
REPLICATED BLOOD-BASED BIOMARKERS FOR MYALGIC
ENCEPHALOMYELITIS NOT EXPLICABLE BY INACTIVITY

SJOERD VIKTOR BEENTJES1,2,4,∗, JULIA KACZMARCZYK1, AMANDA CASSAR3, GEMMA LOUISE
SAMMS2, NIMA S. HEJAZI5, AVA KHAMSEH2,3,4,∗ AND CHRIS P. PONTING2,∗

Abstract. Myalgic Encephalomyelitis (ME; sometimes referred to as chronic fatigue syndrome
[CFS]) is a relatively common and female-biased disease of unknown pathogenesis that pro-
foundly decreases patients’ health-related quality-of-life. ME/CFS diagnosis is hindered by the
absence of robustly-defined and specific biomarkers that are easily measured from available
sources such as blood, and unaffected by ME/CFS patients’ low level of physical activity. Pre-
vious studies of blood biomarkers have not yielded replicated results, perhaps due to low study
sample sizes (n < 100). Here, we use UK Biobank (UKB) data for up to 1,455 ME/CFS cases
and 131,303 population controls to discover hundreds of molecular and cellular blood traits that
differ significantly between cases and controls. Importantly, 116 of these traits are replicated,
as they are significant for both female and male cohorts. Our analysis used semi-parametric
efficient estimators, an initial Super Learner fit followed by a one-step correction, three types
of mediators, and natural direct and indirect estimands, to decompose the average effect of
ME/CFS status on molecular and cellular traits. Strikingly, these trait differences cannot be
explained by ME/CFS cases’ restricted activity. Of 3,237 traits considered, ME/CFS status
had a significant effect on only one, via the “Duration of walk” (UKB field 874) mediator. By
contrast, ME/CFS status had a significant direct effect on 290 traits (9%). As expected, these
effects became more significant with increased stringency of case and control definition. Signifi-
cant female and male traits were indicative of chronic inflammation, insulin resistance and liver
disease. Individually, significant effects on blood traits, however, were not sufficient to cleanly
distinguish cases from controls. Nevertheless, their large number, lack of sex-bias, and strong
significance, despite the ‘healthy volunteer’ selection bias of UKB participants, keep alive the
future ambition of a blood-based biomarker panel for accurate ME/CFS diagnosis.
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1. Introduction

Myalgic encephalomyelitis (ME; also known as chronic fatigue syndrome, CFS) is an often
debilitating disease of unknown pathogenesis defined by post-exertional malaise (PEM), the
dramatic worsening of symptoms after even minor mental or physical exertion [1], which usually
persists at least 24 hours, in contrast to other fatiguing illnesses [2]. ME/CFS has no cure and
no widely effective therapy [3]. It is a female-dominant disease [4, 5]. There are no clinical
biomarkers for ME/CFS. A high priority for people with ME/CFS is an accurate and reliable
diagnostic test [6]. Findings from dozens of biomarker studies have shown limited reproducibil-
ity, perhaps due to their typically low sample sizes, their frequent use of inappropriate statistical
tests [7] and the known heterogeneity of ME’s symptoms and potential aetiology [8].

Any clinical biomarker would need to account for individuals’ inactivity relative to the general
population. This is because many people with ME/CFS do not exercise and have to restrict
their activity [9] to reduce the risk of subsequent PEM. Some have proposed that it is this
avoidance of activity that inhibits recovery by perpetuating ME/CFS symptoms following an
acute illness [10, 11, 12]. According to this theory, a gradual return to activity reduces fatigue
and disability by reversing deconditioning [13] and would reverse any physiological changes, for
example in blood traits, caused by inactivity [14]. Counter to this theory, however, is that ther-
apies based on physical activity or exercise are ineffective as a cure [15], implying that ME/CFS
is instead an ongoing organic illness [16, 17].

In this study, we analysed data from UK Biobank (UKB), a population cohort of 500,000
individuals aged between 40 and 69 at recruitment linked to diverse phenotypic data [18]. Our 3
groups of analyses were on (i) 31 blood cell and 30 blood biochemistry phenotypes; (ii) 251 NMR-
measured metabolites; and, (iii) 2,923 proteins. Specifically, we quantify which blood traits,
Nuclear Magnetic Resonance (NMR) metabolomics, and proteomics features are significantly
different between ME/CFS cases versus controls controlling for age and sex. The large UK
Biobank data sets for ME/CFS cases and controls provided substantial statistical power to
evaluate hypotheses, also allowing comparison between male-only and female-only analyses,
something that had not been previously achievable. We take advantage of three mediators of
sedentary lifestyle to determine whether any molecular or cellular trait associated with ME/CFS
cases is explicable by physical inactivity.

