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Objective: Diabetes mellitus significantly increases the risk of severe respiratory virus disease like 45 

influenza and COVID-19. Early evidence suggests that this susceptibility to respiratory viral disease is 46 

driven by glycaemic variability, rather than average blood glucose levels. In healthy individuals, 47 

blood glucose levels remain relatively stable throughout the day. However, in individuals living with 48 

diabetes, blood glucose spikes are more frequent and higher in magnitude. Continuous glucose 49 

monitoring (CGM) provides a unique opportunity to detect these hyper and hypoglycaemic events, 50 

even in the presence of an in range HbA1c.  51 

Research design and methods: Here, we use blood samples and CGM data obtained from people 52 

living with Type 1 diabetes (T1D) to determine the effects of glycaemic variability on the T-cell 53 

response to influenza virus. Low glycaemic variability was defined as a coefficient of variation (CV) 54 

<33% (n = 13) whilst high glycaemic variability was defined as a CV >33% (n = 19).  55 

Results: We show that high glycaemic variability in participants living with T1D is associated with a 56 

reduced proportion of CD8+CD107α-IFNγ-MIP1β-TNF+ T-cells in response to stimulation with 57 

influenza virus and an influenza peptide pool. High glycaemic variability in this patient population is 58 

primarily driven by hypoglycaemic events and was also associated with an increase in the proportion 59 

of naïve CD8+ T cells and a decrease in terminally differentiated CD8+ 
T cells (TEMRA). 60 

Conclusions: Together, this study provides the first evidence that glycaemic variability affects the T-61 

cell response to respiratory viruses. These data suggest that monitoring glycaemic variability may 62 

have important implications in understanding the antiviral immune response in people with diabetes.  63 
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Diabetes mellitus (both type 1 [T1D] and type 2 [T2D]) significantly increases the risk of severe 81 

respiratory virus infections
1-4

. The mechanisms by which this occurs remain poorly defined. 82 

Hyperglycaemia (high blood glucose levels) is typical of both T1D and T2D and its persistence is 83 

indicated by elevated glycated haemoglobin (HbA1C) levels. Hyperglycaemia is associated with 84 

increased susceptibility to severe disease, including respiratory tract infections. A meta-analysis 85 

showed that chronic hyperglycaemia (HbAa1c levels ≥7.0%) is associated with at least a 2.5 fold 86 

increased risk of pulmonary tuberculosis relative to patients with lower (<7.0%) HbA1c levels
5
. 87 

Hyperglycaemia (relative to in range blood glucose levels) also significantly increased the risk of 88 

mortality, ICU admission and intubation for COVID-19 in patients with T2D 6. Similarly, in vitro high 89 

glucose levels increase pulmonary epithelial-endothelial damage from influenza virus infection7. An 90 

elevated HbA1C in patients with diabetes is also associated with impaired TNF production by CD8+ T 91 

cells8.  92 

In contrast to consistently high average blood glucose levels there is now a growing body of evidence 93 

that glycaemic variability may also play a significant role in susceptibility to severe respiratory virus 94 

infections4,9-13. Typically, in healthy individuals blood glucose levels remain relatively stable 95 

throughout the day except for small and short-lived post-prandial peaks. However, in individuals 96 

living with diabetes these postprandial glucose spikes are more frequent and higher in magnitude. 97 

This glycaemic variability is not indicated in measurements of a patient’s HbA1c, which largely 98 

reflects a 3-month average of blood glucose levels in terms of the percentage of glycated 99 

haemoglobin. Instead, blood glucose variability can be detected using continuous glucose monitors 100 

(CGM). Indeed, CGM data has shown that both T1D patients and T2D patients experience significant 101 

fluctuations in blood glucose levels over time14,15. In contrast, healthy individuals with CGM data 102 

display minimal, if any, out of range fluctuations
16

.  Several studies have shown that glycaemic 103 

variability increases the severity of COVID-19
4,11-13

 and there is evidence that a similar phenomenon 104 

occurs with influenza virus9. However, such studies typically depend on successive measurements of 105 

an individual’s blood glucose levels (rather than CGM data) and the mechanisms underlying this 106 

association remains to be determined. 107 

Here, we hypothesise that high glycaemic variability (as determined by CGM data) reduces the anti-108 

viral immune response to influenza virus.   109 
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MATERIALS AND METHODS:  121 

