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Abstract 

Introduction: The common approach for organ segmentation in hybrid imaging relies on co-registered 
CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where 
mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor 
quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further 
highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. 
Therefore, the goal of this study was to develop a CT-less multi-tracer PET segmentation framework. 

Methods: We collected 2062 PET/CT images from multiple scanners. The patients were injected with 
either 18F-FDG (1487) or 68Ga-PSMA (575). PET/CT images with any kind of mismatch between PET 
and CT images were detected through visual assessment and excluded from our study. Multiple organs 
were delineated on CT components using previously trained in-house developed nnU-Net models. The 
segmentation masks were resampled to co-registered PET images and used to train four different deep-
learning models using different images as input, including non-corrected PET (PET-NC) and attenuation 
and scatter-corrected PET (PET-ASC) for 18F-FDG (tasks #1 and #2, respectively using 22 organs) and 
PET-NC and PET-ASC for 68Ga tracers (tasks #3 and #4, respectively, using 15 organs). The models’ 
performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference. 

Results: The average Dice coefficient over all organs was 0.81±0.15, 0.82±0.14, 0.77±0.17, and 
0.79±0.16 for tasks #1, #2, #3, and #4, respectively. PET-ASC models outperformed PET-NC models (P-
value < 0.05). The highest Dice values were achieved for the brain (0.93 to 0.96 in all four tasks), whereas 
the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed 
robust performance on dynamic noisy images as well. 

Conclusion: Deep learning models allow high performance multi-organ segmentation for two popular 
PET tracers without the use of CT information. These models may tackle the limitations of using CT 
segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any 
other tasks that require organ segmentation masks. 
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Abbreviations 

 

PET: Positron Emission Tomography 

CT: Computed Tomography 

NC: Non-Corrected 

ASC: Attenuation and Scatter Corrected 

PSMA: Prostate Specific Membrane Antigen 

FDG: Fluorodeoxyglucose 

NET: Neuroendocrine tumor 

UB: Urinary Bladder 

AG: Adrenal Glands 

CTDIvol: Volumetric Computed Tomography Dose Index 
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Introduction 

PET/CT hybrid imaging provides valuable information by combining structural, molecular, and 
physiological information with a wide range of indications and radiopharmaceuticals [1]. Since the 
emergence of hybrid PET/CT imaging, the development and use of different radiotracers has expanded 
increased. 18F-Fluorodeoxyglucose (18F-FDG), with a wide range of indications for brain, cardiac, and 
oncological imaging, is the most common used radiotracer in clinical practice [2-4]. Other common 
radiotracers are prostate-specific membrane antigen radiolabeled ligands, such as 68Ga-PSMA and 
radiolabeled somatostatin analogues, such as 68Ga-DOTATATE. 68Ga-PSMA has high diagnostic accuracy 
in the initial staging and biochemical recurrence evaluation in patients diagnosed with prostate cancer [5; 
6]. It is also used in the context of PSMA radioligand theragnostics, for lesions’ evaluation and patient 
selection with a good predictive value [7]. 

Medical image segmentation in general and in nuclear medicine in particular, is a crucial step towards 
modern personalized medicine. Segmentation can play an important role in PET image quantification in 
each organ and volume of interest (VOI) [8; 9]. Quantitative PET provides detailed information for 
accurate diagnosis and therapy by precise measurement of tracer uptakes and kinetics within each VOI 
[10; 11]. Nowadays, with the growing interest in personalized dosimetry for radiopharmaceutical therapy 
(RPT), aiming at delivering a tumoricidal radiation dose to the target volume while sparing organs at risk 
(OARs) [12; 13], the importance of image segmentation is becoming more pronounced. Moreover, the 
assessment of treatment response and prognostication, which requires tumor and OAR masks, have 
recently received significant attention [14-18]. In addition, studies highlighted the importance of non-
tumoral organs in prognostication and outcome prediction [19; 20]. 

In clinical practice, segmentation is performed manually on CT or MRI images after visual inspection of 
PET images [21-23]. Manual contouring is subjective, time-consuming, labor intensive, and prone to 
errors and inter-/intra-operator variability because of different levels of expertise and the use of different 
windowing settings [24; 25]. The available methods for automated organ segmentation in hybrid 
molecular imaging, predominantly using deep learning (DL), focus on using co-registered CT images 
[26]. Reliable CT segmentation tools capable of automated segmentation [27; 28] can be used for PET/CT 
images. However, this approach faces three main limitations. 

First, mismatch between emission (PET/SPECT) and transmission (CT) images is highly prevalent in 
clinical setting [29; 30]. This issue becomes more challenging in dynamic imaging protocols, where CT 
images are acquired within seconds at the beginning of the exam, while the dynamic PET scan is usually 
acquired during much longer time, including inevitably averaging multiple respiratory and cardiac cycles. 
In addition, involuntary changes in the position and size of the organs, such as the bladder getting filled 
and bowel movements, limit CT segmentation reliability [31]. Additionally, patient bulk motion during 
prolonged dynamic acquisitions further complicate alignment. Second, the low-dose and ultra-low-dose 
attenuation correction CT (CTAC) images acquired using lower tube currents and special beam filtering 
[32], often used in PET/CT, suffer from reduced image quality, thus affecting the accuracy of 
segmentation. CTAC. Last, the potential advent of CT-less clinical scanners, such as PET-only and 
PET/MRI scanners [30; 33], which utilize DL-based or Maximum Likelihood estimation of Activity and 
Attenuation (MLAA)-based attenuation correction methods, pose a significant challenge to CT-based 
segmentation approaches. DL-guided MRI multi-organ segmentation models were recently introduced to 
overcome PET/MRI organ segmentation [34]. These limitations highlight the necessity for developing 
segmentation tools based on emission data only rather than relying on co-registered CT images. 
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Utilizing the emission data to improve the performance of DL-based organ segmentation has been 
previously reported [35-38]. Klyuzhin et al. [35] used both PET and CT images for improved organ 
segmentation in PET/CT. Yazdani et al. [36] developed DL segmentation models to segment both healthy 
organs and malignant lesions from 68Ga-PSMA PET/CT images and compared them to using only PET, 
only CT, and both images as input to their DL models. Wang et al. [37] segmented bladder and heart on 
18F-FDG PET/CT images to overcome the issue of absence or availability of unreliable CT images. 
Clement et al. [38] developed a model to perform CT-less organ segmentation on 18F-FDG PET images 
for dynamic imaging.  