2. Results

2.1. Study population: cases and controls. We first defined 1,455 ME/CFS cases and 131,303
non-ME/CFS population control individuals from the UKB [18]. Cases reported their clinical
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Figure 1. (A) Directed Acyclic Graph for ME/CFS, taking age and sex as confounders and sedentary
lifestyle (physical activity) as a mediator for ME/CFS’s effect on molecular and cellular traits. The
causes of ME/CFS are an unknown variable (red). Therefore, all effect estimators are quantifying an
association between ME/CFS and molecular or cellular traits and no causal statements are made. The
“Age” variable (UKB field 21022) represents age at recruitment to UKB, rather than age of onset or
diagnosis of ME/CFS. This variable affects the probability of having a ME/CFS diagnosis: recovery is
minimal (≈ 5%, [19]), and as they age people are increasingly likely to be diagnosed with ME/CFS.
As it also affects the molecular and cellular traits, age is treated as a confounder. (B) Venn diagrams
displaying the number of significant findings in the male, female, and combined cohorts, and their
intersection for NDE, mediator 874. Proteomics data have the smallest sample size (see Table 1) and
least power, implying fewer significant results in males and females separately as compared to the
combined analysis.

diagnosis of CFS or ME/CFS at least once and poor or fair overall health; controls had no evi-
dence for a ME/CFS diagnosis and were of good or excellent health (see Materials and Methods).
For each group of analyses, cases and controls were restricted to those with measurements of 31
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blood count and 30 blood biochemistry markers, or 251 NMR metabolites, or 2,923 protein lev-
els, respectively. Collection of these biological samples was contemporaneous with self-reporting
of CFS at the first visit to a UKB Assessment Centre (2006-2010). Numbers of samples in each
category are shown in Table 1. ME sample sizes for measured outcome in blood traits, NMR
metabolites and proteins are shown in Supplementary Fig. S1.

Blood traits NMR metabolites Proteomics
Cases Controls Cases Controls Cases Controls

Female 1,069 75,731 615 41,436 126 7,963
Male 386 55,572 213 30,921 45 5,920
Combined 1,455 131,303 828 72,357 171 13,883

Table 1. Numbers of UKB ME/CFS cases or non-ME/CFS controls per category.

2.2. Molecular and cellular traits significantly associated with ME/CFS. We simultaneously
quantified two effects of ME/CFS case status on molecular and cellular traits, the natural direct
effect (NDE) and natural indirect effect (NIE) (Fig. 1A). Each measures the difference between
averages for ME/CFS cases or controls, weighted by activity level and also correcting for age
and sex because levels of some molecules are age- (e.g. HRG protein) and/or sex-dependent
(e.g. ALT). NDE and NIE account for the activity mediator by decomposing the average effect
of ME/CFS case status on molecular or cellular trait into (a) direct paths – those not involving
the mediator (Fig. 1A, green) – and (b) indirect paths – those acting through the mediator
(blue) – with level of activity as the mediator variable [20, 21] (see Materials and Methods).

As a mediator variable, we first used “Duration of walk” (UKB field 874). As expected,
ME/CFS cases reported a lower duration of walk (mean: 44.0 mins/day) than controls (55.3
mins/day). At a false discovery rate [22] (FDR) < 0.05, significant direct effects were found
for 36 (of 61 + 2 composite) blood traits, 189 (of 251) NMR metabolites and 65 (of 2,923)
proteins (Fig. 1A). All estimates restrict to complete cases, removing individuals with missing
trait data in that estimate. For all three analyses, the number of significant NDE results and
their intersection in each of the male, female and combined categories, are presented in Fig. 1B.

Significant NDEs on molecular and cellular blood traits for females or males or combined are
shown in Fig. 2A. NDEs are strongly correlated between females and males (Fig. 2B). Twenty
traits are separately significant in the two sexes (Fig. 2A, B) and thus their associations to
ME/CFS status are independently replicated. Additionally, a single trait (erythrocyte_
distribution_width, sometimes a sign of anaemia) was also significant with positive NDE for
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males and negative NDE for females (Fig. 2A).

Among the 20 significantly associated traits for females and for males were traits indicative of
chronic inflammation (elevated C-reactive protein [CRP] and cystatin C levels, and leukocyte and
neutrophil counts), insulin resistance (elevated triglycerides-to-HDL cholesterol [TG-to-HDL-C]
ratio, alanine aminotransferase [ALT], alkaline phosphatase [ALP] and gamma glutamyltrans-
ferase [GGT]), and liver disease (elevated ALT, ALP and GGT, and low urea levels) (Fig. 2A).
Fig. 2C illustrates the shifts in two measures of insulin resistance, the TyG index [23, 24] (top)
and TG-to-HDL-C ratio [25] (bottom), between ME/CFS cases and controls. These are the
UKB raw data, rather than results from mediation analysis.

2.3. Physical activity does not explain ME/CFS-associations to blood traits. Strikingly, for
the UKB 874 mediator, significant effects on ME/CFS case status were abundant for direct
effects (i.e., NDE; Fig. 2A; Fig. S2), but occurred only once (mean_corpuscular_haemoglobin;
adjusted p = 0.043) for indirect effects (i.e., NIE; Fig. 3). For every other one of the 61 + 2
composite blood traits, for females or males or both sexes combined, none was significant when
controlling the FDR at ≤ 0.05 (Fig. 3). Results from applying two other mediators (Fig. 2A
and Fig. 3) are presented later.

