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ABSTRACT8

MedSegBench is a comprehensive benchmark designed to evaluate deep learning models for medical image segmentation
across a wide range of modalities.. This benchmark includes 35 datasets with over 60,000 images, covering modalities
such as ultrasound, MRI, and X-ray. It addresses challenges in medical imaging, such as variability in image quality and
dataset imbalances, by providing standardized datasets with train/validation/test splits. The benchmark supports binary and
multi-class segmentation tasks with up to 19 classes. Evaluations are conducted using the U-Net architecture with various
encoder/decoder networks, including ResNets, EfficientNet, and DenseNet, to evaluate model performance. MedSegBench
serves as a valuable resource for developing robust and flexible segmentation algorithms. It allows for fair comparisons across
different models and promotes the development of universal models for medical tasks. The datasets and source code are
publicly available, encouraging further research and development in medical image analysis.

9

Background & Summary10

Deep learning has become essential in medical image analysis and segmentation, offering powerful methods to help doctors11

and researchers better understand and diagnose diseases1. Deep learning can identify patterns and details in medical images12

that might be difficult for human eyes to detect using complex networks such as convolutional neural networks2. These13

techniques are precious for finding tumors in X-rays, classifying different cell types in whole-slide images, or segmenting14

different brain parts in MRI scans. However, working with biomedical datasets presents unique challenges, including variability15

of image quality and resolution, the need for well-annotated examples, imbalances of the datasets, and different modalities.16

Addressing these challenges and ensuring the effectiveness of deep learning methods in real-world medical settings requires17

large and diverse datasets3. These comprehensive collections of medical images help train the algorithms to handle different18

modalities and medical tasks. They also allow researchers to compare deep learning methods fairly, determine the most effective19

approaches for specific medical tasks, and develop universal models for different medical tasks.20

There are limited benchmark studies in the literature focused on medical imaging, with most concentrating on medical21

image classification problems4–8. Gelasca et al.4 present a comprehensive biomedical segmentation benchmark that evaluates22

bioimage analysis methods. It includes six datasets with associated ground truth and validation methods, covering different23

scales from subcellular to tissue levels. Rebuffi et al.5 propose the Visual Decathlon Challenge, a benchmark that evaluates24

models across ten diverse visual classification domains, including datasets such as Aircraft, CIFAR-100, and ImageNet. Medical25

Segmentation Decathlon6 supports the creation and benchmarking of semantic segmentation algorithms. It includes 2633 3D26

images from ten different anatomical sites and modalities collected from multiple institutions and annotated by experts. Yang et27

al.7 introduce the MedMNIST Benchmark, a collection of ten pre-processed medical image datasets standardized to 28×2828

pixels. It covers various medical image modalities and support multiple classification tasks. Yang et al.8 extend MedMNIST29

with MedMNIST v2, a standardized collection of biomedical image datasets. This includes 12 datasets for 2D images and 6 for30

3D images, covering various data modalities, scales, and classification tasks,31

This study introduces a comprehensive benchmark dataset for medical image segmentation (Figure 1). It includes 3532

distinct datasets with over 60,000 images covering various data modalities such as ultrasound, dermoscopy, MRI, X-ray, OCT,33

and more. It provides a diverse resource for evaluating the performance of deep learning models in medical image segmentation34

tasks. The dataset includes a wide range of scales, from small collections with just a few dozen images to extensive datasets35

containing tens of thousands of samples. The segmentation tasks cover both binary and multi-class problems, with some36

datasets featuring up to 19 different classes. This benchmark offers several powerful advantages as a robust and versatile tool37
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for the research community:38

• Diversity of modalities: The benchmark includes datasets from various imaging modalities such as Ultrasound, MRI,39

X-Ray, OCT, Dermoscopy, Endoscopy, and various types of microscopy.40

• Task complexity: It covers both binary segmentation tasks and multi-class segmentation tasks with up to 19 classes.41

• Dataset sizes: There’s a wide range in the number of images per dataset, from as few as 28 to as many as 21,165.42

• Data split: All datasets follow a standard train/validation/test split, which is crucial for the proper evaluation of machine43

learning models.44

• Standardization: All datasets are standardized to enhance comparability and ease of use. Samples across all datasets45

have been resized to three standard resolutions - 128, 256, and 512 pixels - and stored in a uniform format.46

• Application areas: The datasets cover various medical applications, including cancer detection, COVID-19 diagnosis,47

cell and nuclei segmentation, and organ segmentation.48

We have evaluated each dataset on state-of-the-art segmentation model (U-Net9) with different encoder/decoder network49

types (ResNet-18, ResNet-50, Efficient-Net, MobileNet-v2, DenseNet-121, Mix Vision Transformer)10. Each experiment are50

performed 3 times and average results are reported.51

This benchmark is carefully designed to assess how well deep learning models can generalize across different medical52

domains, perform on small and large datasets, and handle varying task complexities. By including such a wide array of medical53

imaging challenges, this benchmark is a powerful tool for comprehensively evaluating the robustness, flexibility, and overall54

efficacy of segmentation algorithms in the medical imaging field.55

Methods56

Data Preparation57

The MedSegBench dataset comprises 35 distinct 2D medical image segmentation datasets, some of which are extracted from58

3D slices. These datasets cover various data modalities such as Ultrasound, OCT, Chest X-ray, MR, and more. The original59

datasets differ in scales, segmentation tasks (binary/multi-class), classes, imaging modalities, and annotation styles. Hence, we60

have selected a standardized format and performed pre-processing to ensure a consistent format across all datasets.61

Numerous medical image segmentation datasets are available in the literature, each presenting various challenges in-62

cluding variations in annotations, image sizes, and file formats. Additionally, many of these datasets lack officially shared63

train/test/validation splits, making it challenging to fairly compare different methods. To address these issues, we performed64

pre-processing steps. All image and label pairs are resized to 128×128, 256×256, and 512×512 pixels using the bicubic65

interpolation method. Although we used 512×512 sized images in our experiments, we have made the 128×128 and 256×25666

sized versions publicly available for researchers with limited GPU memory. Also, we have applied a mapping to labels; pixels67

with values of 0 and 255 are mapped to 0 and 1 for binary segmentation tasks, and for multi-class segmentation tasks, pixels are68

mapped to integer values between 0 and (#Classes - 1). No additional augmentation or pre-processing steps are applied to the69

images and labels. We have followed three different scenarios based on MedMNIST v28 to create train/test/validation splits: (1)70