This study aimed to develop a reliable CT-less multi-organ segmentation pipeline on two common 
radiotracers (18F-FDG and 68Ga-PSMA) using a multi-centric dataset to address the limitations of CT-
based segmentation approaches in hybrid PET/CT imaging. 

Materials and Methods 

Common processing and steps for both tracers for reference segmentation generation 

 

Figure 1. Coronal slices showing representative cases presenting with mismatch between CT-based segmentation 
and PET images. Please note the chest/abdomen interval organs. 

Three types of images, including CTAC, Non-corrected PET (NC), and attenuation and scatter-corrected 
(CT-ASC) PET images were collected in a fully anonymized setup. All images were visualized using the 
open-source ITK-SNAP software [39]. Images presenting with a mismatch between PET and CT were 
excluded from training whereas PET/CT images without mismatch were included in the next steps. Figure 
1 illustrates an example of a mismatch visualized with segmentation generated based on the co-registered 
CT scan. Using previously developed DL-based segmentation models in our group [28] based on nnU-
Net architecture [40], a total number of 22 organs were delineated on the CTAC component of PET/CT 
images. All nnU-Net five folds were assembled on images to ensure the highest segmentation accuracy. 
The previously trained models were separate models, each dedicated to one specific organ. The CT-
generated segmentation masks were dilated by 2 mm and resampled with the co-registered PET image 
voxel spacing. During down sampling from CT voxel spacing (1 to 1.5 mm) to PET spacing (1.6 to 4 
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mm) without dilation, certain organ shapes, such as ribs and thin parts of pelvic hip bones, may be lost. 
This occurs because nearest neighborhood interpolation, which is necessary for maintaining a binary 
segment with values of 0 and 1, has limitations that can result in the removal of fine details in the 
segmentation. The segmentations were integrated into a unified multi-value segmentation mask using the 
Simple ITK 2.2 Python library, prioritizing organs with higher Dice values from CT training task. For 
instance, if a single voxel was segmented as both liver and stomach by separate CT segmentation models, 
the voxel was classified as liver tissue to avoid overlap between the two organs. The segmentation masks 
and PET images were used to train an nnU-Net model using a five-fold cross-validation data split. Four 
different tasks were defined: two utilizing 18F-FDG PET images and two utilizing 68Ga-PET images. Each 
task involved using either ASC or NC as inputs, namely, 18F-FDG-NC (task #1), 18F-FDG-ASC (task #2), 
68Ga-NC (task #3), and 68Ga-ASC (task #4). 

Datasets 

This study included two separate sets of images acquired from patients injected with 18F-FDG (dataset #1) 
and 68Ga-PSMA tracers (dataset#2). The study was approved by the local ethics committee and consent 
was waived owing to the retrospective nature of the study protocol. 

Dataset #1 (18F-FDG). This dataset included patients injected with 18F-FDG for oncological indications, 
with whole-body PET/CT images acquired on Biograph mCT and Biograph Vision scanners (Siemens 
Healthineers, TN, USA). Initially, 1487 images were included. After excluding PET/CT image pairs with 
mismatches, that is 947 image pairs (~64%), 540 cases remained for five-fold training. The semi-
diagnostic CTAC images acquired with an average tube current of ~110 mAs, and PET-NC and PET-ASC 
images were reconstructed using iterative reconstruction methods. Detailed information about dataset #1 
can be found in Table 1. A total number of 22 organs were selected for tasks #1 and #2 on dataset #1, 
including the adrenal gland (AG), Aorta, Colon, Esophagus, Eyeballs, Femoral Heads (FH), Gall bladder 
(GB), Heart, Hip bones (including Ilium, Ischium, and Pubis as a single mask), Kidneys, Liver, Lungs, 
Pancreas, Erectus Spinae, Rib Cage, Sacrum, Spleen, Stomach, Urinary bladder (UB), Vertebrae, Brain, 
and Clavicle. 

Table 1. Detailed demographics of all 1487 images included as dataset #1 (18F-FDG). 

Scanner Siemens Biograph mCT Siemens Biograph Vision 

Number 689 798 

kVp 80, 100, 110, 140 80, 100, 110, 140 

CTDIvol (mGy) 3.92 ± 2.29 (0.25 - 20.85) 4.49 ± 2.24 (0.63 - 24.16) 
Age (Year) 61.639 ± 16.166 (5.0 - 93.0) 61.265 ± 16.993 (6.0 - 96.0) 

Gender Female: 376, Male: 313 Female: 439, Male: 359 

Date 2014 - 2021 2019 - 2021 

Patient Height (m) 1.66 ± 0.14 (1.34 - 1.98) 1.68 ± 0.10 (0.72 - 2.0) 

Patient Weight (Kg) 69.1 ± 16.6 (29.4 - 164) 70.1 ± 16.4 (21.3 - 151.0) 

Average Tube Current (mA) 129.5 ± 51.5 (24.3 - 314.1) 128.1 ± 48.1 (32.0 - 476.421) 

PET Reconstruction OSEM 3D + PSF + TOF OSEM 3D + PSF + TOF 

 

Dataset #2 (68Ga-PSMA). This data included a total number of 575 PET/CT images injected with 68Ga-
PSMA radiopharmaceutical scanned on four different Siemens scanners at three different nuclear 
medicine centers. All patients were male. 
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From the 575 cases initially collected, 390 were excluded, leaving only 185 clean cases for the remainder 
of our study. Table 2 summarizes the demographic information for all 575 cases initially included in our 
study. Some information was missing due to the anonymization process. A total number of 15 organs were 
selected for tasks #3 and #4 on dataset #2, including AG aorta, Brain, Eyeballs, Hip bones, Kidneys, 
Liver, Lungs, Pancreas, Rib cage, Sacrum, Spleen, UB, Vertebrae, Heart. Seven organs were excluded 
from dataset #2 for tasks #3 and #4 as there is less anatomical information in 68Ga images compared to 
18F-FDG images. We aimed to include only organs with distinguishable uptake. 