2.4. Metabolite traits significantly associated with ME/CFS. Of 251 NMR metabolite traits,
189 (75%) were significantly associated with ME/CFS status in an NDE analysis with females
only (68 traits) or males only (10 traits) or in both the females only and males only analy-
ses (96 traits) (UKB 874 mediator; Fig. 1B, Supplementary Table 4). Significant traits were
mostly lipid levels, involving lipoproteins, cholesterol, and triglycerides. Results were highly
concordant between females only and males only analyses (Fig. 4A and B) indicating that
ME/CFS-specific blood metabolite differences are, again, generally not sex-biased. Previous
ME/CFS metabolomic biomarker studies used one and three orders-of-magnitude fewer cases
and controls, respectively [7]. The largest among these identified lowered phosphatidylcholines
and cholines in blood from ME/CFS cases ([26], see also [27]), results that we replicated here
(Fig. 4A). Higher triglycerides and lower HDL cholesterol in ME/CFS cases, observed using
UKB enzymatic assays (Fig. 2A), were also observed as significant in the NMR metabolomics
assays (Fig. 4A). Of 9 amino acids measured, only alanine was significantly elevated, and then
only in female ME/CFS cases. Blood pyruvate and lactate, previously predicted to be ME/CFS
biomarkers [28, 29], were also not significantly different between cases and controls.

None of the 251 metabolite traits was significant when controlling the FDR at ≤ 0.05 for
indirect effects using the “Duration of walk” (UKB 874) mediator, for females or for males or
for both combined (Fig. S2B).
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Figure 2. Associational natural direct effects (NDE) of ME/CFS on molecular and cellular blood
traits. (A) The sex-stratified analyses are presented in orange (female) and blue (male). For the
combined analysis (grey), sex is additionally taken as a confounder. All traits that are significant for
the UKB 874 mediator are shown (see Supplementary Table 7 for the UKB 884 and 894 mediators).
Natural direct effect sizes (left) are plotted for the UKB 874 mediator (“Duration of walks”), for
significant estimates (FDR < 0.05). Error bars indicate 95% confidence intervals. Note that the scale
and unit of measurement for each trait (x-axis) are different. For example, the unit of measurement of
alanine_aminotransferase (Field 30620) is U/L. The analysis was repeated for the UKB 884 mediator
(“Number of days/week of moderate physical activity”) and for the UKB 894 mediator (“Duration of
moderate activity”), with the significant results (FDR < 0.05) in each category indicated by ‘+’ symbols
for positive effects and ‘−’ for negative effects (right). Where there is no symbol, the effect was not
significant. Notably, there were no discordant results across the three mediators. All blood trait names
are as they appear in the UKB showcase, aside from TyG and TG-to-HDL-C ratio (indicated by *),
which are composite measures of other blood traits. (B) Blood trait NDE z-scores, males (x-axis),
females (y-axis). Z-scores are the NDE divided by its estimation error. The Pearson correlation is 0.67
and significant. The red dots represent 14 blood traits that are significant in both males and females
(FDR < 0.05). The yellow and blue dots represent blood traits that are significant in females only and
males only, respectively (FDR < 0.05). The grey dots are significant in neither group while controlling
FDR < 0.05. (C) Raw data empirical cumulative distribution functions (ECDFs) for TyG (top) and
TG-to-HDL-C ratio (bottom), comparing controls (black) and cases (female on the left, male on the
right).

2.5. Proteomic traits significantly associated with ME/CFS. Repeating this NDE analysis us-
ing the UKB 874 mediator on levels of 2,923 proteins, measured using antibody-based assays,
yielded only a single protein, extracellular superoxide dismutase or SOD3, whose abundance was
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Figure 3. Associational natural indirect effects (NIE) of ME/CFS on molecular and cellular blood
traits. The sex-stratified analyses are presented in orange (female) and blue (male). For the combined
analysis (grey), sex is additionally taken as a confounder. All traits that are significant for UKB
mediator 884 are shown. This is the mediator with the most number of significant indirect effects. UKB
mediator 874 “Duration of walks” has a single significant NIE (mean_corpuscular_haemoglobin for
females) (FDR < 0.05), whereas UKB mediator 894 “Duration of moderate activity” has no significant
NIEs (FDR < 0.05). Effect sizes are plotted for UKB mediator 884 “Number of days/week of moderate
physical activity”, for significant estimates (FDR < 0.05). Error bars indicate 95% confidence intervals.
Note that the scale and unit of measurement for each trait (x-axis) are different. Significant results
(FDR < 0.05) for mediator 884 are indicated by ‘+’ for positive effects and ‘−’ for negative effects.
Where there is no symbol, the effect was not significant. Blood trait names are as they appear in
the UKB showcase, aside from TyG and TG-to-HDL-C ratio (indicated with *) which are composite
measures of other blood traits.
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Figure 4. Associational natural direct effects (NDE) of ME/CFS on NMR metabolites. [Continued]
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Figure 4. (A) The sex-stratified analyses are presented in orange (female) and blue (male). For the
combined analysis (grey), sex is additionally taken as a confounder. Eighteen of 184 traits are shown;
results for all traits are provided in Supplementary Table 4. Effect sizes are plotted for mediator
874 “Duration of walks” for significant estimates (FDR < 0.05). Error bars indicate 95% confidence
intervals. Note that the scale and unit of measurement (X-axis) are different for each metabolite.
Asterisks (right) indicate effects that are significant (FDR < 0.05). Where there is no asterisk, the effect
was not significant. There were no discordant results across the three analyses. All NMR metabolite
names are as they appear in the UKB showcase. (B) NMR NDE values are strongly concordant
between the two sexes. Shown are per-metabolite z-scores for males (x-axis) and females (y-axis). Z-
scores are the NDE divided by its estimation error. The Pearson correlation is 0.8 and significant. Red
dots indicate metabolites that are significant in both males and females (FDR < 0.05). Yellow and
blue dots represent metabolites that are significant in females only and males only, respectively (FDR
< 0.05). Grey dots are significant in neither.

significantly altered (FDR < 0.05) between cases and controls in both females and males. Rela-
tive to preceding analyses, this proteomic analysis is under-powered owing to there being fewer
cases for whom data was available (Table 1) and its larger multiple testing burden. Implications
of this association to SOD3 are unclear, although superoxide, SOD3’s substrate, is known to
modulate the hyperalgesic response [30].