Utilizing the source train/test/validation splits if published by the authors; (2) Using the source validation set as the test set and71

splitting the source training set into 90% training and 10% validation (9:1 ratio) if the source training and validation splits are72

published by the authors; (3) Randomly splitting the dataset into 70% training, 10% validation, and 20% test sets if no public73

train/test/validation splits are available (7:1:2 ratio). Most of these datasets are publicly published under Creative Commons74

Licenses, some of which are CC-BY-NC, CC-BY-SA, and CC-BY-NC-SA, permitting the redistribution of datasets. We have75

published datasets in MedSegBench under Creative Commons Licences, and source codes have been published under Apache76

License 2.0.77

Table 1 presents the summary information for all MedSegBench datasets. In addition, Table 2 shows the data-modality-78

based overview for MedSegBench datasets. Furthermore, Table 3 provides an overview of various datasets, detailing their79

sub-categories and the number of samples for training, validation, and testing. In the following sections, we will describe the80

details of each dataset.81

Details82

AbdomenUSMSBench: The AbdomenUSMSBench created from AbdomenUS11, 12 consists of 926 ultrasound images of83

the abdominal region, each with a resolution of 449×464 pixels. This dataset is designed for multi-class segmentation tasks84

and includes eight distinct classes. We have used the official train and test splits, and the train set is split into a training and85
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Table 1. Overview of the MedSegBench datasets, including source references, modality, task types (binary or multi-class) with
number of classes, total sample sizes and train/validation/test splits.

Dataset Namesource Modality Binary or Multi-class (# Classes) # Images # Train/Val/Test
AbdomenUSMSBench11, 12 Ultrasound Multi-class (8) 926 569/64/293
Bbbc010MSBench13, 14 Microscopy Binary 100 70/10/20
Bkai-Igh-MSBench15–17 Endoscopy Multi-class (3) 1,000 700/100/200
BriFiSegMSBench18, 19 Microscopy Binary 1,360 1005/115/240
BusiMSBench20, 21 Ultrasound Binary 647 452/64/131
CellNucleiMSBench22, 23 Nuclei Binary 670 469/67/134
ChaseDB1MSBench24 Fundus Binary 28 19/2/7
ChuacMSBench25 Fundus Binary 30 21/3/6
Covid19RadioMSBench26–28 Chest X-Ray Binary 21,165 14,814/2,115/4,236
CovidQUExMSBench29, 30 Chest X-Ray Binary 2,913 1,864/466/583
CystoFluidMSBench31–33 OCT Binary 1,006 703/101/202
Dca1MSBench34, 35 Fundus Binary 134 93/13/28
DeepbacsMSBench36, 37 Microscopy Binary 34 17/2/15
DriveMSBench38, 39 Fundus Binary 40 18/2/20
DynamicNuclearMSBench40, 41 Nuclear Cell Binary 7,084 4,950/1,417/717
FHPsAOPMSBench42, 43 Ultrasound Multi-class (3) 4,000 2,800/400/800
IdribMSBench44, 45 Fundus Binary 80 47/6/27
Isic2016MSBench46, 47 Dermoscopy Binary 1,279 810/90/379
Isic2018MSBench48–50 Dermoscopy Binary 3,694 2,594/100/1,000
KvasirMSBench51, 52 Endoscopy Binary 1,000 700/100/200
M2caiSegMSBench53, 54 Endoscopy Multi-class (19) 614 245/307/62
MonusacMSBench55, 56 Pathology Multi-class (6) 310 188/21/101
MosMedPlusMSBench57, 58 CT Binary 2,729 1,910/272/547
NucleiMSBench59 Pathology Binary 141 98/14/29
NusetMSBench60, 61 Nuclear Cell Binary 3,408 2,385/340/683
PandentalMSBench62, 63 X-Ray Binary 116 81/11/24
PolypGenMSBench64, 65 Endoscopy Binary 1,412 984/140/288
Promise12MSBench66, 67 MRI Binary 1,473 1,031/147/295
RoboToolMSBench31 Endoscopy Binary 500 350/50/100
TnbcnucleiMSBench68, 69 Pathology Binary 50 35/5/10
UltrasoundNerveMSBench70 Ultrasound Binary 2,323 1,651/223/449
USforKidneyMSBench71, 72 Ultrasound Binary 4,586 3,210/458/918
UWSkinCancerMSBench73 Dermoscopy Binary 206 143/19/44
WbcMSBench74, 75 Microscopy Multi-class (3) 400 280/40/80
YeazMSBench76, 77 Microscopy Binary 707 360/96/251
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KvasirMSBench Isic2018MSBench DriveMSBench ChaseDB1MSBench Dca1MSBench

ChuacMSBench WbcMSBench IdribMSBench CellNucleiMSBench PandentalMSBench

Bbbc010MSBench DynamicNuclearMSBench NusetMSBench NucleiMSBench TnbcnucleiMSBench

MonusacMSBench DeepbacsMSBench Covid19RadioMSBench CovidQUExMSBench Isic2016MSBench

UWSkinCancerMSBench BriFiSegMSBench YeazMSBench Bkai-Igh-MSBench M2caiSegMSBench
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Promise12MSBench MosMedPlusMSBench

Figure 1. Summary of the MedSegBench

Table 2. Medical imaging modality and corresponding image counts

Modality Number of Images
Computed Tomography 2,729
Dermoscopy 5,179
Endoscopy 4,526
Fundus 312
Magnetic Resonance Imaging 1,473
Microscopy 2,281
Nuclear Cell 10,492
Nuclei 670
Optical Coherence Tomography 1,006
Pathology 501
Ultrasound 12,482
X-Ray 24,194

validation set with a ratio of 9:1. The samples are resized to 1×512×512 pixels, and the labels are mapped to integer values86

between 0 and (#Classes - 1).87
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Table 3. Overview of datasets and their sub-categories with Train/Validation/Test splits. Each dataset is split into specific
sub-categories by authors, and the corresponding number of samples for each sub-category is listed in Train/Val/Test format.

