ; �
� � 475�, � � 2,568 Aβ	 participants ����� �

131; ��
� �  706; �
� � 1,731�, and � � 4,293 participants with unknown Aβ status 

����� � 1,264; ��
� � 1,360; �
� � 1,669�. This combined dataset was divided into a 

training dataset, held-out validation dataset, and an external-validation dataset. The training 

dataset consisted of � � 1,195 Aβ� participants ����� � 596; ��
� � 416; �
� � 183� 

and � � 1,692 Aβ	 CU reference group participants. The held-out validation dataset 

consisted of � � 6,362 participants across the clinical spectrum ����� � 2,187; ��
� �

2,381; �
� � 1,794� and the external dataset consisted of � � 723 patients ����� �

137; ��
� � 419; �
� � 167� and � � 39 Aβ	 CU reference group participants. A subset 

of participants in the validation datasets with Aβ� status (Aβ� validation dataset) consisted 

of � � 1,796 participants in the internal cohorts ����� � 894; ��
� � 626;  �
� � 276� 

and � � 159 participants in the external cohort. 

The age of the � � 1,525 Aβ� AD-D patients included in our study was 66.8 � 8.7 years 

(see Supplementary Figure 1), with ADC predominantly being a young-onset AD cohort, 

while the rest being predominantly late-onset AD cohorts. Supplementary Figure 1 also shows 

the age distribution in the different clinical stages within the Aβ� patient population and in 

our selected training dataset. 52.2% �5226/10,011� of the included participants were 

women, while 47.6% �569/1195� of the Aβ� patients included in the training dataset were 

women. Furthermore, all the imaging markers used in this study except Pallidum volume were 

different between the Aβ� AD-D patients and Aβ	 CU reference group with . / 0.05 for 

Pallidum and  . 0 10�� for all other markers, after correcting for multiple testing with FDR. 

Subtypes identified with Snowphlake and SuStaIn 
Snowphlake and SuStaIn each identified four subtypes. Supplementary Figure 2 shows the 

criteria used for selecting the optimum number of subtypes for each modelling technique 

(∆�� #$%�& for Snowphlake, CVIC for SuStaIn). For SuStaIn, the CVIC value for the 5-

subtype solution was marginally better than the 4-subtype solution. However, only 3/1,195 

Aβ� patients in the training data belonged to 5th subtype. We hence chose the 4-subtype 

solution for our further analysis. 
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The atrophy subtypes identified by Snowphlake, along with the prevalence of each subtype 

and age distribution among AD-D Aβ� patients in the training and Aβ� validation datasets 

were: Diffuse cortical atrophy subtype �1��#�#��: 21.6% �� � 129/596�, ��� � 66.5 �

7.8; Aβ � 4�&#$��#��: 21.1% �� � 189/894�, ��� � 67.5 � 9.4�, Parieto-temporal atrophy 

subtype 

�1��#�#��: 19.2% �� � 115/596�, ��� � 63.1 � 6.9; Aβ � 4�&#$��#��: 19.7%�� �

177/896�, ��� � 60.9 � 7.9�, Frontal atrophy subtype �1��#�#��: 25.5% �� �

152/596�, ��� � 68.3 � 7.9; Aβ � 4�&#$��#��: 24.8% �� � 222/894�, ��� � 67.6 �

8.9�, and Subcortical atrophy subtype �1��#�#��: 24.8% �� � 148/596�, ��� � 70.0 �

7.2; Aβ � 4�&#$��#��: 25.2% �� � 225/894�, ��� � 68.3 � 8.3�, with prominent temporal 

lobe atrophy in each of the identified subtypes. Apart from these subtypes, an additional 

outlier group not assigned to any subtype was detected (Training: 8.7%; 

Aβ � 4�&#$��#��: 9.1%). Figure 2 depicts the sequence of atrophy-events estimated for each 

subtype by Snowphlake. Supplementary Figure 3 shows the uncertainty in these estimates. 

The prevalence, age and MMSE distribution, and the percentage of APOE4 carriers in each of 

these atrophy subtypes across the different clinical stages in the pooled validation datasets 

(held-out validation and external validation pooled together) are summarized in Table 2 and 

these results in each cohort independently are reported in Supplementary Table 4. Age of 

onset of AD-D differed significantly �. 0 0.05) between the four identified subtypes in the 

pooled validation datasets, as well as in each of the cohorts independently, except EDSD 

�. � 0.11�, with Parieto-temporal atrophy subtype consisting of the youngest AD-D patients 

(61.2 � 8.1) and subcortical atrophy subtype the oldest (68.3 � 8.6). In ADNI, AIBL, 

ARWiBo, I-ADNI and OASIS cohorts, MMSE of the AD-D patients in different subtypes 

were not significantly different �. / 0.05), indicating the identified subtypes and severity 

were disentangled. In ADC, EDSD and NACC cohorts, MMSE of AD-D patients was 

significantly different �. 0 0.05) between subtypes, with the Parieto-temporal atrophy 

subtype having the lowest MMSE among the four subtypes. Percentage of APOE4 carriers 

was significantly different �. 0 0.05) in the AD-D dementia patients in the pooled validation 

datasets. The percentage of outliers across all Aβ� validation datasets decreased with clinical 

stage (CU: 25.0%, MCI: 12.4%, AD-D: 9.1%) indicating that characteristic atrophy patterns 

emerge as the disease progresses.  