Male- or female-specific effects for the same protein are again correlated (Fig. 5; Supplemen-
tary Table 5). Considering all cases combined, 54 proteins are significant (FDR < 0.05; Figure
1B). Among these are 7 complement proteins (C1RL, C2, CFB, CFH, CFI, CFP and CR2)
of the innate immune system, whose levels are all elevated in ME/CFS cases, including CR2
(complement C3d receptor 2), the receptor for Epstein-Barr virus (EBV) binding on B and T
lymphocytes. Two of the up-regulated proteins (CDHR2 and CDHR5) together form the extra-
cellular portion of the intermicrovillar adhesion complex, whose disruption leads to intestinal
dysfunction and inflammatory bowel disease [31, 32]. ME/CFS cases also show increase in levels
of leptin (LEP), which has a role in energy homeostasis [33]. Again, not a single protein among
the 2, 923 yielded a significant NIE estimate for this mediator (Fig. S2B).

2.6. Total effects. We have shown above that direct effects dominate, so that indirect effects
contribute little-or-nothing to molecular and cellular effects. In real-world settings, the quantity
of most interest to clinicians will be the total effect (TE), accounting for age and sex, rather
than the direct effect. Estimating the total effect for 63 blood traits finds 39 to be significant
(FDR < 0.05) predictors of ME/CFS case status for females and males combined (Supplemen-
tary Fig. S2A). The traits that are robustly predictive of ME/CFS are those shown in Fig. 2A

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 26, 2024. ; https://doi.org/10.1101/2024.08.26.24312606doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312606
http://creativecommons.org/licenses/by/4.0/


INACTIVITY AND ME/CFS BIOMARKERS 11

GSTA1

HRG

ICAM1

APOD

LEP

NPTN

ASAH2

PAMR1

PRCPPTPRM

RGL2

S100G

BCHE

SOD3

TYRO3

CA6

CCDC50

CDCP1

CFP

CTSL

DUSP3

F7R = 0.26, p < 2.2e−16

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

−5 −4 −3 −2 −1 0 1 2 3 4 5 6
Proteomics z−scores (males)

P
ro

te
om

ic
s 

z−
sc

or
es

 (
fe

m
al

e)

Female only
Male & Female
Male only

Figure 5. Protein NDE z-scores, males (x-axis), females (y-axis). Z-scores are the NDE divided by
its estimation error. The Pearson correlation is 0.26 and significant. The red dot represents the single
protein (SOD3) that is significant in both males and females (FDR < 0.05). Yellow and blue dots
indicate proteins that are significant in females only and in males only, respectively (FDR < 0.05).
Grey dots show proteins that are significant in neither (i.e., FDR ≥ 0.05).

(with 4 exceptions: erythrocyte_distribution_width, apolipoprotein_b, creatinine and
ldl_direct). For one or more of female- or male-specific or combined TE analyses, a total
of 251 proteins and 216 metabolites were additionally significant (FDR < 0.05; Supplementary
Fig. S2A).

Significantly enriched Gene Ontology (GO) terms for TE-significant proteins highlighted tu-
mour necrosis factor (TNF) and interleukin-4 (IL4) production, and natural killer (NK) cell
mediated cytotoxicity (Fig. S3). Nevertheless, TNF and IL4 proteins themselves were not sig-
nificantly altered in abundance. Impaired NK cell cytotoxicity in ME/CFS, however, is one of
the few cellular or molecular biomarkers that has often been replicated [34].

2.7. Sensitivity analyses for blood traits. Next, we investigated whether blood trait results
replicate for 2 further mediators: “Number of days/week of moderate physical activity 10+
mins” (UKB field 884) and “Duration of moderate activity” (UKB field 894) questionnaire re-
sponses. As expected, ME/CFS cases reported less activity than controls: mean 2.77 vs 3.51
days/week, and 53.9 vs 60.0 mins/day for mediators 884 and 894, respectively. As before, sig-
nificant effects on ME/CFS status were observed for direct effects, never indirect effects for the
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Figure 6. (A) Blood trait total effect z-scores, males (x-axis), females (y-axis). Z-scores are the TE
divided by its estimation error. The Pearson correlation is 0.86 and significant. The red dots represent
20 blood traits that are significant in both males and females (FDR < 0.05). The yellow and blue dots
represent blood traits that are significant in females only and males only respectively (FDR < 0.05).
The grey dots are significant in neither for FDR < 0.05. The x = y line indicates the line of equal
z-scores for males and females. In general, in absolute value, the z-scores are higher for females than
males. This is to be expected as the sample size is larger for females. (B) Metabolite total effect values
are strongly concordant between the two sexes. Shown are per-metabolite z-scores for males (x-axis)
and females (y-axis). Z-scores are the TE divided by its estimation error. The Pearson correlation
is 0.91 and significant. Red dots indicate metabolites that are significant in both males and females
(FDR < 0.05). Yellow and blue dots represent metabolites that are significant in females only and
males only, respectively (FDR < 0.05). Grey dots are significant in neither. (C) Proteins total effect
z-scores, males (x-axis), females (y-axis). Z-scores are the TE divided by its estimation error. The
Pearson correlation is 0.33 and significant. Red dot represents the proteins (LEP, CDHR5, ADH4,
RTN4R) that are significant in both males and females (FDR < 0.05). Yellow and blue dots represent
proteins that are significant in females only and males only respectively (FDR < 0.05). The grey dots
are significant in neither for FDR < 0.05.