Influenza virus culture 122 

Virus stocks of HKx31 (H3N2) were prepared in embryonated chicken eggs and titres of infectious 123 

virus were determined by plaque assays on MDCK cells as previously described
17

. The use of 124 

embryonated chicken eggs was approved by the University of Queensland Animal Ethics Committee 125 

(AE000089). 126 

Participant recruitment 127 

A cohort of 32 people with clinically diagnosed T1D who were routinely using continuous, or flash 128 

glucose monitoring (CGM) devices were recruited in Brisbane, Australia between 8/6/21 and 129 

11/11/21. These individuals were a subset of a previously described cohort of 72 patients with 130 

diabetes mellitus (T1D and T2D) 
18

. Inclusion criteria were 18-60 years of age, not pregnant at the 131 

time of study, non-smokers of nicotine cigarettes, minimum diabetes mellitus duration of two years 132 

and no known immune disease requiring immunosuppressants. Blood, clinical data, and two weeks 133 

of prior CGM data from these participants were collected at the point of recruitment. To further 134 

establish the quality of CGM data, only samples with CGM time worn above 70% were included in 135 

the analysis. This study was approved by Mater Research Ethics Committee (HREC/MML/55151 V2) 136 

and the University of Queensland Ethics Committee (2019/HE002522). All methods were performed 137 

in accordance with institutional guidelines and regulations. Written consent was obtained from all 138 

study participants. 139 

Glycaemic variability 140 

Glycaemic variability was determined based on an individual’s coefficient of variation (CV; glucose 141 

SD expressed as a percentage of the mean glucose) reading from their CGM with the threshold set at 142 

33.0% as described previously19. 143 

Human PBMC isolation 144 

10mL of whole peripheral blood was collected in BD Vacutainer® EDTA tubes (BD Biosciences). 145 

Peripheral blood mononuclear cells (PBMC) were isolated with Lymphoprep (STEMCELL, Canada) 146 

according to manufacturer’s instructions. Isolated PBMC were subsequently frozen down in Fetal 147 

Calf Serum (FCS) (Gibco) containing 10% DMSO (Sigma-Aldrich) at -80 OC until analysis.  148 

Human T-cell phenotype characterisation  149 

To study the effects of glycaemic variability on CD8
+ 
T-cell phenotypic markers, PBMCs isolated from 150 

participants were stained as previously described20. Briefly, T-cells were washed and stained for 151 

lymphocyte (anti-CD3; anti-CD4 anti-CD8) and differentiation markers (anti-CD27, anti-CD45RA and 152 

anti-CD95) (Key Resource Table). T-cells were subsequently washed and fixed. All samples were 153 

analysed on LSRFortessa (BD Biosciences) and analysed using FlowJo v10.8 (BD Biosciences). Gating 154 

was performed as previously described
8
. 155 

T-cell stimulation and intracellular cytokine staining (ICS) on human PBMC 156 

To investigate the effect of glycaemic variability on the cytokine response of T-cells ex vivo, PBMCs 157 

from each donor were stimulated with either i) HKx31 (multiplicity of infection 10), ii) 25ng/mL 158 

phorbol myristate acetate and 1µg/mL Ionomycin (PMA/I Sigma Aldrich) iii) CD3/CD28 magnetic 159 

beads (Thermo Fisher; Dynabeads) or  iii) influenza virus peptide pool (4µg/mL; AnaSpec) 160 

(Supplementary Table  1) in RPMI1640 (Gibco) with 10% FCS (Gibco) as described previously8. 161 
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Stimulations were performed for 18 hours (influenza virus, influenza virus peptide pool) in the 162 

presence of anti-CD107a (0.4µg/mL; BioLegend; H4A3), BD GolgiStop and BD GolgiPlug (BD 163 

Biosciences). T-cells were subsequently washed and stained for anti-CD3, CD4 and CD8 (Key 164 

Resource Table). T-cells were then washed, fixed, and permeabilised using the BD Cytofix/Cytoperm 165 