Table 2. Demographic information of all included 575 68Ga-PET/CT images from dataset #2 in this study.  

Scanner 
SIEMENS 
Biograph 

SIEMENS Biograph 
Horizon 

SIEMENS Biograph128 
Vision 

SIEMENS 
Biograph128 mCT 

# of images 314 69 112 80 

Age (year) 
67.3 ± 8.2  
(40 - 93) 

65.3 ± 10.9 (17 - 88) 71.1 ± 8.1 (50 - 90) 71.3 ± 7.8 (54 - 93) 

Date 2016 to 2020 2021 to 2022 2019 to 2021 2019 to 2021 

Center #1 #2 #3 #4 

kVp N/A 110 and 130 100, 120, 140 100, 120, 140 

Pitch N/A 1.2 ± 0.0 (1.2 - 1.2) 0.8 ± 0.0 (0.8 - 0.8) 0.8 ± 0.0 (0.8 - 0.8) 

CTDIvol (mGy) N/A 
4.21 ± 1.78  

(1.94 - 11.91) 
5.16 ± 1.84  

(0.66 - 14.14) 
5.10 ± 1.75  

(1.18 - 12.17) 

Average tube current (mA) 
93.4 ± 13.4  

(44.5 - 122.9) 
N/A 

117.8 ± 26.1  
(73.3 - 264.2) 

121.6 ± 31.2  
(76.7 - 318.1) 

Time per bed (seconds) 
180 ± 24  

(220 - 270) 
87 ± 29 (60 - 120) 250 ± 18 (142 - 266) 212 ± 10 (15 - 217) 

 

Model training parameters 

Four separated nnU-Net [40] models were trained for the four defined tasks. For each task, the combined 
segmentation masks and the corresponding PET images were fed into an nnU-Net version 2 (nnunetv2) 
pipeline using default parameters except the training length which was increased from the default value of 
1000 epochs to 2000 epochs to enhance accuracy. We utilized nnU-Net 3D-fullres training configuration, 
which uses 3D patches for training. The initial learning rate was set to 1e-2 and decreased every epoch. 
The decay of 3e-5 and the Dice cross-entropy loss function were used. Five-fold cross-validation data 
splits were used, with 80% of images used for training and 20% for testing in each fold. The training 
process was conducted on a PC equipped with an RTX4090 GPU with 24 GB of dedicated memory and a 
Core i9-13900KF CPU with 32 GB of RAM. 

Evaluation strategy 

Common segmentation evaluation metrics, including Dice coefficient, Jaccard index, precision, 
sensitivity, specificity, accuracy, mean surface distance and segment volume difference were used to 
compare the predicted segmentation with the reference ones. The Mann-Whitney U test was employed to 
compare the models’ performance on NC and ASC images. In other words, we compared performance 
between tasks#1 and #2 as well as between tasks #3 and #4, seeking statistically significant differences 
using a two-tailed P-value of 0.05 as the threshold. 
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Figure 2. Flowchart of steps followed in this study, including generation of reference segmentation masks and 
training the LD-nnU-Net models.  

Results 

Tasks #1 and #2 

For tasks #1 and #2, an average Dice value over all organs of 0.81 ± 0.15 and 0.82 ± 0.14 was achieved, 
respectively. As shown in Figure 3, in terms of Dice scores, task #1 demonstrated superior performance 
across most organs compared to task #2. 
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Figure 3. Box plot of Dice coefficients for task #1 vs #2. 

Table 3 and Table 4 summarize the details of five-fold cross-validation results for tasks #1 and #2,
respectively. The highest Dice coefficients were achieved for the Brain and Lungs, while the lowest
values were found for smaller organs, such as AGs. The detailed results separated by every fold may be
found in supplementary Table 1.
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Table 3. Average performance metrics of our models for Task #1 from five-fold cross-validation. 

 

Task Segment Dice Jaccard Sensitivity Specificity Precision Accuracy Mean Surface Distance (mm) Volume Difference (mL) 

Task #1 AG 0.561 ± 0.135 0.402 ± 0.122 0.572 ± 0.157 1.0 ± 0.0 0.579 ± 0.146 1.0 ± 0.0 2.231 ± 2.006 -0.309 ± 2.588 

Aorta 0.884 ± 0.045 0.796 ± 0.066 0.888 ± 0.051 1.0 ± 0.0 0.883 ± 0.054 1.0 ± 0.0 1.023 ± 0.629 -0.52 ± 26.031 

brain 0.958 ± 0.032 0.92 ± 0.054 0.956 ± 0.032 1.0 ± 0.0 0.96 ± 0.041 1.0 ± 0.0 6.631 ± 14.308 -7.448 ± 64.478 

clavicles 0.762 ± 0.084 0.622 ± 0.101 0.767 ± 0.092 1.0 ± 0.0 0.761 ± 0.094 1.0 ± 0.0 2.529 ± 4.705 -0.055 ± 9.39 

Colon 0.725 ± 0.091 0.576 ± 0.103 0.711 ± 0.1 1.0 ± 0.0 0.745 ± 0.095 0.999 ± 0.0 4.062 ± 2.404 -48.169 ± 141.816 