Dataset Name Sub-categories # Train/Val/Test

BriFiSegMSBench

C1: Target 1 A549;

201/23/48
C2: Target 2 A549;
C3: HeLa;
C4: MCF7;
C5: RPE1

BusiMSBench C1: Benign; 305/43/89
C2: Malignant 147/21/42

Covid19RadioMSBench

C1: Covid; 2,531/361/724
C2: Lung; 4,208/601/1,203
C3: Normal; 7,134/1,019/2,039
C4: Viral Pneumonia 941/134/270

IdribMSBench

C1: Microaneurysms;

47/6/27C2: Hemorrhages;
C3: Hard Exudates;
C4: Optic Disc

UWSkinCancerMSBench C1: Melenoma; 83/11/25
C2: Not-Melenoma 60/8/19

WbcMSBench

C1: Lymphocyte; 146/20/43
C2: Monocyte; 63/9/43
C3: Neutrophil; 44/6/13
C4: Eosinophil 23/3/8

Bbbc010MSBench: The Bbbc010MSBench dataset derived from Bbbc01013, 14, contains 100 microscopy images, each88

with a resolution of 696×520 pixels. These images are created for binary segmentation tasks and are originally captured for a89

screen in Fred Ausubel’s Massachusetts General Hospital (MGH) lab. The dataset is split into three parts: train/val/test, in a90

7:1:2 ratio. The samples are resized to 1×512×512 pixels, and the labels are mapped to 0 and 1.91

Bkai-Igh-MSBench: The Bkai-Igh-MSBench dataset is derived from the BKAI-IGH NeoPolyp dataset15–17 and consists92

of 1,200 endoscopy images, each with a resolution of 1280x995 pixels. It is designed for multi-class segmentation tasks, with93

three distinct classes. We can not use publicly shared test sets because of a lack of ground truth annotations. The dataset is split94

into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512 pixels, and the labels are mapped to95

integer values between 0 and (#Classes - 1).96

BriFiSegMSBench: The BriFiSegMSBench, which originates from the BriFiSeg dataset18, 19, includes 1,360 microscopy97

images with a resolution of 512×512 pixels. This dataset is intended for binary segmentation tasks and contains two classes.98

The images are single-channel samples derived from various cell lines, such as A549, HeLa, MCF7, and RPE1. The dataset is99

divided into training and validation sets with a 9:1 ratio. Additionally, task-specific images and annotations are provided in npz100

file format (see Table 3). The samples are resized to 1×512×512 pixels, and the labels are mapped to integer values between101

0 and 1.102

BusiMSBench: The BusiMSBench dataset is derived from the Breast Ultrasound Images Dataset20, 21 and contains 647103

ultrasound images with an average resolution of 500× 500 pixels. This dataset is designed for binary segmentation tasks,104

categorizing data into two classes: benign and malignant. It is split into three parts: train/val/test, in a 7:1:2 ratio. Additionally,105

class-based images (benign and malignant) and annotations are provided in .npz file format (see Table 3). The samples are106

resized to 1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.107

CellNucleiMSBench: The CellNucleiMSBench comes from the 2018 Data Science Bowl22, 23 and consists of 670 nuclei108

images with a resolution of 320×256 pixels. This dataset is specifically designed for binary segmentation tasks. We could109

not use 65 test images because ground truths are not published officially. Therefore, the source dataset split into three parts:110

train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512 pixels, and the labels are mapped to integer values111

between 0 and 1.112

ChaseDB1MSBench: ChaseDB1MSBench is based on the CHASE_DB1 dataset24, released in 2012 by Kingston113

University, London, and St. George’s, University of London, consists of 28 fundus images with a resolution of 999× 960114

pixels. This dataset is designed for binary segmentation tasks, including two classes. We split the source dataset into three parts:115
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train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512 pixels, and the labels are mapped to integer values116

between 0 and 1.117

ChuacMSBench: The ChuacMSBench, derived from the CHUAC dataset25, includes 28 fundus images with 189×189118

pixels. It is designed for binary segmentation tasks. The source dataset is split into three parts: train/val/test, in a 7:1:2 ratio.119

The samples are resized to 1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.120

Covid19RadioMSBench The COVID-19 Radiography Database26–28 is the source of the Covid19RadioMSBench dataset,121

which consists of 21,165 chest X-ray images, each with a resolution of 299×299 pixels. This dataset is designed for binary122

segmentation tasks. We divide the source dataset into three parts: train/val/test sets with a ratio of 7:1:2. It is developed by a123

collaborative effort of researchers from Qatar University, the University of Dhaka, and partners from Pakistan and Malaysia,124

working alongside medical professionals. It includes chest X-ray images for COVID-19 positive cases and Normal and Viral125

Pneumonia images. The authors have also categorized the images into four groups: COVID, Lung_Opacity, Normal, and Viral126

Pneumonia. We provide these category-based images and their corresponding annotations in .npz file format (see Table 3). The127

samples are resized to 1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.128

CovidQUExMSBench: The CovidQUExMSBench, based on the COVID-QU-Ex Dataset29, 30, consists of 2,913 chest129

X-ray images, each with a resolution of 256×256 pixels. This dataset is specifically designed for binary segmentation tasks.130

We use only infection segmentation samples. The source dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The131

samples are resized to 1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.132

MosMedPlusMSBench: The MosMedPlusMSBench, based on the MosMedDataPlus57, 58 dataset, comprises 2,729 Covid-133

19 CT images, each sized 512×512 pixels. This dataset is designed for binary segmentation tasks. We split source data into134

three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512 pixels, and the labels are mapped to integer135

values between 0 and 1.136

CystoFluidMSBench: The CystoFluidMSBench is based on Intraretinal Cystoid Fluid dataset31–33, comprises 1,006137