Supplementary Figure 4 depicts the atrophy subtypes and sequence of atrophy-events 

estimated by SuStaIn and Supplementary Figure 5 shows the posterior probability distribution 
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of these sequences using Markov chain Monte Carlo (MCMC) sampling, interpreted as the 

uncertainty in this estimation. The identified subtypes were Typical subtype (with early 

hippocampus and temporal lobe atrophy), Limbic predominant subtype, Hippocampal sparing 

subtype, and Subcortical subtype. The prevalence of these subtypes and age distribution 

among AD-D participants in the training and Aβ� validation dataset were: Typical 

�1��#�#��: 55.7% �� � 332/596�, ��� � 66.7 � 7.8;  Aβ � 4�&#$��#��: 56.0% �� �

501/894�, ��� � 65.8 � 9.3�, Limbic predominant �1��#�#��: 24.1% �� � 144/

596�, ��� � 72.2 � 6.6;  Aβ � 4�&#$��#��: 24.0%�215/894�, ��� � 69.8 � 8.2�, 

Hippocampal sparing (1��#�#��: 14.5% �� � 87/596�, ��� � 62.8 � 6.9;  Aβ �

4�&#$��#��: 12.9% �� � 115/894� ��� � 60.9 � 7.0), Subcortical atrophy 

(1��#�#��: 0.8% �� � 5/596�, ��� �  68.2 � 7.6;  Aβ � 4�&#$��#��: 0.5% �� �

5/894�, ��� � 70.4 � 9.3). Apart from these subtypes, an outlier group (defined as AD-D 

patients in stage 0) was detected (Training: 4.7%; Aβ � 4�&#$��#��: 6.5%) The prevalence, 

age and MMSE distribution, and the percentage of APOE4 carriers in each of these subtypes 

across the different diagnostic categories in the pooled validation datasets have been 

summarized in Table 2 and these results in each cohort independently are reported in 

Supplementary Table 5. Age of onset of AD dementia and APOE4 carriership percentage 

differed significantly �. 0 0.05) between the four subtypes identified by SuStaIn with 

Hippocampal sparing subtype consisting of the youngest AD-D patients (61.0 � 7.1) and 

Limbic-predominant and Subcortical atrophy subtypes the oldest (69.9 � 8.2 and 70.4 � 9.3 

respectively). 

Experiment 1: Atrophy-based model stage correlates with MMSE 
Figure 3 depicts the correlation between the atrophy-based patient stage assigned by 

Snowphlake for the clinical-validation dataset and external dataset, with MMSE, a clinical 

screening tool for measuring disease severity of the patient. The atrophy-based stage showed 

significant correlation with MMSE within all four subtypes, with higher atrophy stage related 

to worse MMSE scores (5 �  	0.51 �� 	 0.28), with . 0 0.0001 in the clinical-validation 

dataset and . 0 0.05 in the external-validation dataset. The distribution of atrophy-based 

stages for the different diagnostic groups (of CU, MCI, AD-D) were different (. 0 0.0001) 

and are also shown in Figure 3. Supplementary Figure 6 depicts a similar plot for these 

correlations for the Aβ� validation dataset and the Aβ� subset of the external dataset. 

Supplementary Figure 7 shows the correlation between the atrophy-based patient stage 

assigned by SuStaIn for the clinical-validation dataset and external dataset, with MMSE. The 
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atrophy-based stage assigned by SuStaIn showed significant correlation with MMSE within 

all subtypes except in the subcortical atrophy subtype (5 �  	0.54 �� 	 0.26) with . 0

0.0001 in the clinical-validation dataset and . 0 0.01 in the external-validation dataset and 

. / 0.05 for the subcortical atrophy subtype in both validation datasets. 