Fixation/Permeabilization kit (BD Biosciences) and stained with anti-MIP1β, anti-IFNγ and anti-TNF 166 

(Key Resource Table). Cells were analysed on the LSRFortessa (BD Biosciences) and analysed using 167 

FlowJo v10.8 (BD Biosciences).  To assess the functionality of these T-cells, the number of MIP-1β+, 168 

IFNγ+, TNF+ and CD107a+ cells were assessed according to our previously described gating strategy
8
. 169 

Statistical analysis 170 

Statistical analyses were performed with GraphPad Prism software (version 9.3.1) (Dotmatics, CA, 171 

USA). After determining the normality of distribution with Shapiro-Wilk normality test, outliers 172 

within data sets were removed according to the ROUT (1%) test. Continuous data were tested for 173 

statistical significance with a Mann-Whitney test or t-test as appropriate. Categorical data were 174 

tested for statistical significance with a chi-square test. Multiple linear regression was performed 175 

with R software version 4.1.1 (The R Project). 176 
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 197 

RESULTS: 198 

To investigate the effect of glycaemic variability on anti-viral T-cell populations, 32 participants with 199 

T1D were recruited. These participants all had at least two weeks of CGM data available for analysis. 200 

Using a CV threshold of 33%, participants were classified as having either low (n = 13) or high (n = 19) 201 

glycaemic variability.  Participants with low and high glycaemic variability were of equivalent age, sex 202 

distribution, type of insulin treatment (injection/pump), body mass index (BMI) and had a similar 203 

duration of diabetes (approximately 15 years; Table 1) and recent history of influenza virus infection. 204 

Importantly, participants with low and high glycaemic variability had equivalent HbA1c levels and 205 

blood glucose levels at the time of sample collection (Table 1). The high glycaemic variability group 206 

had a lower rate of influenza virus vaccination within the last 6 months (Table 1). Patients reported 207 

taking several other medications asides from those associated with diabetes management, the most 208 

common of which was some form of contraception (Supplementary Table 2).  209 

 210 

Table 1: Participant characteristics using a threshold of 33% CV
1 

211 

  

 Low glycaemic 

variability (n = 13) 

High glycaemic 

variability (n = 19) 

 

 Mean (SD) Mean (SD) P value
2 

Age (years) 29.88 (±11.69) 26.49 (±6.67) 0.6172 

Sex  

(male;female) 
4;9 6;13 

0.5993 

 

BMI (kg/m2) 26.33 (±4.79) 26.45 (±4.94) >0.9999 

HbA1c (%) 7.92 (±1.75) 7.75 (±1.42) 0.5505 

Diabetes 

duration (years) 
14.54 (±9.12) 15.15 (±5.24) 0.6151 

Average blood 

glucose 

(mmol/L)3 

11.83 (±3.54) 9.83 (±2.65) 0.0823 

CV (%)
 

27.01 (±4.32) 39.15 (±3.25) <0.0001 (*) 

Type of insulin 

treatment 

(injection;pump)4 

4;9 9;10 0.3477 

Time in range 38.38 (±28) 56.95 (20.85) 0.04(*) 

Influenza virus 

vaccination (Y;N) 
10;3 5;14 0.0048 (*) 

Recent 

respiratory virus 

infection (Y;N) 

0;13
 

0;19
 

- 

    
1. Abbreviations: BMI body-mass index, HbA1c glycated haemoglobin Type A1C, CGM continuous glucose 212 

monitor, CV coefficient of variation. Participants were grouped based on their CV% from CGM data, threshold 213 

set at 33%. 2. P-value was determined wither either Mann-Whitney test (age, BMI, diabetes duration, average 214 

glucose), a t-test (time in range) or chi-square test at a 0.05 significance level (sex, type of insulin treatment, 215 

influenza virus vaccination history, SARS-CoV-2 vaccination). 3. Average blood glucose levels were recorded as 216 

an average of all glucose readings across time worn.  4. Insulin regime (basal vs. bolus, long lasting vs fast 217 

acting insulin) was not recorded. 5.  12/13 individuals received two vaccine doses; 1 individual only received 218 
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one 6. All individuals received two vaccine doses with the exception of one individual for whom data was not 219 

available. 220 

To demonstrate the glycaemic profile in high and low glycaemic variability, representative CGM data 221 

from each group is shown in Fig. 1A. To evaluate the differences in glycaemic profile between low 222 

glycaemic variability and high glycaemic variability with a CV threshold at 33%, the time glucose 223 

levels were above and below the healthy range (3.9mmol/L – 10.0mmol/L) were assessed (Fig. 1B). 224 