OCT (Optical Coherence Tomography) images, most of which are sized at 512× 512 pixels. This dataset is designed for138

binary segmentation tasks. The images are carefully chosen by medical experts at Liaquat University of Medical and Health139

Sciences (LUMHS) Jamshoro, who are trained to identify Cystoid Macular Edema (CME) and its progression, providing a140

confirmatory diagnosis of CME. The source dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are141

resized to 3×512×512 pixels, and the labels are mapped to integer values between 0 and 1.142

Dca1MSBench: The Dca1MSBench is derived from the DCA1 dataset34, 35 and contains 134 fundus images, each with143

a resolution of 300× 300 pixels. The images are provided by the Cardiology Department of the Mexican Social Security144

Institute, UMAE T1-León. This dataset is specifically created for binary segmentation tasks. The dataset is split into three parts:145

train/val/test, in a 7:1:2 ratio. The samples are resized to 1×512×512 pixels, and the labels are mapped to integer values146

between 0 and 1.147

DeepbacsMSBench: The DeepbacsMSBench, based on the DeepBacs dataset36, 37, consists of 34 samples of fundus148

images, each with a size of 1024×1024 pixels. It is designed for binary segmentation tasks. We use official train/validation/test149

splits published officially by authors. The samples are resized to 1×512×512 pixels, and the labels are mapped to integer150

values between 0 and 1.151

DriveMSBench The DriveMSBench dataset, based on the DRIVE dataset38, 39, includes 40 fundus images, each with152

dimensions of 565×584 pixels. The images are obtained from a diabetic retinopathy screening program in the Netherlands.153

It is designed for binary segmentation and uses official splits for training, validation, and testing. The samples are resized to154

3×512×512 pixels, and the labels are mapped to integer values between 0 and 1.155

DynamicNuclearMSBench: The DynamicNuclearMSBench, created from the DynamicNuclearNet Segmentation dataset40, 41,156

consists of 7084 samples of nuclear cell images, each 128×128 pixels in size. This dataset is utilized for a binary segmentation157

task. Training, validation, and test splits that are officially published are used. The samples are resized to 1×512×512 pixels,158

and the labels are mapped to integer values between 0 and 1.159

FHPsAOPMSBench: The FHPsAOPMSBench dataset is based on a prior dataset42, 43 and comprises 4,000 ultrasound160

images, each with a resolution of 256×256 pixels. This dataset is designed for a multi-class segmentation task, including161

three distinct classes. The source dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to162

1×512×512 pixels, and the labels are mapped to integer values between 0 and (#Classes - 1).163

IdribMSBench: The IdribMSBench is based on the Indian Diabetic Retinopathy Image Dataset44, 45 and includes 80164

high-resolution fundus images (4288×2848 pixels) for a binary segmentation task. We use official train/validation/test splits165

published officially by authors. The authors have also categorized the labels into four categories: Microaneurysms, hemorrhages,166

Hard Exudates, and Optic Discs. These category-based labels and annotations are provided in a npz file (see Table 3). The167

samples are resized to 3×512×512 pixels, and the labels are mapped to integer values between 0 and 1.168

Isic2016MSBench: The Isic2016MSBench is derived from the ISIC 2016 Challenge46, 47, which consisted of 1,279169

dermoscopy samples of varying sizes designed for binary segmentation tasks. We use official training, validation, and test splits170
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published by authors. The samples are resized to 3×512×512 pixels, and the labels are mapped to integer values between 0171

and 1.172

Isic2018MSBench: The Isic2018MSBench is derived from the ISIC 2018 Challenge48–50, which consisted of 3,694173

dermoscopy samples of varying sizes designed for binary segmentation tasks. We use official training, validation, and test splits174

published by authors. The samples are resized to 3×512×512 pixels, and the labels are mapped to integer values between 0175

and 1.176

KvasirMSBench: The KvasirMSBench, derived from the Kvasir-SEG dataset51, 52 , consists of 1,000 endoscopy images177

with resolutions ranging from 332×487 to 1920×1072 pixels. The dataset includes images of gastrointestinal polyps and178

their segmentation masks, which have been annotated and verified by an experienced gastroenterologist. It is structured for a179

binary classification task. The source dataset is divided into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized180

to 3×512×512 pixels, and the labels are mapped to integer values between 0 and 1.181

M2caiSegMSBench: M2caiSegMSBench is based on a prior dataset53, 54 comprising 614 pathology samples and specifically182

designed for multi-class segmentation tasks, which include 19 distinct classes. The images within this dataset exhibit variable183

dimensions, and we use official train/validation/test splits. The samples are resized to 3×512×512 pixels, and the labels are184

mapped to integer values between 0 and (#Classes - 1).185

MonusacMSBench: MonusacMSBench is based on the MoNuSAC challenge55, 56. It consists of 310 samples and is186

designed for multi-class segmentation with 6 classes. The images in this dataset are H&E stained digitized tissue images from187

several patients acquired at multiple hospitals using a standard 40x scanner magnification. The annotations are provided by188

expert pathologists. We use the officially published train/validation/test splits from the challenge. The samples are resized to189

3×512×512 pixels, and the labels are mapped to integer values between 0 and (#Classes - 1).190

NucleiMSBench: The NucleiMSBench is based on a prior dataset59, which consisting of 141 pathology samples each with191

an image size of 2000×2000 pixels. This source dataset is designed for binary segmentation tasks. The source dataset is split192

into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512 pixels, and the labels are mapped to193

integer values between 0 and 1.194

NusetMSBench: The NusetMSBench, derived from the NuSet dataset60, 61, contains 3,408 pathology samples designed195

for binary segmentation problems. We split the source dataset into three parts: train/val/test, in a 7:1:2 ratio. The samples are196

resized to 1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.197

PandentalMSBench: The PandentalMSBench is created from the Panoramic Dental X-rays dataset62, 63 and contains 116198