Experiment 2: Cognitive domain characteristics of the subtypes 
Figure 4 shows the effect sizes (Cohen’s f-statistic) of cognitive domain score differences 

between subtypes identified by Snowphlake and SuStaIn, for the diagnostic groups of MCI 

and AD-D. These subtype differences are computed for participants in the Aβ+ validation 

cohorts of ADC, ADNI, NACC, AIBL, and GMC for the cognitive domains of memory, 

executive function and attention, language, and visuospatial function. For Snowphlake, the 

mean effect sizes for the four cognitive domains were between 6 � 0.15 �� 0.33 in the AD-D 

group, and were between 6 � 0.15 �� 0.24 in the MCI group. For SuStaIn, the mean effect 

sizes for the four cognitive domains were between 6 � 0.17 �� 0.34 in the AD-D group and 

were between 6 � 0.08 �� 0.20 in the MCI group. There were no significant differences 

between the effect sizes of Snowphlake and SuStaIn for AD-D patients, while Snowphlake 

was significantly better at detecting differences in the language domain for MCI patients 

(FDR-corrected . � 0.016) than SuStaIn’s subtypes. There was significant heterogeneity 

(based on Cochran's Q statistic) observed between cohorts for both the methods, for both the 

diagnostic groups. Supplementary Figure 8, depicts the subtype differences in the distribution 

of cognitive domain scores independently in each cohort for Snowphlake subtypes, which 

further highlights the differences in associations across different cohorts. Supplementary 

Figure 9 shows similar associations between the subtypes and cognitive domain scores in 

different cohorts for the subtypes identified by SuStaIn. 

Experiment 3: Concordant subtype-pairs 
When comparing how participants were clustered, we observed a low concordance between 

Snowphlake and SuStaIn. Figure 5 shows the contingency matrices between Snowphlake and 

SuStaIn subtype assignments in different clinical stages of Aβ� participants, in the training 

and validation datasets. 

Of the � � 501 AD-D individuals assigned to the typical subtype (with prominent 

hippocampal and temporal lobe atrophy) of SuStaIn in the Aβ� validation dataset, � � 183 

�36.5%� were also assigned to the frontal atrophy subtype (with prominent frontal and 

temporal lobe atrophy) of Snowphlake, which is referred to as concordant subtype-pair #1. Of 
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the � � 215 AD-D individuals assigned to the limbic-predominant subtype (with prominent 

thalamus, hippocampus, and amygdala atrophy) of SuStaIn in the Aβ� validation dataset, 

� � 127 �59.1%� were also assigned to the subcortical-atrophy subtype of Snowphlake, 

which is referred to as concordant subtype-pair #2. Of the � � 115 AD-D individuals 

assigned to the hippocampal-sparing subtype of SuStaIn in the Aβ� validation dataset, 

� � 52 �45.2%� were also assigned to the parieto-temporal atrophy subtype of Snowphlake, 

which is referred to as concordant subtype-pair #3. The Subcortical atrophy subtype of 

SuStaIn was too small to be compared. The concordant subtype-pairs accounted only for 

38.6% �� �  230/596� of Aβ� AD-D participants in the training dataset and 40.5% �� �

362/894� in the Aβ� validation dataset. Cohort-wise contingency matrix shown in 

Supplementary Figure 10 further added to the evidence that low concordance was consistent 

across cohorts. 

Average w-score maps of the concordant subtype-pairs #1 and #2 and their less frequently co-

occurring counterparts showed significant differences �.��� 0 0.05� within the Typical and 

Limbic-predominant subtypes of SuStaIn in 14 and 18 of the 24 regions respectively, adding 

further evidence for the spectrum of differences in atrophy within SuStaIn subtypes. Similar 

analysis for the concordant subtype-pairs #3 showed significant differences �.��� 0 0.05� 

within the Hippocampal-sparing atrophy subtype of SuStaIn in 5 of the 24 regions. 

Supplementary Figure 11 visualizes these regional differences. 

Lastly, progression modelling in the three concordant subtype-pairs using DEBM and w-score 

EBM showed that the estimated atrophy-event sequences using the two methods were largely 

similar. The normalized Kendall’s Tau (KT) metric measuring the dissimilarity between the 

sequences estimated by SuStaIn and Snowphlake were: 71 �  0.11 for concordant subtype-

pair #1, 71 �  0.14 for concordant subtype-pair #2, and 71 �  0.12 for concordant subtype-

pair #3. These values are within the expected error ranges of each model,15 indicating that the 

estimated sequences in concordant subtype-pairs using the two methods agree with each 

other. The sequences of atrophy-events estimated using DEBM and z-score EBM are shown 

in Figure 6.  
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Discussion 

In this large-scale multi-cohort study of atrophy-heterogeneity in AD, we used a novel 

methodology, Snowphlake, that couples a previously-validated ML approach for disease 

subtyping (NMF)4,14 with data-driven disease progression modelling (DEBM), to estimate 

sequences of atrophy-events in four atrophy-based subtypes of AD. We compared our results 

with those obtained using SuStaIn and used the trained models to assign subtypes and atrophy 

stage in patient populations not included in training them. The assigned subtypes in validation 

datasets were associated with distinct cognitive profiles and the atrophy stage with the 

subtypes correlated with global cognition level of patients. We have made the trained models 

of both SuStaIn and Snowphlake openly available at https://snowphlake-dpm.github.io, along 

with the associated code. The source code for Snowphlake has also been made available at: 

https://github.com/snowphlake-dpm/snowphlake, while the source code for SuStaIn was 

previously made available by Aksman et al.33 A thorough comparison of Snowphlake’s 

subtype assignments with that of SuStaIn’s provided evidence for a spectrum of differences in 

atrophy among AD patients, rather than discretised by distinct subtypes. 