Esophagus 0.754 ± 0.085 0.612 ± 0.101 0.763 ± 0.096 1.0 ± 0.0 0.751 ± 0.094 1.0 ± 0.0 1.295 ± 0.857 0.528 ± 7.615 

Eyeballs 0.757 ± 0.171 0.635 ± 0.192 0.779 ± 0.171 1.0 ± 0.0 0.742 ± 0.177 1.0 ± 0.0 1.879 ± 2.475 1.14 ± 2.745 

Femoral Heads 0.905 ± 0.058 0.831 ± 0.086 0.914 ± 0.047 1.0 ± 0.0 0.9 ± 0.079 1.0 ± 0.0 3.607 ± 9.742 22.545 ± 99.621 

GB 0.586 ± 0.193 0.439 ± 0.182 0.596 ± 0.21 1.0 ± 0.0 0.625 ± 0.214 1.0 ± 0.0 5.102 ± 8.522 -2.832 ± 14.219 

Heart 0.913 ± 0.034 0.841 ± 0.053 0.918 ± 0.049 1.0 ± 0.0 0.911 ± 0.048 1.0 ± 0.0 3.038 ± 5.685 3.421 ± 64.693 

Hips 0.887 ± 0.036 0.799 ± 0.053 0.886 ± 0.039 1.0 ± 0.0 0.889 ± 0.045 1.0 ± 0.0 0.809 ± 0.386 -4.637 ± 34.58 

Kidneys 0.851 ± 0.077 0.747 ± 0.095 0.866 ± 0.084 1.0 ± 0.0 0.844 ± 0.087 1.0 ± 0.0 2.164 ± 3.047 5.254 ± 49.649 

Liver 0.915 ± 0.049 0.846 ± 0.067 0.92 ± 0.063 1.0 ± 0.0 0.914 ± 0.052 1.0 ± 0.0 2.48 ± 1.942 3.991 ± 222.317 

Lungs 0.927 ± 0.022 0.865 ± 0.037 0.929 ± 0.034 1.0 ± 0.0 0.927 ± 0.038 0.999 ± 0.0 1.824 ± 0.841 4.763 ± 214.312 

Pancreas 0.682 ± 0.126 0.53 ± 0.131 0.688 ± 0.143 1.0 ± 0.0 0.691 ± 0.131 1.0 ± 0.0 3.561 ± 3.175 -1.579 ± 19.486 

RAM 0.903 ± 0.025 0.824 ± 0.041 0.902 ± 0.03 1.0 ± 0.0 0.906 ± 0.036 1.0 ± 0.0 1.083 ± 0.387 -9.367 ± 54.561 

Rib Cage 0.651 ± 0.111 0.492 ± 0.116 0.662 ± 0.115 1.0 ± 0.0 0.645 ± 0.12 0.999 ± 0.0 1.729 ± 1.758 10.792 ± 68.369 

Sacrum 0.872 ± 0.042 0.776 ± 0.056 0.888 ± 0.046 1.0 ± 0.0 0.859 ± 0.05 1.0 ± 0.0 1.237 ± 0.791 8.624 ± 16.751 

Spleen 0.819 ± 0.141 0.711 ± 0.153 0.834 ± 0.148 1.0 ± 0.0 0.82 ± 0.142 1.0 ± 0.0 3.581 ± 6.563 4.592 ± 58.892 

Stomach 0.758 ± 0.1 0.62 ± 0.113 0.763 ± 0.118 1.0 ± 0.0 0.767 ± 0.106 1.0 ± 0.0 3.637 ± 3.425 -3.837 ± 43.979 

UB 0.821 ± 0.112 0.71 ± 0.141 0.832 ± 0.137 1.0 ± 0.0 0.835 ± 0.138 1.0 ± 0.0 3.774 ± 15.654 -4.205 ± 44.513 

Vertebrae 0.856 ± 0.031 0.75 ± 0.046 0.862 ± 0.035 1.0 ± 0.0 0.852 ± 0.04 1.0 ± 0.0 1.306 ± 2.694 11.017 ± 53.781 
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Table 4. Evaluation metrics for Task #2, averaged over five-fold cross-validation. 

Task Segment Dice Jaccard Sensitivity Specificity Precision Accuracy Mean Surface Distance (mm) Volume Difference (mL) 

Task #2 

AG 0.568 ± 0.139 0.409 ± 0.126 0.594 ± 0.156 1.0 ± 0.0 0.569 ± 0.149 1.0 ± 0.0 2.31 ± 2.474 0.272 ± 2.635 

Aorta 0.892 ± 0.039 0.807 ± 0.057 0.892 ± 0.046 1.0 ± 0.0 0.895 ± 0.046 1.0 ± 0.0 0.943 ± 0.61 -2.592 ± 24.324 

Brain 0.961 ± 0.027 0.925 ± 0.045 0.961 ± 0.027 1.0 ± 0.0 0.962 ± 0.039 1.0 ± 0.0 7.414 ± 18.699 -2.775 ± 69.11 

Clavicles 0.767 ± 0.079 0.628 ± 0.097 0.773 ± 0.089 1.0 ± 0.0 0.765 ± 0.089 1.0 ± 0.0 2.974 ± 5.793 0.244 ± 9.83 

Colon 0.723 ± 0.083 0.573 ± 0.095 0.717 ± 0.092 1.0 ± 0.0 0.736 ± 0.094 0.999 ± 0.0 4.169 ± 2.304 -28.668 ± 128.858 

Esophagus 0.777 ± 0.072 0.641 ± 0.09 0.791 ± 0.084 1.0 ± 0.0 0.768 ± 0.083 1.0 ± 0.0 1.261 ± 2.314 1.269 ± 6.881 