X-ray samples of varying sizes. It is specifically intended for binary segmentation tasks. The dataset comprises anonymized199

and deidentified panoramic dental X-rays of 116 patients taken at Noor Medical Imaging Center in Qom, Iran. The source200

dataset is divided into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 1×512×512 pixels, and the labels201

are mapped to integer values between 0 and 1.202

PolypGenMSBench: The PolypGenMSBench is based on a prior endoscopy dataset64, 65 consisting of 1,412 endoscopy203

samples, each with an image size of 1920×1080 pixels. It is designed for binary segmentation tasks. It includes colonoscopy204

video frames captured from a diverse patient population at six different centers in Egypt, France, Italy, Norway, and the United205

Kingdom. We provide these images and annotations are captured from these centers in a npz file. The source dataset is divided206

into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512 pixels, and the labels are mapped to207

integer values between 0 and 1.208

Promise12MSBench: The Promise12MSBench, derived on the PROMISE12 dataset66, 67, contains 1,473 MR samples,209

each with an image size of 512×512 pixels. It is designed for binary classification. We split the source dataset into three parts:210

train/val/test, in a 7:1:2 ratio. The samples are resized to 1×512×512 pixels, and the labels are mapped to integer values211

between 0 and 1.212

RoboToolMSBench: The RoboToolMSBench, based on the RoboTool dataset31, consisting of 500 samples, designed for213

binary segmentation tasks. The source dataset is divided into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized214

to 1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.215

TnbcnucleiMSBench: The TnbcnucleiMSBench is based on a prior dataset68, 69, consisting of 50 pathology samples,216

each with an image size of 512×512 pixels. This dataset is based on the merging of two different datasets: the first dataset,217

generated at the Curie Institute, consists of annotated H&E stained histology images at 40× magnification, and the second218

dataset, provided by the Indian Institute of Technology Guwahati, also consists of annotated H&E stained histology images219

captured at 40× magnification. It is designed for binary segmentation tasks. We split the source dataset into three parts:220

train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512 pixels, and the labels are mapped to integer values221

between 0 and 1.222

UltrasoundNerveMSBench: The UltrasoundNerveMSBench, derived from prior dataset70, contains 2,323 ultrasound223

samples, each with an image size of 580×420 pixels and designed for binary segmentation tasks. The primary task in this224

dataset is to segment a collection of nerves known as the Brachial Plexus (BP) in ultrasound images. Due to the lack of test225

7/15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.26.24312619doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312619
http://creativecommons.org/licenses/by-nc-nd/4.0/


image annotations, we split the source dataset into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to226

1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.227

USforKidneyMSBench: The USforKidneyMSBench is derived from the CT2USforKidneySeg dataset71, 72, comprised of228

4,586 ultrasound samples, each with an image size of 256×256 pixels, and designed for binary segmentation tasks. The source229

dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 1×512×512 pixels, and the labels are230

mapped to integer values between 0 and 1.231

UWSkinCancerMSBench: The UWSkinCancerMSBench is based on the Skin Cancer Detection dataset73, consisting232

of 206 dermoscopy samples, designed for binary classification tasks The dataset includes images extracted from the public233

databases DermIS and DermQuest, along with manual segmentations of the lesions. We split the source dataset into three parts:234

train/val/test, in a 7:1:2 ratio. The authors have also categorized the labels into two categories: Melenoma and Not-Melenoma.235

These category-based labels and annotations are provided in a .npz file (see Table 3). The samples are resized to 3×512×512236

pixels, and the labels are mapped to integer values between 0 and 1.237

WbcMSBench: The WbcMSBench, based on prior datasets74, 75, is a microscopy imaging dataset consisting of 80 samples,238

with image sizes of 120×120 and 300×300 pixels. It is designed for multi-class segmentation tasks including 3 classes. The239

dataset is based on two sources: Dataset 1, obtained from Jiangxi Tecom Science Corporation, China, contains 300 images of240

white blood cells with a resolution of 120×120 pixels. Dataset 2 consists of 100 color images with a resolution of 300×300241

pixels, collected from the CellaVision blog. The authors have grouped the samples into four categories: Lymphocyte, Monocyte,242

Neutrophil, and Eosinophil, and we provide these category-based images and corresponding labels in npz file format (see243

Table 3). The source dataset is divided into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3×512×512244

pixels, and the labels are mapped to integer values between 0 and (#Classes - 1).245

YeazMSBench: The YeazMSBench, derived from the YeaZ dataset76, 77, consists of 707 microscopy images with varying246

sizes and is designed for binary segmentation tasks. We split the source dataset into three parts: train/val/test, in a 7:1:2 ratio.247

The samples are resized to 1×512×512 pixels, and the labels are mapped to integer values between 0 and 1.248

Data Records249

We have publicly shared each dataset with varying sizes (128,256, and 512 sized) in MedSegBench at Zenodo (Link). The250

MedSegBench consists of 35 pre-processed 2D medical image segmentation datasets (some of them extracted 3D slices) from251

various data modalities and tasks (binary/multi-class). The data storage format published by MedMNISTv28 is followed252

. We save each dataset in Numpy npz format, named as {dataset}_{size}.npz. Each npz file contains following keys:253

["{train,val,test}_images", "{train,val,test}_label"]. Also, some authors have published class- or category-based images and254

labels. We have also added this information with the following keys into the npz file and explain them in source code files:255

["{train,val,test}_images_ {classno}", "{train,val,test}_label_{classno}"]. All images and labels are stored in uint8 data256

type. {train,val,test}_images: Numpy array contains train, validation and test images with N ×W ×H ×C shape for RGB257

datasets, and N ×W ×H for gray-scale datasets. Here, N refers to the number of samples, W is the width, H is the height,258

and C denotes the number of channels. {train,val,test}_label: It contains train, validation and test labels with N ×W ×H259

shape. {train,val,test}_images_{classno} and {train,val,test}_label_{classno}: These contain class or category-based train,260

validation, and test images and labels with shapes N ×W ×H ×C (for RGB images, and N ×W ×H for gray-scale images),261

respectively.262

Technical Validation263

Baseline methods264

In this study, we chose the U-Net architecture as the baseline structure for image segmentation tasks. We have selected six265

encoder/decoder networks to enhance performance and adaptability. These include ResNet18, ResNet50, and DenseNet121,266

commonly used as benchmarks in segmentation research. Additionally, we have selected EfficientNet and MobileNetv2 because267

they are lightweight models that offer a more computationally efficient alternative to ResNets and DenseNet. Furthermore, we268

have added a transformer-based approach using the Mix Vision Transformer, acknowledging the growing interest in transformer269

models for vision tasks.270

The U-Net structure and diverse encoder/decoder networks are implemented using the qubvel-segmentation framework10.271