The identified atrophy-based subtypes were consistent with 
literature 
Snowphlake identified a parieto-temporal atrophy subtype where the AD-D patients were 

consistently the youngest and had worse visuospatial function, attention and executive 

function consistent with prior studies on young-onset AD patients.4,6,36 This subtype also had 

a significantly lower percentage of APOE4 carriers in the ADC cohort, also observed in a 

previous study36, as well as in the and the ARWiBo cohort. Still, APOE4 carriership did not 

differ significantly in other cohorts in our study, which may be because those cohorts 

predominantly consisted of late-onset AD patients. The subcortical atrophy subtype (also 

referred to as “mild atrophy” in literature) patients had the least affected cognition across all 

domains when compared to the other subtypes.4,9,11 The diffuse cortical atrophy subtype (or 

cortical atrophy subtype) and frontal atrophy subtype have also been identified in previous 

studies10,37,38. Moreover, the subtypes identified by SuStaIn in this study (typical, 

hippocampal-sparing, limbic-predominant) were aligned with the neuropathological subtypes 

of AD reported in literature3,39 and largely aligned with the previous studies of atrophy-

subtypes using SuStaIn.2,10,40 
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Comparing Snowphlake and SuStaIn subtypes 
A novel approach in our study was that we compared two data-driven AD subtyping 

techniques directly on the same patient population, while the comparisons in the previous 

studies so far have been based on the identified atrophy characteristics or patient 

characteristics.2,4,9 The subtypes identified by the two methods in our analysis also showed 

some similarities in patient characteristics, for example, parieto-temporal atrophy subtype of 

Snowphlake and hippocampal-sparing subtype of SuStaIn both consisted of significantly 

younger-onset AD-D patients. Nevertheless, our direct comparison showed low concordance 

between the subtype assignments of the two methods, highlighting the limitations of indirect 

comparisons based on read-outs.  

While comparing average w-score maps of patients within a specific SuStaIn subtype, but 

assigned to different Snowphlake subtype, we saw significant differences in atrophy profiles, 

providing further evidence that atrophy patterns might vary substantially between individuals 

within a data-driven subtype. The three concordant subtype-pairs that accounted for 

approximately 40% of individuals with AD-D were the typical subtype with temporal and 

frontal lobe atrophy, the limbic predominant subtype with severe subcortical atrophy, and the 

hippocampal sparing subtype with parieto-temporal atrophy. The sequence of atrophy-events 

estimated by the two methods in these concordant subtype-pairs agreed with each other, 

showing that in spite of the methodological differences, similar inferences could be made in 

these concordantly subtyped individuals. Although these concordant subtype-pairs are in line 

with previous literature3,5, future work on synthetic data simulating a spectrum of atrophy 

differences would be crucial for understanding more about concordant subtype-pairs. 

However, the notion that not all patients were clustered similarly, suggests that group 

estimates of atrophy subtypes may be driven by a particular subset of patients, and may not 

capture heterogeneity of all patients. Future studies should further investigate more 

continuous measures of subtyping that may be able to better capture such nuance and 

heterogeneity.  

The differences in estimated subtypes by the two methods arise from the differences in the 

objective-functions being optimized by the methods. While SuStaIn optimizes a non-linear 

objective-function to jointly estimate subtypes and atrophy-stage, Snowphlake uses linear 

objective-function in NMF to identify subtypes. Each of them have been shown before to 

identify true subtypes in the presence of distinct subtypes.2,41 The low concordance between 

the atrophy-subtype assignments of the two methods can hence be seen as evidence of a 
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spectrum of atrophy differences between individuals with AD. This spectrum could either 

consist of distinct prototypical subtypes coupled with a lot of variations in a large number of 

AD patients, or it could be a continuum of atrophy-variations with the Snowphlake and 

SuStaIn identifying different variations depending on the objective-function used for their 

optimization. While the non-linear objective-function of SuStaIn identifies non-uniform 

distribution of the identified subtypes, Snowphlake’s linear objective-function identifies four 

subtypes that were roughly uniformly distributed. In the absence of ground-truth in data-

driven subtyping, the ability of the identified subtypes to associate with distinct cognitive 

profiles determines their validity. 