Eyeballs 0.832 ± 0.108 0.725 ± 0.135 0.836 ± 0.105 1.0 ± 0.0 0.836 ± 0.122 1.0 ± 0.0 1.974 ± 12.072 -0.064 ± 2.837 

Femoral Head 0.899 ± 0.058 0.822 ± 0.086 0.906 ± 0.047 1.0 ± 0.0 0.896 ± 0.079 1.0 ± 0.0 3.741 ± 9.495 19.62 ± 96.896 

Gall Bladder 0.607 ± 0.197 0.461 ± 0.185 0.627 ± 0.207 1.0 ± 0.0 0.63 ± 0.219 1.0 ± 0.0 5.11 ± 8.44 -1.745 ± 14.354 

Heart 0.922 ± 0.03 0.857 ± 0.047 0.928 ± 0.042 1.0 ± 0.0 0.919 ± 0.04 1.0 ± 0.0 2.799 ± 5.65 5.597 ± 52.358 

Hips 0.889 ± 0.031 0.802 ± 0.047 0.888 ± 0.035 1.0 ± 0.0 0.892 ± 0.04 1.0 ± 0.0 0.815 ± 0.461 -5.193 ± 36.071 

Kidneys 0.856 ± 0.075 0.754 ± 0.091 0.874 ± 0.078 1.0 ± 0.0 0.845 ± 0.086 1.0 ± 0.0 2.078 ± 2.702 9.694 ± 42.382 

Liver 0.929 ± 0.046 0.869 ± 0.061 0.937 ± 0.058 1.0 ± 0.0 0.924 ± 0.043 1.0 ± 0.0 2.139 ± 1.989 16.911 ± 199.752 

Lungs 0.943 ± 0.018 0.892 ± 0.031 0.935 ± 0.027 1.0 ± 0.0 0.952 ± 0.026 0.999 ± 0.0 1.456 ± 0.806 -64.043 ± 153.441 

Pancreas 0.692 ± 0.122 0.541 ± 0.128 0.707 ± 0.137 1.0 ± 0.0 0.692 ± 0.128 1.0 ± 0.0 3.543 ± 3.336 0.945 ± 20.422 

RAM 0.897 ± 0.025 0.814 ± 0.039 0.89 ± 0.029 1.0 ± 0.0 0.906 ± 0.036 1.0 ± 0.0 1.201 ± 0.504 -23.925 ± 57.449 

Rib Cage 0.704 ± 0.093 0.55 ± 0.103 0.703 ± 0.097 1.0 ± 0.0 0.708 ± 0.102 0.999 ± 0.0 1.486 ± 1.755 -8.441 ± 63.949 

Sacrum 0.875 ± 0.033 0.779 ± 0.051 0.888 ± 0.04 1.0 ± 0.0 0.864 ± 0.044 1.0 ± 0.0 1.243 ± 0.994 7.263 ± 17.211 

Stomach 0.769 ± 0.101 0.634 ± 0.116 0.771 ± 0.121 1.0 ± 0.0 0.779 ± 0.106 1.0 ± 0.0 3.545 ± 3.688 -4.948 ± 42.206 

Spleen 0.847 ± 0.129 0.751 ± 0.143 0.859 ± 0.132 1.0 ± 0.0 0.849 ± 0.128 1.0 ± 0.0 3.265 ± 6.425 3.099 ± 60.25 

UB 0.821 ± 0.109 0.709 ± 0.137 0.836 ± 0.132 1.0 ± 0.0 0.83 ± 0.139 1.0 ± 0.0 4.263 ± 16.277 -2.777 ± 45.19 

Vertebrae 0.862 ± 0.028 0.759 ± 0.042 0.866 ± 0.032 1.0 ± 0.0 0.86 ± 0.037 1.0 ± 0.0 1.253 ± 2.744 6.596 ± 51.721 
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Table 5 compares P-Values between tasks #1 and #2, indicating significant differences across most 
organs. There are significant differences in Dice values for most organs between tasks #1 and #2, while 
volume differences show significance in fewer organs. An example of our model output for task #2 tested 
on a noisy dynamic acquisition is shown in supplementary figure 2. 
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Table 5. Mann-Whitney P-values comparing task #1 and task #2. P<0.05 reflects statistically significant 
difference. 

Organ Dice Jaccard Mean Surface Distance Volume Difference 

Liver 0.000 0.000 0.000 0.089 

brain 0.619 0.619 0.485 0.164 

AG 0.236 0.236 0.315 0.001 

Stomach 0.011 0.011 0.069 0.473 

Rib Cage 0.000 0.000 0.000 0.000 

Colon 0.396 0.396 0.136 0.012 

Erectus Spinae 0.000 0.000 0.000 0.000 

Sacrum 0.318 0.318 0.248 0.255 

Aorta 0.003 0.003 0.003 0.024 

Clavicle 0.385 0.385 0.887 0.633 

Esophagus 0.000 0.000 0.000 0.068 

Vertebrae 0.001 0.001 0.006 0.092 

Eyeballs 0.000 0.000 0.000 0.000 

Femoral Head 0.000 0.000 0.004 0.342 

GB 0.034 0.034 0.261 0.061 

Spleen 0.000 0.000 0.000 0.458 

Kidneys 0.162 0.162 0.296 0.263 

Lungs 0.000 0.000 0.000 0.000 

Hips 0.421 0.421 0.763 0.855 

Pancreas 0.175 0.175 0.350 0.022 

UB 0.741 0.741 0.362 0.463 

Heart 0.000 0.000 0.000 0.907 

 

Figure 4 demonstrates an example of segmented organs for tasks #1 and #2 on a case with a good match 
between PET and CT images from a cross-validation strategy, depicting the excellent performance of our 
models.  
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Figure 4. Coronal (top), axial (middle), and 3D (bottom) visualizations of the segmentations for tasks #1 and #2. 
Each color presents one organ; the internal organs, such as kidneys, are not visible in 3D-rendered images. The face 
is masked for privacy. 