We have not used pre-trained ImageNet weights; we train each model from scratch on our datasets. We have trained each model272

with three randomly selected seed values to ensure the robustness of our results. All images are resized to 512x512 pixels,273

a standardized dimension for the training, validation, and testing phases. Training is conducted over 200 epochs using the274

Adam Optimizer with a learning rate 1e-3. For binary segmentation tasks, we used dice loss, while categorical cross-entropy275

loss is used for multi-class tasks. A batch size of 128 is selected throughout the training process. We have not applied weight276

decay methods or any data augmentation techniques, focusing on the raw performance of the models. The model weights277
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corresponding to the best validation IOU are recorded for each network configuration. Further details regarding the model278

implementation, training, and evaluation steps are available in our code repository.279

Performance Measures280

We have evaluated each model on 35 different datasets using four performance measures: Precision (PREC), Recall (REC),281

F1-score (F1), and Intersection over Union (IOU). Precision measures the accuracy of positive predictions, highlighting its282

ability to avoid false positives, while Recall evaluates the model’s capacity to identify all relevant positive instances, minimizing283

false negatives. The F1-Score, as the harmonic mean of Precision and Recall, provides a balanced view, which is especially284

useful when there is an unbalanced class distribution. IoU, primarily used in image segmentation and object detection, evaluates285

the overlap between predicted and actual regions, ensuring accurate localization and identification of objects. We have286

individually reported PREC, REC, F1, and IOU scores for each dataset and averaged the results.287

Results288

The average PREC and REC results obtained from three different run are showed in Table 4 and average F1 and IOU scores are289

reported in Table 5 for each individual datasets. Also, the average results for each baseline methods are shown in Table 5,290

Table 4 presents a comprehensive overview of the average precision and recall results for six different encoder networks291

across various datasets. These networks include ResNet-18 (RN-18), ResNet-50 (RN-50), Efficient-Net (EN), Mobile-Net-v2292

(MN-v2), DenseNet-121 (DN-121), and Mix Vision Transformer (MVT). The results are divided into two main categories:293

precision and recall. In terms of precision, DenseNet-121 consistently demonstrated strong performance across numerous294

datasets. For example, it achieved the highest precision scores in datasets such as BusiMSB (0.794), ChuahMSB(0.870) and295

Dca1MSB (0.801). Similarly, Efficient-Net also demonstrated strong precision, particularly in datasets like Isic2016MSB and296

Isic2018MSB, where it scored 0.912 and 0.857, respectively. Although the Mix Vision Transformer is not evaluated on all297

datasets because it only accepts at least three channel images as input, it performed competitively where applicable, achieving298

high precision in datasets like Bkai-Igh-MSB (0.983). Regarding Recall, DenseNet-121 has emerged as a top performer,299

achieving the highest recall in datasets such as Bbbbc010MSB (0.920) and WbcMSB (0.970). Efficient-Net also performed well300

in recall metric, particularly in datasets like DynamicNuclearMSB (0.966) and USforKidneyMSB (0.982). The results indicate301

that DenseNet-121 and Efficient-Net are particularly robust across precision and recall metrics, suggesting their effectiveness in302

various applications. Overall, the analysis highlights DenseNet-121’s consistently high performance across multiple datasets,303

making it a reliable choice for tasks requiring high precision and recall. Efficient-Net also stands out, especially in recall,304

indicating its potential for applications where recall is critical.305

Table 5 provides a comprehensive evaluation of six encoder networks across various datasets, using F1-score and Intersection306

over Union (IOU) as performance metrics. DenseNet-121 consistently performs well, frequently achieving the top F1 and307

IOU metrics scores across numerous datasets. For example, in the Bbbc010MSB and CellNucleiMSB datasets, DenseNet-121308

records the highest F1-scores of 0.920 and 0.907, respectively, and similarly high IOU scores, indicating its robustness in309

handling diverse data types. Efficient-Net also shows significant performance, particularly in datasets like Isic2016MSB and310

USforKidneyMSB, where it achieves the highest F1-scores of 0.903 and 0.981, respectively. This indicates that Efficient-Net is311

particularly effective in scenarios requiring high precision and recall, as showed in its F1-scores. ResNet-50 performs best312

with an F1-score of 0.931 and an IOU of 0.870 for the DeepbacsMSB. Additionally, it has also achieved the highest F1-score313

of 0.786 and an IOU of 0.648 in the DriveMSB dataset. For the FHPsAOPMSB dataset, ResNet-18 has achieved the highest314

F1-score of 0.961 and an IOU of 0.929. While Mix Vision Transformer does not frequently perform as well as DenseNet-121,315

it shows competitive performance in specific datasets such as UWSkinCancerMSB, achieving the second-highest F1 Score of316

0.881. This indicates its potential in specialized applications, particularly in medical imaging contexts. Overall, DenseNet-121317

is the most robust and effective network, frequently outperforming other networks in achieving high F1-scores and IOU values.318

Table 6 shows the average performance metrics for six different encoder networks. Efficient-Net (EN) and DenseNet-121319

(DN-121) demonstrate the highest F1 scores, both achieving a value of 0.772. This indicates that these models have a balanced320

performance in terms of precision and recall. DenseNet-121 also achieves the highest precision at 0.848, suggesting it is321

effective at minimizing false positives. On the other hand, Efficient-Net leads in recall with a score of 0.788, indicating its322

strength in capturing true positives. Additionally, DenseNet-121 achieves the highest IOU with 0.702, closely followed by323