Differences in cognitive domain profiles 
The subtypes identified by Snowphlake and SuStaIn each showed significant differences in 

cognitive domain scores in both Aβ� MCI and AD-D patients. While the effect sizes were 

comparable for Snowphlake and SuStaIn for AD-D patients, Snowphlake showed marginally 

stronger effect sizes for MCI patients, potentially indicating that Snowphlake’s subtypes are 

more sensitive at associating with different symptom profiles at the prodromal stage of the 

disease. While some of the differences between subtypes (by either method) assigned were 

consistent across the multiple cohorts in our study, we also observed significant heterogeneity 

in associations across cohorts. These differences could potentially indicate genuine cohort-

wise differences in how atrophy causes symptoms or could be due to using different cognitive 

tests to compute cognitive domain scores in different cohorts. Future work on studying these 

associations could focus on working with harmonized cognitive data across multiple 

cohorts.42,43 Notwithstanding these inconsistencies, the significant differences in cognitive 

domain profiles between subtypes indicate that data-driven subtyping models have the 

potential to identify personalized end-points in future interventions to boost statistical 

power.44,45   

Methodological considerations and limitations 
A potential limitation of our approach is that while our algorithms allow estimation of 

sequences of atrophy events, these remain inferences based on cross-sectional data. While 

there have been prior studies that validated these inferences on longitudinal datasets46,47, 

future studies could focus on a similar large-scale validation on multi-cohort longitudinal 

datasets to confirm if these subtypes remain consistent in preclinical and prodromal AD 

patients as the disease develops. One of the strengths of our study is that we have made the 

trained models and source code openly available and validated the subtype assignments in 
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external datasets. Future studies can hence use these trained models to identify proteomic 

profiles, genetic and lifestyle factors driving these subtypes in large external cohorts. Another 

important feature of this study is that our combined multi-cohort data had many patients with 

young-onset AD-D. This could potentially be a strength of our study since young-onset AD-D 

patients have less comorbidity or it could be a limitation with the identified subtypes being an 

over-representation of young-onset AD-D patients. Lastly, by decoupling atrophy-based 

subtyping from disease progression modelling in the Snowphlake framework, we pave the 

way for the inclusion of high-dimensional imaging features (such as voxel-based measures) in 

data-driven subtyping and staging analysis. 

Conclusion 
In conclusion, in this large-scale multi-centre study, we identified four atrophy-based 

subtypes using Snowphlake and SuStaIn. Subtype assignments in independent validation 

datasets were associated with different cognitive symptoms, and estimated atrophy-severity 

measures were associated with global cognition. The low concordance of subtypes between 

the two methods indicates that atrophy differences between individuals may be a spectrum 

rather than strictly delineated subtypes. Based on our findings, future research should 

prioritize developing novel approaches to capture and analyse this spectrum of heterogeneity 

in atrophy patterns to help us further understand the biological-basis for the observed 

variability in atrophy patterns between individuals. 
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Data availability  

The ADNI data used is this study were obtained from the ADNI database (adni.loni.usc.edu). 

The ADC data used in this study are available from the corresponding author, upon 

reasonable request. The AIBL imaging data used in this study were obtained from the AIBL 

LONI database (https://ida.loni.usc.edu/login.jsp?project=AIBL), while cognitive and genetic 

data can be requested from the AIBL management team, upon reasonable request by 

submitting an Expression of Interest (EOI) form available on the AIBL website 

(https://aibl.org.au/collaboration/). The NACC data used in this study were obtained from 

https://naccdata.org/. The OASIS data used in this study were obtained from 

https://sites.wustl.edu/oasisbrains/ website. The data of the other cohorts used in this study 

can be requested from the neuGRID (https://www.neugrid2.eu/) and GAAIN 

(https://www.gaain.org) platforms after registration. 
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 Figures and Tables 

Table 1: Participant Demographics. Values indicated in this table are calculated after automated quality control.  

Cohort Age [years] Sex (F/M) CN and SCD MCI AD-D 

�� Status:  
� / � / unknown 

�� Status:  
� / � / unknown 

�� Status:  
� / � / unknown 

ADC 63.9 ± 9.2 1,675 / 1,952 687 / 184 / 456 256 / 328 / 199 79 / 1053 / 385 

ADNI 72.1 ± 7.0 875 / 909 378 / 184 / 113 254 / 397 / 177 21 / 192 / 68 

AIBL 72.7 ± 6.5  298 / 224 268 / 91 / 28 27 / 49 / 7 6 / 43 / 3 

ARWiBo 55.1 ± 16.0 482 / 293 1 / 0 / 593 0 / 14 / 89 4 / 10 / 64 

EDSD 70.4 ± 7.3 191 / 174 0 / 0 / 136 24 / 45 / 43 0 / 1 / 116 

I-ADNI 72.1 ± 8.0 105 / 64 0 / 0 / 7 0 / 0 / 35 0 / 0 / 127 

NACC 71.2 ± 10.2 882 / 688 358 / 0 / 0 39 / 126 / 463 18 / 191 / 375 

OASIS 71.9 ± 10.8 197 / 105 0 / 0 / 185 0 / 0 / 90 0 / 0 / 27 

PharmaCog 69.0 ± 7.4 78 / 57 0 / 0 / 0 52 / 83 / 0 0 / 0 / 0 

GMC 71.5 ± 10.5 443 / 319 39 / 16 / 151 54 / 108 / 257 3 / 35 / 99 

Total 67.6 ± 10.9 5,226 / 4,785 1,731 / 475 / 1,669 706 / 1,150 / 1,360 131 / 1,525 / 1,264 