Participants with high glycaemic variability had significantly lesser time spent with hyperglycaemic 225 

levels, but significantly higher time spent with hypoglycaemic levels (Figure 1B).   226 

 227 

Figure 1. Higher time recorded with hypoglycaemic levels were observed in participants with high 228 

glycaemic variability (GV). (A). Representative CGM data for individuals with low glycaemic 229 

variability and high glycaemic variability (B).  The difference in time glucose levels spent above and 230 

below the glycaemic healthy range (3.9mmol/L to 10.0mmol/L) were analysed between both groups. 231 

Statistical significance was assessed as described in the Materials and Methods. P< 0.05 *;  P<0.001 232 

*** 233 

To characterise the T-cell populations of both participant groups the percentage of circulating CD4
+
 234 

and CD8
+
 T-cells were assessed. There was no significant difference in the percentage of CD4

+
, CD8

+
, 235 

the ratio of CD4:CD8 cells or CD4
-
CD8

-
 T-cells between those with low glycaemic variability and high 236 

glycaemic variability (Fig. 2A). To better define the subsets of CD4
+
 and CD8

+
 T-cells the percentage 237 

of circulating naïve T-cells (Tnaive; CD27
+
CD45RA

+
CD95

-
), stem cell memory T-cells (TSCM; 238 

CD27
+
CD45RA

+
CD95

+
), central memory T-cells (TCM; CD27

+
CD45RA

-
), effector memory T-cells (TEM; 239 

CD27
-
CD45RA

-
) and effector memory re-expressing CD45RA T-cells (TEMRA; CD27

-
CD45RA

+
) of the 240 
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total CD4+ and CD8+ T-cell populations were established (Fig. 2B). No significant differences were 241 

seen in the CD4
+
 T-cell subsets between the two participant groups (Fig. 2B). In contrast, patients 242 

with high glycaemic variability had a significantly higher percentage of Tnaive CD8+ T-cells but a 243 

significantly lower percentage of TEMRA CD8+ T-cells compared to patients with low glycaemic 244 

variability (Fig. 2B).   245 

Next, the cytokine response of T-cells to ex vivo stimulation with infectious influenza virus was 246 

assessed (Fig. 2C). In terms of CD4+ T-cells, a lower proportion of CD107a+IFNy-MIB1b+TNF+, 247 

CD107a+IFNy-MIB1b-TNF+ and CD107a-IFNy-MIB1b-TNF+ cells were observed in individuals with high 248 

GV. In terms of CD8+ T-cells, a lower proportion of CD107a+IFNy-MIB1b+TNF+, CD107a-IFNy+MIB1b-249 

TNF- and CD107a-IFNy-MIB1b-TNF+ cells were observed in individuals with high GV (Fig. 2C). We then 250 

sought to validate these observations in CD8+ T-cells stimulated with an influenza virus peptide pool 251 

(Fig. 2D). Consistent with the observations using infectious virus, low glycaemic variability samples 252 

treated with influenza virus peptide pool had a significantly higher proportion of CD8+CD107a+IFNy-253 

MIP1β+TNF+ relative to healthy controls and high glycaemic variability samples (Fig. 2D). Also 254 

consistent with our infectious influenza virus stimulations, high glycaemic variability samples 255 

stimulated with influenza peptides had a significantly lower proportion of CD8+C107a-IFNy-MIP1b-256 

TNF
+
 T-cells compared to low glycaemic variability samples (Fig. 2D). When the proportion of any 257 