“Duration of moderate activity” mediator (UKB field 894) (Fig. 2A, Fig. 4). By contrast, for
the “Number of days/week of moderate physical activity 10+ mins” (UKB field 884) mediator,
22 significant NIEs were identified: 14 (0.4%) and 8 (0.2%) traits at FDR ≤ 0.05 for combined
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INACTIVITY AND ME/CFS BIOMARKERS 13

female and male, and female-only data, respectively. Importantly, even when significant NIEs
are found, they almost always contribute less to the total effect than NDEs (Fig. 7).

We additionally investigated the dependence of results on the choice of fitting algorithm(s)
for blood traits. Specifically, the result in Fig. 2A are obtained using a cross-validating library
of algorithms (Super Learner (SL), see Material and Methods). Results obtained with no SL –
reducing the library to the baseline GLMnet – with mediator 874, for TE, NDE and NIE are
provided in Supplementary Table 9. Although we recommend its use, leaving out the SL has
only minor effect: 36 of 39 significant TE blood traits using UKB field 874 as mediator with the
SL were also significant without its use, Supplementary Table 9. Full NDE and NIE values for
all mediators with SL are provided in Supplementary Table 7.

For TEs, 41 blood traits (as well as TyG and TG-to-HDL-C ratio) differ significantly between
female or male ME/CFS cases and controls (Supplementary Table 3). To test whether extreme
values affect these results, we winsorized the blood trait data at 0.5% and 1%. The results
on the combined dataset are presented in Supplementary Fig. S4 and Supplementary Table 8,
and remain robust. To obtain a high confidence set, we further restricted these traits to those
significant for NDE for females and for males (mediators 874 and 884) and for females (mediator
894), resulting in 18 traits listed in Supplementary Table 2.

Lastly, we found that TEs and NDEs increase as the stringency of case and control defini-
tions increases (Fig. 8; see Supplementary Table 10 for full results). Specifically, we compared
NDEs for molecular and cellular blood traits calculated from cases and controls as defined in
Materials and Methods, but with or without overall health rating (UKB field 2178) of ‘Poor’ or
‘Fair’ at baseline for cases, and/or ‘Good’ or ‘Excellent’ for controls. Removing general health
criteria when defining cases and controls did not substantially affect our statistically-significant
discoveries (Fig. 8).
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Figure 7. Associational NDE (blue) and NIE (red) as a fraction of the total effect for the effect
of ME/CFS on molecular and cellular blood traits. The results are presented for male and female
combined, for mediator 884 “Number of days/week of moderate physical activity”, the only mediator
that exhibit indirect effects. Across all 61 blood traits, and the two composite metrics TyG and TG-
to-HLD-C ratio, only 1 feature, Urate, has a larger NIE than NDE, for this mediator only.
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Figure 8. Total effects and NDEs for blood traits become more significant as the stringency of case
and control definitions increases. (A) Total effect z-scores for ‘Poor/Fair’ for cases and ‘All’ (without
restricting by health rating (UKB field 2178)) for controls versus z-scores for ‘All’ for cases and ‘All’
for controls (without restricting by health rating for cases or controls). The null hypothesis – that
significance does not change for increasing stringency of case or control definition – is represented by
the diagonal line. (B) Total effect z-scores for ‘Poor/Fair’ for cases and ‘Good/Excellent’ for controls,
versus ‘Poor/Fair’ for cases vs ‘All’ for controls. (C) and (D) As in (A) or (B) but for NDE.
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3. Discussion

Our results reveal 511 blood-based biomarkers whose levels differ significantly between people
with ME/CFS and those without ME/CFS (Fig. S2A). Our approach decomposed the total
effect of ME/CFS on blood traits into two components: (1) the indirect effect of ME/CFS on
these traits via activity, and (2) the direct effect through all other paths, not mediated via
activity. We do not claim causality for our estimates, because the assumptions of no unmea-
sured confounding may be violated. Nevertheless, any “causal gap”, the difference between our
estimates and any underlying causal estimand, cannot be due to age and sex, as we account for
these factors. Our findings constitute differences of population estimates of blood biomarkers
between case and control populations and do not provide individual-level predictions of caseness
based on biomarker values. However, our results can be used for variable selection in training
a prediction model, as long as an independent data set is used. If the same data is used twice,
i.e., both for variable selection and for training a prediction model, the resulting predictions will
suffer from selective inference [35], with overly optimistic (invalid) prediction scores, and thus
will not generalise to new cases.

The large number of discoveries relative to previous studies likely reflects our study’s substan-
tially higher numbers of cases and controls (Table 1). These large numbers allow many small
average effects of ME/CFS status on molecular and cellular traits to be detected. Importantly,
and unlike most previous studies, we independently replicated 166 biomarkers in both females
and males (TEs; Fig. S2A). This indicates that our discoveries are both robust and not sex-
biased. It thus provides strong evidence for ME/CFS disease pathophysiology being equivalent
in both sexes. This is despite sex-bias of ME/CFS with respect to prevalence and onset, comor-
bidities, symptoms and other features [4, 36].