Abbreviations: CN: cognitively normal; SCD: subjective cognitive decline; MCI: mild cognitive impairment; AD-D: Clinical diagnosis of 

AD Dementia. 
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Figure 1: Graphical overview of this study. A) Shows the color coding used in the graphical over to denote participants in 

different clinical stages of the disease as well as their Aβ status. B) Overview of the data partitioning into the training dataset, 

Aβ+ validation dataset, clinical-validation dataset, and external validation datasets, including the inclusion criteria for 

participants in each dataset. C) Overview of the steps involved in training the Snowphlake and SuStaIn models. The 

reference group shown here is used in both the methods for creating a reference distribution and for w-scoring the imaging 

biomarkers. Abbreviations: CU: Cognitively unimpaired consisting of both cognitively normal (CN) individuals and 

subjective cognitive decliners (SCD); MCI: mild cognitively impaired; AD-D: individuals with clinical diagnosis of AD 

Dementia; + denotes Aβ positivity; - denotes Aβ negativity 
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Figure 2: Snowphlake modelling in the Aβ+ participants in the multi-cohort harmonized training dataset. A) These 

plots depict the subtypes and sequence of atrophy-events for each subtype estimated. Within each subtype, the x-axis 

corresponds to the stage of the disease. Each column shows the brain in its lateral, medial, and subcortical views, with the 

regions that is expected to be abnormal at this stage for the subtype in shades of red and unaffected regions in white. B) The 

scale for the colour map goes from 0 to 1, the normalized staging scale for Snowphlake, where 0 represents a region 

becoming abnormal at the earliest stages of the disease and 1 represents late stage. 
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Table 2: Characteristics of atrophy-based subtypes assigned by the trained Snowphlake and SuStaIn models, pooled 

across the validation datasets (held-out validation dataset and external dataset).  

Method: Snowphlake 

 
Diffuse cortical 

atrophy 
Parieto-temporal 

atrophy 
Frontal atrophy 

Subcortical 
atrophy 

Outliers 

Characteristic per 
diagnostic group 

Aβ+ All Aβ+ All Aβ+ All Aβ+ All Aβ+ All 

Age 

CU# 
71.9 ± 

9.2 

60.4 ± 

15.1 

73.6 ± 

3.8 

62.7 ± 

13.8 

70.2 ± 

10.0 

66.0 ± 

11.4 

69.9 ± 

6.0 

62.0 ± 

14.6 

69.6 ± 

9.0 

61.0 ± 

14.2 

MCI 
71.1 ± 

7.9 

71.4 ± 

8.8 

68.8 ± 

8.7 

69.3 ± 

9.4 

71.0 ± 

6.9 

71.0 ± 

8.7 

71.3 ± 

7.5 

71.4 ± 

8.8 

71.3 ± 

8.9 

69.7 ± 

9.6 

AD-D*# 
67.7 ± 

9.3 

71.1 ± 

9.3 

61.2 ± 

8.1 

62.9 ± 

8.8 

67.6 ± 

8.8 

70.8 ± 

8.9 

68.3 ± 

8.6 

71.4 ± 

8.9 

66.5 ± 

10.2 

70.0 ± 

10.6 

N (%) 

CU 
90  

(30.8) 

533 

(27.2) 

5  

(1.7) 

49  

(2.5) 

53  

(18.2) 

293 

(14.9) 

73  

(25.0) 

421 

(21.5) 

71  

(24.3) 

665  

(33.9) 

MCI 
228 

(31.1) 

781 

(27.9) 

34 

(4.6) 

117  

(4.2) 

130 

(17.7) 

575 

(20.5) 

246 

(33.5) 

816 

(29.1) 

96 

(13.1) 

511 

(18.3) 

AD-D 
202 

(21.7) 

520 

(22.4) 

182 

(19.6) 

328 

(14.1) 

228 

(24.5) 

655 

(28.1) 

234 

(25.2) 

556 

(23.9) 

83  

(8.9) 

265 

(11.4) 

Sex 
(�����/
�������) 