CD8
+
TNF

+
 cell after IAV or IAV peptide pool stimulation was examined significantly higher 258 

proportions were still observed in low glycaemic variability samples (Supplementary Fig. 1). Given 259 

that a decreased proportion of CD8+C107a-IFNy-MIP1b-TNF+ cells in high glycaemic variability 260 

samples were consistently observed between influenza virus and influenza peptide pool stimulations 261 

and showed the largest difference relative to low glycaemic variability samples, we elected to focus 262 

on this population. 263 

 264 

We next sought to determine if individuals with high glycaemic variability continued to display a 265 

decreased proportion of CD8
+
CD107a

-
IFNy

-
MIP1β

-
TNF

+
 cells in response to non-specific stimuli like 266 

PMA/I and Dynabeads (CD3/CD28) (Fig. 2E & F). Interestingly, unlike influenza virus stimulations, 267 

there were several incidences of CD4+ and CD8+ T-cell populations being higher in individuals with 268 

high glycaemic variability following this non-specific stimulation. Furthermore, unlike influenza virus 269 

stimulations, there was no significant difference in the proportion of CD8+CD107a-IFNy-MIP1β-TNF+ 270 

between healthy donors, those with high glycaemic variability and those with low glycaemic 271 

variability in response to either PMA/I (Fig. 2E) or Dynabeads (Fig. 2F). Taken together, these data 272 

suggest that the observed phenotype may be specific to influenza virus or perhaps more broadly 273 

viral peptides. 274 

One limitation of these analyses is that some of the observed changes to influenza virus stimulation 275 

may be the result of a differential influenza virus vaccination history between those with low and 276 

high glycaemic variability (Table 1), although as an inactivated subunit vaccine vaccination does not 277 

typically induce strong cellular immunity. Nevertheless, we investigated the ex vivo CD8+ T-cell 278 

response follow influenza virus stimulation exclusively in influenza vaccinated individuals. Consistent 279 

with our original observations influenza vaccinated individuals with low glycaemic variability had a 280 

higher proportion of CD8
+
CD107a

+
IFNy

-
MIP1β

+
TNF

+
 cells (Supplementary Fig. 2). Furthermore, those 281 

with low glycaemic variability had a trend towards  an increased percentage of CD8
+
 CD107a

-
IFNγ

-
282 

MIP-1β-TNF+ T-cells (p = 0.05; Supplementary Fig. 2). This held true when the proportion of any 283 

CD8+TNF+ cell after IAV stimulation was examined (Supplementary Fig. 2). To further complement 284 

these results, we performed a multiple linear regression model looking at the relationship between 285 

glycaemic variability, influenza vaccination status and the percentage of CD8+CD107a-IFNγ-MIP-1β-286 
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TNF+ T-cells. Importantly glycaemic variability (high vs low) had a significant relationship with the 287 

percentage of CD8+ CD107a
-
IFNγ

-
MIP-1β

-
TNF

+
 (p = 0.04) T-cells whilst influenza vaccination did not 288 

(p = 0.350). 289 

 290 

 291 

 292 
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Fig. 2. Participants with higher glycaemic variability (GV) exhibit an altered T-cell 294 

profile and proportion of TNFα+ cells in response to influenza virus stimulation. 295 

PBMC from participants were stained for CD4 and CD8. CD4+, CD4-CD8- and CD8+ positive 296 

T-cells (A) were stained for CD27, CD45RA and CD95 to further define T-cell subsets (B). 297 

To study T cell function, Boolean gating analysis was used. PBMC were stimulated with 298 

HKx31 (MOI10) (C) influenza virus peptide pool (D) PMA/I (E) and Dynabeads (F) for 18 299 

hours. PBMC were then stained for CD107a, IFNγ, MIP-1β and TNF. Statistical significance 300 

was determined as described in the Materials and Methods. Bars and error bars represent 301 

means (±SEM). Gating was performed as previously described10. *: p<0.05. 302 
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DISCUSSION: 329 