Efficient-Net with 0.700 This suggests that these two models provide the most accurate predictions. Overall, DenseNet-121 and324

Efficient-Net achieve similar high-performance metrics, with both models performing well in F1 score, precision, recall, and325

IOU. However, DenseNet-121’s complex architecture causes higher computational demands, whereas Efficient-Net provides a326

more efficient design, making it suitable for resource-constrained applications.327
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Table 4. The average precision and recall results for six different encoder networks. RN-18: ResNet-18; RN-50: ResNet-50;
EN: Efficient-Net; MN-v2: Mobile-Net-v2; DN-121: DenseNet-121; MVT: Mix Vision Transformer

Precision (PREC) Recall (REC)
Dataset RN-18 RN-50 EN MN-v2 DN-121 MVT RN-18 RN-50 EN MN-v2 DN-121 MVT
AbdomenUSMSB 0.976 0.973 0.950 0.964 0.955 - 0.652 0.654 0.670 0.655 0.671 -
Bbbc010MSB 0.919 0.926 0.918 0.918 0.922 - 0.912 0.909 0.904 0.900 0.920 -
Bkai-Igh-MSB 0.983 0.961 0.939 0.944 0.952 0.983 0.563 0.625 0.705 0.737 0.642 0.563
BriFiSegMSB 0.812 0.816 0.812 0.803 0.817 - 0.873 0.886 0.882 0.861 0.898 -
BusiMSB 0.729 0.753 0.765 0.766 0.794 - 0.727 0.665 0.728 0.672 0.714 -
CellNucleiMSB 0.924 0.920 0.913 0.901 0.927 0.928 0.882 0.886 0.894 0.872 0.898 0.883
ChaseDB1MSB 0.788 0.789 0.780 0.794 0.793 0.774 0.733 0.738 0.725 0.703 0.739 0.705
ChuacMSB 0.713 0.710 0.643 0.644 0.870 - 0.470 0.451 0.526 0.458 0.444 -
Covid19RadioMSB 0.991 0.991 0.991 0.991 0.992 - 0.990 0.990 0.991 0.991 0.991 -
CovidQUExMSB 0.741 0.738 0.753 0.739 0.760 - 0.824 0.810 0.815 0.827 0.826 -
CystoFluidMSB 0.889 0.870 0.874 0.879 0.888 0.874 0.848 0.872 0.856 0.844 0.851 0.865
Dca1MSB 0.776 0.788 0.775 0.781 0.801 - 0.757 0.757 0.740 0.732 0.740 -
DeepbacsMSB 0.957 0.956 0.955 0.958 0.959 - 0.905 0.907 0.897 0.886 0.900 -
DriveMSB 0.817 0.789 0.799 0.811 0.827 0.784 0.756 0.790 0.748 0.750 0.751 0.784
DynamicNuclearMSB 0.924 0.929 0.937 0.926 0.928 - 0.965 0.965 0.966 0.963 0.965 -
FHPsAOPMSB 0.962 0.964 0.964 0.965 0.961 - 0.960 0.951 0.956 0.955 0.959 -
IdribMSB 0.150 0.153 0.139 0.150 0.172 0.110 0.089 0.072 0.065 0.078 0.068 0.041
Isic2016MSB 0.890 0.897 0.912 0.912 0.913 0.897 0.907 0.910 0.919 0.901 0.905 0.917
Isic2018MSB 0.838 0.839 0.857 0.864 0.878 0.854 0.911 0.907 0.923 0.908 0.896 0.907
KvasirMSB 0.816 0.770 0.839 0.842 0.874 0.644 0.768 0.755 0.860 0.780 0.804 0.697
M2caiSegMSB 0.737 0.756 0.801 0.762 0.759 0.794 0.224 0.225 0.228 0.225 0.230 0.227
MonusacMSB 0.945 0.951 0.951 0.951 0.951 0.951 0.951 0.589 0.589 0.589 0.589 0.589
MosMedPlusMSB 0.816 0.817 0.807 0.821 0.826 0.808 0.786 0.802 0.796 0.793 0.798 0.767
NucleiMSB 0.250 0.233 0.223 0.199 0.225 0.196 0.394 0.395 0.449 0.281 0.479 0.481
NusetMSB 0.949 0.950 0.953 0.950 0.953 - 0.951 0.951 0.951 0.952 0.952 -
PandentalMSB 0.956 0.955 0.952 0.945 0.965 - 0.967 0.968 0.963 0.958 0.965 -
PolypGenMSB 0.763 0.739 0.783 0.824 0.794 0.557 0.584 0.538 0.684 0.582 0.632 0.570
Promise12MSB 0.911 0.900 0.900 0.903 0.909 - 0.903 0.896 0.902 0
RoboToolMSB 0.878 0.874 0.893 0.885 0.905 0.885 0.854 0.864 0.867 0.835 0.868 0.893
TnbcnucleiMSB 0.813 0.834 0.748 0.772 0.819 0.746 0.758 0.760 0.762 0.770 0.770 0.797
UltrasoundNerveMSB 0.799 0.801 0.779 0.786 0.798 - 0.796 0.782 0.814 0.791 0.802 -
USforKidneyMSB 0.979 0.979 0.981 0.980 0.980 - 0.980 0.978 0.982 0.980 0.980 -
UWSkinCancerMSB 0.920 0.925 0.928 0.939 0.926 0.930 0.857 0.829 0.882 0.857 0.839 0.872
WbcMSB 0.961 0.962 0.965 0.959 0.963 0.966 0.966 0.966 0.968 0.963 0.970 0.969
YeazMSB 0.935 0.931 0.936 0.931 0.934 - 0.974 0.979 0.971 0.977 0.978 -
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Table 5. The average F1-score and IOU results for six different encoder networks. RN-18: ResNet-18; RN-50: ResNet-50;
EN: Efficient-Net; MN-v2: Mobile-Net-v2; DN-121: DenseNet-121; MVT: Mix Vision Transformer