CU 
46/44 259/27

4 

2/3 25/24 32/21 159/13

4 

41/32 207/21

4 

14/57 198/46

7 

MCI# 
111/11

7 

384/39

7 

21/13 75/42 81/49 346/22

9 

134/11

2 

465/35

1 

39/57 187/32

4 

AD-D* 
76/126 217/30

3 

88/94 145/18

3 

113/1

15 

298/35

7 

121/11

3 

276/28

0 

28/55 96/169 

MMSE 

CU 
28.5 ± 

1.5 

28.6 ± 

1.5 

28.4 ± 

1.1 

28.6 ± 

1.2 

28.7 ± 

1.4 

28.7 ± 

1.5 

28.5 ± 

1.4 

28.6 ± 

1.5 

28.8 ± 

1.2 

28.6 ± 

1.6 

MCI# 
26.7 ± 

2.5 

26.6 ± 

2.7 

25.2 ± 

4.1 

26.4 ± 

3.2 

26.6 ± 

2.2 

26.5 ± 

2.7 

26.3 ± 

2.5 

26.6 ± 

2.6 

27.1 ± 

2.5 

26.8 ± 

2.8 

AD-D*# 
21.8 ± 

4.5 

21.4 ± 

4.7 

19.1 ± 

5.4 

18.7 ± 

5.7 

21.0 ± 

4.9 

20.8 ± 

5.3 

22.1 ± 

4.2 

21.7 ± 

4.5 

20.3 ± 

5.7 

20.9 ± 

5.4 

APOE4 
carriers 
(����	/
�
�
��) 

CU 
38/69 103/33

4 

3/5 9/34 20/41 56/192 37/65 69/269 27/47 86/302 

MCI 
125/19

8 

265/59

4 

21/28 43/88 82/12

0 

200/45

1 

131/19

3 

283/59

8 

49/74 122/34

2 

AD-D*# 
137/18

5 

240/38

8 

103/1

73 

140/27

5 

135/2

16 

256/52

9 

159/21

7 

267/42

8 

54/80 93/194 

Method: SuStaIn 

 Typical 
Limbic-

predominant 
Hippocampal-

sparing 
Subcortical 

atrophy 
Outliers 

Characteristic per 
diagnostic group 

Aβ+ All Aβ+ All Aβ+ All Aβ+ All Aβ+ All 

Age 

CU# 
71.5 ± 

8.9 

65.4 ± 

13.4 

67.6 ± 

8.8 

59.0 ± 

16.5 

75.8 ± 

13.6 

62.2 ± 

15.8 

76.0 68.2 ± 

11.1 

70.3 ± 

8.2 

61.0 ± 

14.1 

MCI# 
71.5 ± 

7.5 

72.1 ± 

8.5 

71.5 ± 

8.2 

71.4 ± 

8.9 

67.7 ± 

9.6 

68.1 ± 

9.7 

75.2 ± 

4.4 

73.3 ± 

8.7 

70.5 ± 

7.5 

69.7 ± 

9.3 

AD-D*# 
66.0 ± 

9.3 

69.5 ± 

9.7 

69.9 ± 

8.2 

72.2 ± 

8.3 

61.0 ± 

7.1 

63.0 ± 

8.4 

70.4 ± 

9.3 

71.8 ± 

10.0 

67.5 ± 

10.6 

72.3 ± 

10.0 

N (%) CU 
87  

(29.8) 

504 

(25.7) 

18 

(6.2) 

124  

(6.3) 

6  

(2.1) 

52  

(2.7) 

1  

(0.3) 

5  

(0.3) 

180 

(61.6) 

1276 

(65.0) 
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MCI 
368 

(50.1) 

1255 

(44.8) 

150 

(20.4) 

484 

(17.3) 

27  

(3.7) 

91  

(3.3) 

5  

(0.7) 

26  

(0.9) 

184 

(25.1) 

944 

(33.7) 

AD-D 
525 

(56.5) 

1292 

(55.6) 

221 

(23.8) 

542 

(23.2) 

118 

(12.7) 

224  

(9.6) 

5  

(0.5) 

18  

(0.8) 

60  

(6.5) 

248 

(10.7) 

Sex 
(�����/
�������) 

CU# 
50/37 252/25

2 

13/5 84/40 4/2 27/25 1/0 4/1 67/113 471/80

5 

MCI 
207/16

1 

706/54

9 

80/70 274/21

0 

17/10 55/36 4/1 18/8 78/106 404/54

0 

AD-D 
242/28

3 

567/72

5 

118/1

03 

281/26

1 

49/69 98/126 3/2 11/7 14/46 75/173 

MMSE 

CU 
28.2 ± 

1.6 

28.5 ± 

1.6 

28.5 ± 

1.4 

28.5 ± 

1.4 

27.5 ± 

1.4 

28.5 ± 

1.3 

29.0 29.0 ± 

0.7 

28.8 ± 

1.2 

28.7 ± 

1.5 

MCI* 
26.6 ± 

2.3 

26.5 ± 

2.7 

26.0 ± 

2.4 

26.2 ± 

2.8 

24.3 ± 

4.9 

26.1 ± 

3.6 

26.4 ± 

1.8 

27.0 ± 

2.9 

26.9 ± 

2.6 

27.0 ± 

2.6 

AD-D*# 
20.8 ± 

5.2 

20.6 ± 

5.2 

21.5 ± 

4.1 

21.3 ± 

4.8 

19.3 ± 

5.6 

19.2 ± 

5.5 

22.0 ± 

5.5 

21.6 ± 

4.4 

23.5 ± 

3.1 

22.8 ± 

4.3 

APOE4 
carriers 
(����	/
�
�
��) 