 

Figure 5 shows an example of PET/CT image with unreliable CT segmentation due to respiratory 
mismatch affecting the segmentation of moving organs, especially the Lungs, Liver, and Spleen. This case 
was excluded from cross-validation training, the trained models of tasks#1 and #2 were ensembled on the 
corresponding images. In other words, task#1 model was tested on PET-NC and task#2 model on PET-
ASC images. 
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Figure 5. Representative excluded case presenting an image with respiratory mismatch between PET and CT 
images. A (top row): PET-NC image and task #1 generated masks, columns 1 to 4 show coronal images whereas 
column 5 shows the 3D rendered segmentations. B (middle row): PET-NC image and the segmentation masks 
generated on the co-registered CTAC image, columns 1 to 4 show coronal images whereas column 5 shows the 3D 
rendered segmentations. The arrow shows the mismatch at lung/liver interface. C (bottom row): the fused PET-NC 
and CT in coronal (columns 1 to 4) and sagittal (column 5) views. The arrows highlight the mismatch regions. 

Tasks #3 and #4 
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The average of the Dice scores over 15 organs from five-fold cross-validation were 0.766 ± 0.171 and
0.788 ± 0.163 for tasks #3 and #4, respectively. The performance metrics for tasks #3 and #4 are
summarized in Table 6 and Table 7. The detailed performance metrics are reported separately for each
fold in supplementary Table 1. The Dice values for task #4 were significantly higher than those for task
#3 with P-Values below 0.05 for most organs, except for larger organs with a clear objective contrast on
68Ga-NC images, such as the Hips, Sacrum, Vertebrae, Kidneys, and UB. The P-Values are reported in
Table 8. The lowest Dice value was observed for AG whereas the highest was achieved for the Brain.
Figure 6 displays the box plot of Dice scores for the included organs in tasks #3 and #4.  

Figure 6. Box plots showing the Dice scores for task #3 and #4 for every 15 included organs. 
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Table 6. Average segmentation metrics from five-fold cross-validation for Task #3 for all included organs. 

Task Segment Dice Jaccard Sensitivity Specificity Precision Accuracy Mean Surface Distance (mm) Volume Difference (mL) 

Task #3 

AG 0.421 ± 0.154 0.279 ± 0.13 0.391 ± 0.154 1.0 ± 0.0 0.482 ± 0.179 1.0 ± 0.0 4.085 ± 4.066 -2.404 ± 3.93 

Aorta 0.809 ± 0.076 0.685 ± 0.092 0.806 ± 0.091 1.0 ± 0.0 0.819 ± 0.074 0.999 ± 0.0 2.264 ± 4.585 -9.15 ± 41.849 

Brain 0.928 ± 0.046 0.868 ± 0.072 0.924 ± 0.057 1.0 ± 0.0 0.934 ± 0.051 0.999 ± 0.001 5.735 ± 10.507 -16.978 ± 83.016 

Eyeballs 0.67 ± 0.163 0.524 ± 0.169 0.678 ± 0.169 1.0 ± 0.0 0.669 ± 0.168 1.0 ± 0.0 4.195 ± 23.087 0.403 ± 4.944 

Heart 0.869 ± 0.065 0.774 ± 0.09 0.871 ± 0.081 1.0 ± 0.0 0.872 ± 0.073 0.999 ± 0.0 6.668 ± 17.124 -6.179 ± 86.089 

Hips 0.804 ± 0.069 0.677 ± 0.084 0.804 ± 0.079 0.999 ± 0.0 0.806 ± 0.072 0.999 ± 0.0 2.324 ± 5.632 -6.756 ± 68.178 

Kidneys 0.824 ± 0.109 0.712 ± 0.129 0.83 ± 0.119 1.0 ± 0.0 0.827 ± 0.104 0.999 ± 0.0 2.837 ± 4.473 1.095 ± 79.212 

Liver 0.867 ± 0.075 0.772 ± 0.103 0.874 ± 0.088 0.999 ± 0.001 0.866 ± 0.081 0.998 ± 0.001 4.052 ± 3.702 5.234 ± 241.476 

Lungs 0.899 ± 0.071 0.821 ± 0.081 0.899 ± 0.083 0.999 ± 0.001 0.906 ± 0.048 0.997 ± 0.001 2.578 ± 2.813 -25.67 ± 344.082 

Pancreas 0.596 ± 0.159 0.441 ± 0.152 0.575 ± 0.175 1.0 ± 0.0 0.645 ± 0.171 1.0 ± 0.0 5.236 ± 6.45 -13.614 ± 30.184 

Rib Cage 0.555 ± 0.085 0.389 ± 0.078 0.575 ± 0.091 0.999 ± 0.0 0.542 ± 0.095 0.997 ± 0.001 2.791 ± 1.588 47.523 ± 118.76 

Sacrum 0.802 ± 0.072 0.675 ± 0.086 0.817 ± 0.083 1.0 ± 0.0 0.792 ± 0.077 1.0 ± 0.0 2.492 ± 1.386 8.747 ± 30.328 

Spleen 0.794 ± 0.119 0.671 ± 0.14 0.792 ± 0.125 1.0 ± 0.0 0.808 ± 0.135 1.0 ± 0.0 3.542 ± 4.103 -7.187 ± 39.075 

UB 0.822 ± 0.126 0.713 ± 0.147 0.818 ± 0.147 1.0 ± 0.0 0.848 ± 0.136 1.0 ± 0.0 3.83 ± 9.019 -9.085 ± 49.223 

Vertebrae 0.818 ± 0.036 0.694 ± 0.049 0.826 ± 0.043 0.999 ± 0.0 0.812 ± 0.046 0.998 ± 0.0 1.527 ± 0.483 18.014 ± 83.173 
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Table 7. Performance metrics from five-fold cross-validation for Task #4. 