Individuals with diabetes can experience significant intra and inter-day fluctuations in blood glucose 330 

levels. To date, the effect of these fluctuations on the T-cell response to influenza virus, or other 331 

viral diseases, has been undefined. Here, we provide the show that this glycaemic variability is 332 

associated with changes in the T-cell population and reduced CD8
+
 T cell TNF production to ex vivo 333 

stimulation with influenza virus.  334 

Patients with high glycaemic variability had a significantly higher percentage of Tnaive CD8+ T-cells 335 

compared to patients with low glycaemic variability. Considering the clinical evidence that high 336 

glycaemic variability is associated with more severe viral disease
4,9-13

 it is interesting to speculate 337 

what functional consequences increased Tnaive CD8
+
 T-cell population may have. Whether this 338 

represents a population of T-cells that is unable to differentiate into functional effector or memory 339 

cells (which would then likely be associated with an impaired immune response) remains to be 340 

determined. Therefore, the clinical consequences of these observations, if any, require further 341 

investigation. 342 

In the present study we observed a reduced proportion of CD8+CD107α-IFNγ-MIP1β-TNF+ T-cells in 343 

response to stimulation with influenza virus. This same phenomenon was not observed following 344 

stimulation with non-specific stimuli (such as PMA/I or Dynabeads). This suggests that high 345 

glycaemic variability does not impair CD8+T cell function per sae rather more specifically the 346 

response to influenza virus or viral stimulation. The production of TNF by CD8+ T cells during a viral 347 

infection is essential for the induction of apoptosis, the recruitment and activation of other immune 348 

cells, CD8+ T-cell function and the regulation of anti-viral immunity. However, TNF produced by 349 

CD8+ T-cells during influenza virus infection can also cause ‘bystander damage’ of pulmonary 350 

epithelial cells, resulting in immunopathology21. Therefore, whether these observations contribute 351 

to the increased influenza severity in individuals with diabetes with high glycaemic variability4,9-13 352 

remains to be determined. Nevertheless, these data provide the evidence that assessing glycaemic 353 

variability may provide an important insight into the anti-viral CD8+ T-cell response of individuals 354 

living with diabetes.  355 

The precise mechanism by which high glycaemic variability may reduce the TNF response of CD8 T-356 

cells and affect the proportion of Tnaive and TEMRA CD8
+
 T-cells remains unclear. There is a growing 357 

body of evidence that glycaemic variability is associated with increased oxidative stress and the 358 

production of radical oxygen species (ROS) relative to steady state hyperglycaemia 22. This may 359 

directly affect T-cell function. For example, short pre-exposure of human PBMC to H2O2 reduces the 360 

ability of activated/memory CD3+ and CD8+ T-cells (CD45RO+) to produce key effector cytokines such 361 

as IFNγ and TNF23. This effect may be more pronounced in activated/memory T-cells 23. Similarly, 362 

over production of ROS is known to drive naïve T-cell proliferation
24,25

. Whether these changes in 363 

circulating T-cell population were the result of oxidative stress or another biological system affected 364 

by glucose fluctuations in the blood remain to be determined.  365 

Our study has some limitations that are important to acknowledge. Firstly, in the participant cohort 366 

the sample size was low and glycaemic variability was categorized based on two weeks of CGM data. 367 

Whether additional effects would have been detected if a longer period of CGM data were available 368 

remains to be determined. It is also important to note that the participants recruited to this study all 369 

had T1D. This patient group was selected as CGMs are more common amongst those living with T1D. 370 

Interestingly, recent evidence suggests that in patients with T2D who did wear CGMs glycaemic 371 

variability was associated with changes in the T cell population (namely an altered Th1/Th2 ratio and 372 

frequency of Tregs) 26. These data suggest that the differences observed in T cell populations 373 
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observed herein may not be restricted to patients with T1D26. Finally, additional patient information 374 

such as GAD positivity or beta cell function was not recorded and may have influenced the results.  375 

 376 

In sum, this study has provided evidence that glycaemic variability, rather than steady-state 377 

hyperglycaemia, effects T cell responses to influenza virus. These data have important implications 378 

for clinical practice. Specifically, these data suggest that glycaemic variability provides a possible 379 

predicative approach to assess anti-viral immunity, thus providing better management of infectious 380 

diseases in this patient population. Indeed, these data represent a further impetus to make CGMs 381 

widely available to patients with both T1D and T2D.   382 

  383 

 384 

 385 
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