CU 
37/73 101/31

5 

11/16 22/92 1/3 7/31 0/1 0/5 76/134 193/68

8 

MCI 
212/31

0 

431/91

6 

78/11

7 

172/36

0 

14/25 28/68 3/5 7/18 102/15

8 

275/71

1 

AD-D*# 
309/49

5 

516/10

03 

153/2

02 

256/43

5 

80/11

1 

125/19

3 

3/5 8/14 43/58 91/169 

* indicates the corresponding measure is significantly different (� � 0.05) between the different subtypes (excluding the outliers group) in 

Aβ+ validation dataset, using ANOVA test for Age and MMSE characteristics, and �� contingency test for Sex and APOE4 characteristics. # 

indicates the significant difference (� � 0.05) using similar tests in the clinical validation dataset. Abbreviations: CU: Cognitively 

unimpaired (Cognitively normal or subjective cognitive decline); MCI: Mild cognitive impairment; AD-D: Alzheimer’s disease dementia; 
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Figure 3: Experiment 1: Correlation of the estimated stage (measuring atrophy severity) using Snowphlake with 

MMSE in A) clinical-validation cohort B) external-validation cohort. Figures A) and B) both consists of 4 hex-plots, one 

for each subtype assigned by the trained Snowphlake model. The colour of a bin in the hex-plot denotes the relative 

proportion of the participants. The boxplot on top of each hex-plot shows the distribution of estimated Snowphlake stage for 

the participants in the different clinical groups. The boxplot at the right of each hex-plot shows the distribution of MMSE in 

the different clinical groups. The line overlaying on each hex-plot shows the regression line between MMSE and 

Snowphlake’s stage. The text on top of each hex-plot shows the correlation coefficient (R) between estimated stage and 

MMSE. The asterisk (*) next to R denotes the significance level. * corresponds to � � 0.05; ** corresponds to  � � 0.01; 

*** corresponds to � � 0.001; **** corresponds to � � 0.0001. Abbreviations: CU: Cognitively unimpaired (Cognitively 

normal or subjective cognitive decline); MCI: Mild cognitive impairment; AD-D: Alzheimer’s disease dementia;  
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Figure 4: Experiment 2: Cognitive domain differences between subtypes assigned in the Aβ+ validation datasets. 

Cognitive domain differences are shown for subtypes assigned by Snowphlake (left) and SuStaIn (right) in A) MCI patients 

and B) AD-D patients. Each sub-plot shows the effect size (Cohen’s f-statistic) and its confidence internal for a cognitive 

domain in 5 different cohorts within the Aβ+ validation datasets. The combined effect-size of the random effect (RE) model 

obtained via meta-analysis across the different cohorts, and the corresponding confidence internal is shown within each 

subplot as well. The p-value corresponding to the RE model and the Cochran's Q statistic measuring heterogeneity across 

cohorts is shown at the bottom right of each sub-plot. The Q* indicates that the shown Cochran's Q statistic is significant 

(� 0.0001). 
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Figure 5: Experiment 3: Concordance of Snowphlake and SuStaIn subtypes. A) shows the contingency matrix of 

estimated atrophy-based subtypes using Snowphlake and SuStaIn for participants in the training dataset, in different clinical 

stages of the disease. B) shows a similar contingency matrices for participants in the Aβ+ validation dataset, in different 

clinical stages of the disease. The squares marked in red in the contingency matrix for AD-D patients correspond to the 

frequently co-occurring subtypes between SuStaIn and Snowphlake, also referred to as concordant subtypes. Abbreviations: 

CU: Cognitively unimpaired (Cognitively normal or subjective cognitive decline); MCI: Mild cognitive impairment; AD-D: 

Alzheimer’s disease dementia; 
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Figure 6: Experiment 3: Snowphlake and SuStaIn modelling of the Aβ+ participants in the three identified 

concordant subtypes. A) For each concordant subtype, the top row depicts the sequence of atrophy-events obtained using 

DEBM, the methodological equivalent of Snowphlake with 1-subtype. The bottom row depicts the sequence of atrophy-

events obtained using w-score EBM the methodological equivalent of SuStaIn with 1-subtype. Within each subtype, the x-

axis corresponds to the stage of the disease. Each column shows the brain in its lateral, medial, and subcortical views, with 

the regions that is expected to be abnormal at this stage. B) shows the scale of the colour map used for DEBM plots goes 

from 0 to 1, where 0 represents a region becoming abnormal at the earliest stages of the disease and 1 represents late stage. 

C) shows the scale of the colour map used for w-score EBM plots, in which regions that are expected to be mildly affected 

(� � 	1) are shown in shades of blue, and severely affected (� � 	2) in shades of red, and unaffected regions in white. The 

scale for the color map goes from 1 to 48,  where 1 represents a region getting affected at the earliest stages of the disease and 

48 represents late stage. 
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