Task Segment Dice Jaccard Sensitivity Specificity Precision Accuracy Mean Surface Distance (mm) Volume Difference (mL) 

Task #4 AG 0.437 ± 0.155  0.293 ± 0.133  0.414 ± 0.154  1.0 ± 0.0  0.485 ± 0.179  1.0 ± 0.0  3.355 ± 2.967  -1.98 ± 3.422  

Aorta 0.825 ± 0.075  0.708 ± 0.096  0.824 ± 0.081  1.0 ± 0.0  0.832 ± 0.085 1.0 ± 0.0  1.913 ± 2.273  -3.939 ± 69.773  

Brain 0.942 ± 0.042  0.893 ± 0.064  0.942 ± 0.053 1.0 ± 0.0  0.945 ± 0.044  0.999 ± 0.0  5.559 ± 11.292 -9.794 ± 84.242  

Eyeballs 0.753 ± 0.134  0.62 ± 0.151  0.747 ± 0.132  1.0 ± 0.0  0.774 ± 0.14 1.0 ± 0.0  6.797 ± 37.747 0.379 ± 15.853  

Heart 0.897 ± 0.057  0.818 ± 0.081 0.898 ± 0.073 1.0 ± 0.0 0.9 ± 0.061  0.999 ± 0.0  6.186 ± 17.138 -5.302 ± 73.578  

Hips 0.812 ± 0.068  0.688 ± 0.082  0.803 ± 0.08  0.999 ± 0.0  0.824 ± 0.067  0.999 ± 0.0  2.189 ± 6.148  -25.21 ± 70.011  

Kidneys 0.819 ± 0.12  0.707 ± 0.136  0.824 ± 0.118  1.0 ± 0.0  0.826 ± 0.126  0.999 ± 0.001  3.641 ± 8.759 5.333 ± 132.237  

Liver 0.904 ± 0.062  0.829 ± 0.087  0.906 ± 0.082 0.999 ± 0.0  0.906 ± 0.055  0.999 ± 0.001  2.599 ± 2.166 -9.704 ± 222.004  

Lungs 0.926 ± 0.035  0.864 ± 0.054  0.926 ± 0.047  0.999 ± 0.001 0.927 ± 0.037  0.998 ± 0.001 1.744 ± 1.395 -18.3 ± 226.443  

Pancreas 0.63 ± 0.151  0.476 ± 0.148  0.617 ± 0.164  1.0 ± 0.0  0.665 ± 0.17 1.0 ± 0.0  4.417 ± 5.866 -9.752 ± 28.548  

Rib Cage 0.585 ± 0.077  0.417 ± 0.072  0.607 ± 0.081  0.999 ± 0.0 0.571 ± 0.092  0.997 ± 0.001 2.391 ± 1.414 49.412 ± 122.563  

Sacrum 0.793 ± 0.086  0.664 ± 0.101  0.804 ± 0.095 1.0 ± 0.0 0.786 ± 0.091  1.0 ± 0.0  3.595 ± 10.435 6.662 ± 33.149 

Spleen 0.839 ± 0.097  0.732 ± 0.123  0.838 ± 0.107  1.0 ± 0.0  0.847 ± 0.106  1.0 ± 0.0  2.752 ± 5.183 -2.885 ± 31.768  

UB 0.834 ± 0.11  0.728 ± 0.135  0.828 ± 0.138  1.0 ± 0.0 0.861 ± 0.125  1.0 ± 0.0  2.628 ± 2.176  -9.362 ± 46.993  

Vertebrae 0.819 ± 0.039  0.696 ± 0.053  0.831 ± 0.05  0.999 ± 0.0 0.81 ± 0.048 0.998 ± 0.001  1.54 ± 0.598 29.778 ± 96.0  
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Table 8. P-values of Mann-Whitney statistical test comparing the performance metrics for task#3 vs task #4.  

Organ 
P-Value 

Dice Jaccard Mean Surface Distance Volume Difference 

AG 0.269 0.269 0.049 0.210 

Aorta 0.000 0.000 0.001 0.962 

Brain 0.000 0.000 0.015 0.083 

Eyeballs 0.000 0.000 0.000 0.000 

Hips 0.141 0.141 0.054 0.004 

Kidneys 0.668 0.668 0.776 0.373 

Liver 0.000 0.000 0.000 0.359 

Lungs 0.000 0.000 0.000 0.684 

Pancreas 0.012 0.012 0.004 0.331 

Rib Cage 0.000 0.000 0.000 0.909 

Sacrum 0.565 0.565 0.532 0.375 

Spleen 0.000 0.000 0.000 0.607 

UB 0.359 0.359 0.135 0.749 

Vertebrae 0.684 0.684 0.837 0.164 

Heart 0.000 0.000 0.000 0.979 

 

Figure 7 illustrates an example with strong alignment between CT and PET within the 5-fold cross-
validation data split for tasks #3 and #4.  
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Figure 7. Representative case with segmentations generated on PET-NC (task #3) and PET-ASC images (task 
#4). Top row: coronal slices, middle row: axial and bottom row: 3D rendered segmentations. Face is masked for 
privacy.  

Figure 8 depicts an image from the excluded studies demonstrating the mismatch between PET and 
CT images. This case shows the unreliable CT generated masks and the excellent performance of our 
model in delineating organs. 