Importantly, these biomarker differences are not explicable by dissimilarities in physical activ-
ity: among 3,237 NIE estimates we obtained, ME/CFS status was significantly associated with
only one trait (Fig. S2B). Blood traits thus distinguish ME/CFS cases from population controls,
but not because of ME/CFS cases’ reduced physical activity levels.

What then cause these molecular and cellular changes in blood if not physical activity? Our
findings provide strong and replicated evidence for chronic low-level inflammation (elevated CRP
and cystatin-C levels, and platelet, leukocyte and neutrophil counts), insulin resistance (elevated
triglycerides-to-HDL-C ratio, ALT, ALP, GGT and HbA1c) and/or liver disease (elevated ALT,
ALP, and GGT, and low urea levels) in ME/CFS (Fig. 2A). ME/CFS is thus portrayed by
insulin resistance and systemic inflammation, with liver inflammation and dysfunction likely
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affecting lipid metabolism and the balance between HDL and LDL cholesterol. To our knowl-
edge, the overall combination of blood marker changes we observed does not present in any
other disease. For example, although primary biliary cholangitis is accompanied by elevated
ALP and GGT levels (and post-exertional malaise-like symptoms [37]) it is also marked by high
circulating levels of bilirubin rather than the lower levels we observe for ME/CFS (Fig. 2A).
Nevertheless, because ME/CFS likely arises from multiple pathomechanisms and we did not
further stratify cases, we cannot conclude that our results exclude other diseases from sharing a
common aetiology with some ME/CFS cases.

In general, shifts in trait values were modest. Among all 116 significant female- and male-
replicated traits (NDEs), 91% had small-to-medium shifts (Cohen’s d between 0.2 and 0.5 [38];
Supplementary Table 11). No trait yielded clear separation in estimated effects between ME/CFS
cases and controls, rather trait values overlapped extensively. For example, despite CRP level
being significantly elevated in ME/CFS cases (TE analysis: adjusted p = 2.8 × 10−9; both
sexes), only 4.8% of female and 2.5% of male ME/CFS cases (versus 2.2% and 1.8% controls,
respectively) had CRP levels over 10mg/L, a moderate elevation that can indicate systemic in-
flammation in autoimmune disease. Consequently, no single blood trait we analysed will be an
effective biomarker for ME.

The major strength of the study is its large and deeply phenotyped cohort who were recruited,
and their blood traits measured, using a single protocol. The study also controlled for poten-
tial confounders such as age, sex and physical inactivity. Additional mediators beyond physical
activity were not considered as they were not directly relevant to this study’s principal hypoth-
esis. The study was limited by the UK Biobank’s known healthy volunteer bias [39], possibly
resulting in few, if any, people with severe ME/CFS symptoms at baseline participating. Par-
ticipants’ diet, medication, smoking, alcohol use and socioeconomic status could be confounders
but only if they causally influence ME/CFS status. Future studies could test for the effect of
symptom severity on the levels of biomarkers found to be significant in this study. UK Biobank
recruited 40-69 year old participants [39], an age range when individuals are less likely to have
a clinical diagnosis of ME/CFS [40]. Our analysis relies also on correct clinical categorisation of
ME/CFS disease and participants’ recall of it. We note that the list of cellular and molecular
measurements in the UK Biobank is not exhaustive. For example, others have investigated po-
tential biomarkers for oxidative stress [41] as well as gut metagenomics, immune-profiling and
cytokines [42] which are absent from UKB.

Evidence that there is a large number of replicated and diverse blood biomarkers that dif-
ferentiate between ME/CFS cases and controls should now dispel any lingering perception that
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ME/CFS is caused by deconditioning and exercise intolerance [10, 11, 12, 13] These findings
should also accelerate research into the minimum panel of blood traits required to accurately
diagnose ME/CFS in real-world populations. Such a panel would be invaluable for diagnosis,
for measuring response to future treatment or drug trials, and potentially for determining the
worsening or progression of ME/CFS. Such a panel might also help to determine the distinctions
or overlap between ME/CFS and symptomalogically similar diseases such as Long Covid and
fibromyalgia.

To assist the search for an effective biomarker panel for ME/CFS we provide the full results
of this study in Supplementary Tables 3-5.

4. Materials and Methods

4.1. UK Biobank ME/CFS data processing. We defined 1,455 ME/CFS cases and 131,303
non-ME/CFS control individuals from UKB [18] as follows. Cases self-reported a diagnosis of
‘Chronic Fatigue Syndrome’ (CFS) in verbal interview at their first visit to a UKB Assessment
Centre (UKB field 20002); also, either they answered “Yes” to the question “Have you ever
been told by a doctor that you have Myalgic Encephalomyelitis/Chronic Fatigue Syndrome?”
in the ‘Experience of Pain Questionnaire’ (PQ) (2019-2020) (UKB field 120010), or they did not
complete the PQ. They further reported an overall health rating (UKB field 2178) of ‘Poor’ or
‘Fair’ at baseline, and were of known genetic sex. Population controls did not self-report a CFS
diagnosis in any of the 4 visits, answered “No” to the PQ question about a ME/CFS diagnosis,
and were not linked to a Primary Care record (CTV3 or Read v2 code, Supplementary Table
1) of ME/CFS or to the ICD10:G93.3 code (‘Postviral fatigue syndrome’) in Hospital Inpatient
Data. They further reported an overall health rating (UKB field 2178) of ‘Good’ or ‘Excellent’
at baseline. UKB participants are older and report healthier lifestyles, higher levels of edu-
cation and better health relative to the general UK population [43, 44]. UKB assessment at
baseline was demanding in time (2-3h) and energy, including travel to the nearest of 22 centres.
These requirements will have diminished the recruitment of people with severe or moderate, or
even mild, ME/CFS symptoms. UKB blood samples were acquired and analysed as described
previously [45, 46, 47]. On average, the body mass index (BMI; UKB field 21001) of cases is
significantly, but only slightly, higher than the BMI of controls (27.96 ± 4.62 for 386 male cases
vs 26.80±3.58 for 55, 572 male controls, with t = 4.92 and p = 10−5, Welch’s t-test; 27.70±5.83
for 1069 females cases vs 25.82 ± 4.39 for 75, 731 female controls with t = 10.68 and p < 10−12,
Welch’s t-test).