F1-Score (F1) Intersection over Union (IOU)
Dataset RN-18 RN-50 EN MN-v2 DN-121 MVT RN-18 RN-50 EN MN-v2 DN-121 MVT
AbdomenUSMSB 0.642 0.640 0.640 0.635 0.643 - 0.632 0.630 0.628 0.624 0.632 -
Bbbc010MSB 0.915 0.917 0.910 0.908 0.920 - 0.844 0.848 0.837 0.833 0.854 -
Bkai-Igh-MSB 0.554 0.617 0.692 0.733 0.630 0.554 0.546 0.604 0.676 0.713 0.615 0.546
BriFiSegMSB 0.826 0.834 0.831 0.816 0.840 - 0.717 0.728 0.724 0.702 0.738 -
BusiMSB 0.674 0.632 0.711 0.655 0.695 - 0.578 0.547 0.624 0.565 0.615 -
CellNucleiMSB 0.889 0.892 0.894 0.880 0.907 0.891 0.822 0.827 0.830 0.815 0.838 0.826
ChaseDB1MSB 0.758 0.761 0.750 0.744 0.764 0.735 0.611 0.615 0.601 0.594 0.618 0.582
ChuacMSB 0.487 0.451 0.499 0.462 0.522 - 0.357 0.334 0.369 0.340 0.400 -
Covid19RadioMSB 0.991 0.990 0.991 0.991 0.992 - 0.982 0.981 0.983 0.982 0.983 -
CovidQUExMSB 0.740 0.734 0.744 0.742 0.756 - 0.627 0.620 0.633 0.631 0.647 -
CystoFluidMSB 0.852 0.857 0.849 0.842 0.853 0.855 0.759 0.765 0.754 0.747 0.761 0.763
Dca1MSB 0.762 0.767 0.753 0.751 0.765 - 0.618 0.625 0.606 0.604 0.623 -
DeepbacsMSB 0.930 0.931 0.925 0.921 0.929 - 0.869 0.870 0.860 0.853 0.867 -
DriveMSB 0.782 0.786 0.770 0.775 0.782 0.781 0.643 0.648 0.626 0.634 0.643 0.641
DynamicNuclearMSB 0.941 0.942 0.948 0.940 0.942 - 0.895 0.897 0.906 0.893 0.897 -
FHPsAOPMSB 0.961 0.957 0.959 0.959 0.960 - 0.929 0.923 0.927 0.927 0.928 -
IdribMSB 0.100 0.090 0.078 0.092 0.089 0.053 0.061 0.054 0.046 0.056 0.054 0.030
Isic2016MSB 0.878 0.887 0.903 0.891 0.893 0.891 0.803 0.814 0.836 0.820 0.825 0.822
Isic2018MSB 0.849 0.849 0.868 0.865 0.861 0.853 0.761 0.762 0.790 0.783 0.785 0.773
KvasirMSB 0.739 0.698 0.812 0.754 0.794 0.569 0.645 0.596 0.733 0.668 0.718 0.457
M2caiSegMSB 0.214 0.215 0.218 0.216 0.223 0.217 0.190 0.191 0.196 0.192 0.200 0.194
MonusacMSB 0.557 0.559 0.559 0.559 0.559 0.538 0.540 0.540 0.540 0.540 0.540 0.540
MosMedPlusMSB 0.780 0.790 0.781 0.785 0.791 0.761 0.674 0.682 0.674 0.679 0.686 0.650
NucleiMSB 0.282 0.274 0.278 0.205 0.275 0.253 0.169 0.164 0.167 0.119 0.166 0.150
NusetMSB 0.949 0.949 0.951 0.950 0.951 - 0.906 0.906 0.909 0.907 0.910 -
PandentalMSB 0.961 0.961 0.957 0.950 0.965 - 0.926 0.926 0.919 0.907 0.932 -
PolypGenMSB 0.573 0.541 0.666 0.588 0.621 0.477 0.495 0.457 0.587 0.512 0.545 0.382
Promise12MSB 0.895 0.888 0.892 0.896 0.900 - 0.828 0.817 0.821 0.827 0.832 -
RoboToolMSB 0.856 0.859 0.874 0.847 0.879 0.882 0.765 0.769 0.788 0.753 0.798 0.798
TnbcnucleiMSB 0.779 0.785 0.738 0.762 0.788 0.759 0.641 0.652 0.596 0.621 0.654 0.618
UltrasoundNerveMSB 0.782 0.776 0.787 0.772 0.786 - 0.671 0.664 0.675 0.660 0.676 -
USforKidneyMSB 0.979 0.978 0.981 0.980 0.980 - 0.960 0.958 0.963 0.961 0.960 -
UWSkinCancerMSB 0.864 0.846 0.890 0.879 0.856 0.881 0.795 0.766 0.818 0.803 0.779 0.813
WbcMSB 0.962 0.963 0.966 0.959 0.966 0.967 0.930 0.931 0.937 0.926 0.936 0.938
YeazMSB 0.953 0.953 0.952 0.952 0.954 - 0.912 0.912 0.909 0.910 0.914 -

Table 6. The average results for six different encoder networks. RN-18: ResNet-18; RN-50: ResNet-50; EN: Efficient-Net;
MN-v2: Mobile-Net-v2; DN-121: DenseNet-121; MVT: Mix Vision Transformer.

Methods F1 PREC REC IOU
RN-18 0.762 0.834 0.774 0.689
RN-50 0.759 0.833 0.772 0.686
EN 0.772 0.832 0.788 0.700
MN-v2 0.762 0.834 0.769 0.689
DN-121 0.772 0.848 0.781 0.702
MVT 0.663 0.760 0.696 0.585
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Usage Notes328

The MedSegBench datasets are freely available at Zenodo We kindly request that users of the MedSegBench dataset cite329

this paper, along with the relevant source dataset files, in their publications. This dataset is created in order to fairly compare330

different models over various segmentation models from different data modalities and to create universal models. It is not331

suitable for clinical or medical use.332

Code availability333

The Python data API, source code files and evaluation scripts for binary and multi-class segmentation tasks can be found at334

https://github.com/zekikus/MedSegBench.335
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