 

Figure 8. 68Ga-PSMA PET/CT image with respiratory mismatch. It should be noted that the kidney boundaries 
are expanded in the visualized images due tNo selected window width/level. Face is masked for privacy. 
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Discussion 

Automatic, fast, and accurate segmentation of medical images has become one of the hottest topics in 
precision medicine for personalized dosimetry and image quantification [41-45]. In nuclear medicine, 
where PET/CT and SPECT/CT are commonly performed for diagnostic and therapeutic purposes, 
automated organ segmentation is crucial. Recent studies showed the importance of Organomics and 
organ information in overall survival prediction [15; 20]. as well as pre-therapy dose prediction in 
PSMA theragnostic procedures [14]. The common method used for automated organ delineation in 
hybrid PET/CT and SPECT/CT relies on the co-registered CT images. However, this approach is 
subject to limitations, such as the highly prevalent mismatch between emission and CT images and 
the low quality of low-dose CTAC images. Urinary bladder filling and bowel movements are 
inevitable and could cause more problematic mismatch between the CT generated masks and realistic 
organ position, shape and size depicted on PET images. Additionally, not all PET scanners are 
equipped with CT for attenuation and scatter correction, and as such, an approach that doesn’t rely on 
CT is necessary. 

We targeted two commonly used tracers for PET imaging and developed a comprehensive DL 
segmentation pipeline for the automated delineation of multiple organs to be used in different clinical 
scenarios. To ensure a strong match between emission and CT images in the training set and to 
prevent the trained DL models from being affected by mismatch, we first cleaned our data by 
excluding PET/CT image pairs presenting with respiratory, cardiac, and bulk motion mismatches. 
After visual assessment of our initially included dataset, we excluded more than 65% of the 2062 
images from our study, emphasizing the high prevalence of mismatch in PET/CT imaging. 

We included different numbers of organs depending on the tracer as 68Ga-PSMA PET images contain 
less anatomical information. Our goal was to develop a reliable model based on clinical studies for 
potential implementation in clinical setting. The first scenario for using our models involve 
performing segmentation on PET ASC images corrected either by CT or any other method, such as 
MLAA or DL-based ASC techniques. In this scenario, the CT image is either unavailable or too noisy 
to be segmented through DL . To address this limitation, we provided models from tasks #2 and #4 for 
delineation on PET ASC images, as they outperformed the models of tasks #1 and #3, which use NC 
images. PET ASC images benefit from better contrast and contain more information due to 
corrections for degrading factors, such as attenuation, scatter and point-spread function (PSF). 

Additionally, we considered the second scenario of performing CT-less PET segmentation where the 
PET ASC image is corrected with a mismatched CT, or PET-ASC images are not available. Such 
corrections can induce unacceptable mismatch artifacts on PET ASC images, removing the useful 
information e.g., in areas such as chest abdomen interval or causing halo artifacts which are very 
common in 68Ga-PSMA PET/CT imaging. In this scenario, as shown in Figure 5 and Figure 8, the 
chest area was affected, and the DL model trained on PET ASC images only on cases without 
mismatch, may identify it as lung tissue. To address this issue, we implemented two strategies 
including tasks #1 and #3 to provide a reliable segmentation solution for all potential clinical 
scenarios. The performance of our models in the second scenario is lower than those in the first 
scenario as the NC images suffer from multiple artifacts, and are not corrected for attenuation and 
scatter, and usually do not include time-of-flight (TOF) and PSF correction. We hypothesize that this 
would be a versatile solution by considering real clinical needs and could tackle the issue more 
effectively. 

We employed state-of-the-art nnU-Net V2 pipeline, which has shown promising results in recent 
medical image segmentation studies. Our model achieved excellent accuracy in segmenting organs, 
such as the Lungs, Brain, and Liver. However, it achieved lower performance in a few smaller organs 
with lower objective contrast and visibility in PET images, especially when using NC images as input, 
such as AGs. The overall performance was superior in tasks #1 and #2 using FDG PET images 
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compared to tasks #3 and #4 using 68Ga-PET, as anticipated. The difference can be attributed to the 
lower structural information in 68Ga-PET images because of specific uptake patterns of 68Ga-PSMA 
tracer. As shown in supplementary figure 2, our models have shown acceptable performance even on 
very noisy dynamic FDG PET images. It should be noted that these images are acquired shortly after 
tracer injection, thus a different radiopharmaceutical uptake pattern can be observed compared to 
delayed PET images (usually acquired around 60 minutes post-injection). Despite this fact, our model 
showed robust performance on dynamic, noisy frames. 

While the Dice coefficient alone may have limitations for evaluation of image segmentation 
performance [46], we extensively evaluated the performance of our models using multiple metrics, 
including Dice, Jaccard, mean surface distance, and the volume difference between the reference and 
the predicted masks. Our study achieved significantly better results compared to the study by Yazdani 
et al. [47] where few organs were included for segmentation. Our Dice scores were 0.82 vs. 0.80, 0.90 
vs. 0.88, 0.84 vs. 0.79, and 0.83 vs. 0.81 for kidneys, liver, spleen, and urinary bladder organs in task 
#4. The improved performance could be due to our approach of excluding cases with mismatches, 
which could mislead the DL model during training and underestimate the Dice value when unreliable 
segmentation masks are used as reference in those cases. Klyuzhin et al. [48] developed a multi-organ 
segmentation model for 68Ga-PSMA images using both PET and CT images as inputs in their UNET 
model. Our model, however, utilizes only the emission images to overcome the aforementioned 
limitations.  

This work inherently bears a number of limitations. First, we developed PET organ segmentation 
models for two common tracers and suggested training new models for other tracers. However, 
transfer learning is one option that should be considered. CT segmentation does not share this 
dependency on the tracer used. Another limitation of our study is the limited number of training 
dataset acquired on only two PET/CT scanners from the same manufacturer., Potential end-users 
would need to perform finetuning on our publicly available models using their own local datasets. 

Conclusion 

We developed DL-powered CT-less automated organ segmentation models from PET images for two 
common tracers used in PET/CT imaging to overcome the limitations of CT segmentation in 
delineation and quantification. Our model showed acceptable performance; however, the models 
using PET-ASC images as input achieved a better performance. The method can be used in the 
clinical to enable a number of clinical and research applications. 
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