For blood traits, we included two composite markers of insulin resistance: the triglyceride glu-
cose (TyG) index [48, 49], and TG-to-HDL-C ratio [50]. Note that TyG is normally calculated
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using fasting levels of triglycerides and plasma glucose [51], but these are not available from the
UK Biobank. The ratio of triglycerides to HDL-cholesterol correlates inversely with the plasma
level of small, dense LDL particles.

For NMR metabolomics, we removed individuals whose NMR metabolite measurement has a
QC flag indicating irregularities in the measurement, as per UKB category 221.

For each estimator of type TE, NDE and NIE (below), we only considered individuals with
the relevant variables measured. Specifically, for TE, we restricted to individuals with measured
age, sex and outcome variable. For NDE and NIE, we additionally restricted to individuals with
measured mediators of activity. Furthermore, for NDE and NIE, we removed individuals who
answered ‘do not know’ or ‘prefer not to answer’ to the activity question (UKB datafield 874,
884, or 894).

4.2. Mediation estimators. Causal mediation analysis, concerned with the quantification of the
portion of a causal effect of an exposure on an outcome through a particular pathway, has been
extensively discussed in the literature [52, 53]. The methodologies utilised in this work build upon
natural (or pure) mediation estimands [20, 21]. Strategies for the construction of efficient estima-
tors of non-parametrically defined causal mediation estimands, capable of incorporating machine
learning, have been used in a variety of applications. Recent examples include understanding
the biological mechanisms by which vaccines causally alter infection risk [54, 55, 56, 57], quan-
tifying the effect of novel pharmacological therapies on substance abuse disorder relapse [58, 59]
and the effects of housing vouchers on adolescent development [60], and modeling the effects of
health disparities on quality of life [61]. Here we use state-of-the-art semi-parametric estimation
techniques for non-parametric causal mediation analysis [62], implemented in the R package
medoutcon [63, 64].

The NDE and NIE are mediational estimands that decompose the average effect (or average
treatment effect, ATE) of ME/CFS status on molecular and cellular traits, Eq. 1.

NDEs involve a comparison of two counterfactual trait outcomes, specifically:

(I) the level of the trait in a hypothetical scenario where every individual has ME, but rather
than allowing ME/CFS to determine the level of activity, we fix their level of activity to the
values they would naturally assume if they were not to have ME; and,
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(II) the level of the trait in a hypothetical scenario where every individual is in the control
group and their levels of activity are allowed to naturally respond to being in the control group.

Comparison of these two trait levels yields a “direct” causal effect that quantifies the effect
of ME/CFS on the trait through all paths other than the one mediated by activity.

NIEs involve a comparison of two counterfactual trait outcomes, specifically:

(III) the level of the trait when every individual has ME/CFS and their levels of activity are
allowed to naturally respond to ME; and,

(IV) the level of the trait in a hypothetical scenario where every individual has ME, but rather
than allowing ME/CFS to determine the level of activity, we fix their activity level to the value
they would naturally assume if they were not to have ME.

Comparison of these two trait levels yields a causal “indirect” effect that quantifies the impact
of ME/CFS on trait through activity (NIE). Crucially, the counterfactual trait outcomes (I) and
(IV) are exactly the same quantity, and this insight gives rise to the “mediation formula” as
follows:

E[Y (1) − Y (0)]︸ ︷︷ ︸
ATE

= E[Y (1, M(1)) − Y (0, M(0))] (1)

= E[Y (1, M(0))]︸ ︷︷ ︸
I

−E[Y (0, M(0))]︸ ︷︷ ︸
II︸ ︷︷ ︸

NDE

+E[Y (1, M(1))]︸ ︷︷ ︸
III

−E[Y (1, M(0))]︸ ︷︷ ︸
IV︸ ︷︷ ︸

NIE

,

where Y (1) and Y (0) are potential outcomes in which an individual does or does not have
ME, respectively. Similarly, Y (1, M(0)) is the potential outcome of an individual who has
ME/CFS and whose mediator takes on the value it would have had if the individual did not
have ME/CFS (given in words as (I) and (IV) above). Note also that Y (1) = Y (1, M(1)) and
Y (0) = Y (0, M(0)). The left hand side of Eq. 1 defines the average treatment effect (ATE) of
ME/CFS on blood trait Y , which we refer to as the total effect (TE). The right hand side of
this equation is the sum of the NDE and NIE.

Causal identification is the process of turning a causal quantity we wish to estimate (causal
estimand – a functional of unobservable counterfactual data) into a statistical quantity we can
estimate from observed data (statistical estimand – a functional of observed data). Causal
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identification does not require access to any data and is entirely distinct from statistical inference.
There are 5 assumptions required for causal identifiability of Eq. 1:

(i) the Stable Unit Treatment Values Assumption (SUTVA) which includes consistency and
no interference between units [65, 66];

(ii) exchangeability (unconfoundedness), which is analogous to the randomization assump-
tion applied to a joint intervention on both the treatment variable (here ME/CFS) and
the mediator (here activity);

(iii) treatment positivity, which states that it must be possible to observe any given treatment
value (here ME/CFS) across all strata of baseline covariates (age and sex);

(iv) mediator positivity, which states that it must be possible to observe any given mediator
value across all strata defined by both treatment (ME/CFS) and baseline covariates (age
and sex); and,

(v) Cross-world counterfactual independence Y (T = t, M = m) ⊥⊥ M(T = t′) conditional
on covariates, which is not empirically verifiable [67].

In our case, we do not claim causal identifiability because the assumptions of unconfoundedness
(ii) may be violated, as made explicit in Fig. 1A (in red). Nevertheless, we can estimate the
NDE and NIE as statistical quantities knowing that any causal gap will not be due to age or
sex, as both of these variables have been taken into account as confounders.

4.3. Super Learner and one-step estimation. We have used semi-parametric efficient estimators
to estimate the TE, as well as the mediation effects NDE and NIE [64], on multiomic measure-
ments. This estimation procedure consists of an initial Super Learner (SL) [68] fit to estimate
relevant nuisance functions in as flexible a manner as allowed by the available data. This ensures
that any model mis-specification bias is minimised. We then construct estimates of the NDE
and NIE using a one-step bias-correction procedure, which appropriately handles the use of SL
for nuisance parameter estimation while also allowing for uncertainty quantification, facilitating
the construction of valid Wald-style confidence intervals based on the asymptotic properties of
the one-step bias-corrected estimator [69]. The precise specification of these estimators is as
follows.

For the total effect, we have used the R package npcausal [70]. This package relies on the
SuperLearner R package to specify models for fitting nuisance functions. We used:

(1) SL.earth, an implementation of multivariate adaptive regression splines [71];
(2) SL.glmnet, penalised regression with a generalised linear model and hyperparameter

α = 1, i.e., L1-penalised or Least Absolute Shrinkage and Selection Operator (LASSO)
regression, with default 10-fold cross-validation;

(3) SL.glm.interaction, generalised linear model with main terms and 2-way interactions;
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(4) SL.xgboost, extreme gradient boosting (XGB) used with default parameters [72].
For the mediation effects NDE and NIE, we used the R package medoutcon [63]. This package

instead relies on the sl3 R package [73], an implementation of the ensemble machine learning
algorithm of [68], to specify models for fitting nuisance functions. We used:

(1) Lrnr_earth, an implementation of multivariate adaptive regression splines [71];
(2) Lrnr_glmnet, penalised linear regression with a generalised linear model and hyperpa-

rameters α = 1, i.e., L1-penalised or Least Absolute Shrinkage and Selection Operator
(LASSO) regression, and default 3-fold cross-validation;

(3) Lrnr_glm_fast, a fast implementation of a generalised linear model used with main
terms and 2-way interactions; and,

(4) Lrnr_lightgbm, a fast and memory-efficient implementation of extreme gradient boost-
ing (XGB) models from the lightgbm R package [74], used with default parameters.

The estimation of NDE and NIE relies on the fitting of further nuisance functions for which
we have used algorithms, such as the Highly Adaptive Lasso (HAL) [75, 76, 77], and parameter
specifications recommended by medoutcon.

4.4. GO enrichment analysis. We performed Gene Ontology analysis [78, 79, 80] on the set of
significant TE estimates (positive only, negative only, or all combined) obtained from the male,
female or combined populations. For the background protein set, we used all 2,923 proteins
measured in UKB.

We obtained significant results only for the set of proteins with a significant positive total
effect in the female subset of the population at FDR < 0.05. The results are presented in
Fig. S3. We used Rrvgo [80] to reduce redundancy of GO terms.
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Figure S1. ME/CFS sample sizes for males and females, restricting to complete cases (individuals
for whom a measurement is available). The minimum number of cases is indicated on each plot. (A)
Blood traits, (B) NMR metabolites, (C) Proteomics. Neither of the two proteins with case sample size
below 30 is significant after FDR correction. Full sample size data is provided as Supplementary Table
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Figure S3. GO pathway enrichment [78] for proteins with a significant positive total effect for
ME/CFS vs control, restricted to females only. This is the subset with maximal power for GO analysis.
All effects are TE, i.e., there are no significant NIE for proteins. We performed a similar pathway GO
enrichment analysis for proteins with a significant positive total effect for ME/CFS vs control on the
population of males and the combined dataset, as well as all significant negative total effects and all
significant total effects on the female, male and combined populations. These resulted in no significant
GO term enrichments at FDR< 0.05. All measured UKB proteins were used as background for the GO
analyses.
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Figure S4. Significant blood traits are robust to winsorisation. The points represent total effect z-
scores for blood traits in the combined female and male analysis. The three shades of grey represent
different degrees of winsorisation of the original data, with cases and controls combined prior to win-
sorisation. Nucleated red blood cell count and percent are only estimable at 0% winsorisation because
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