
1 
 

The public health co-benefits of strategies consistent 1 

with net-zero emissions: a systematic review of 2 

quantitative studies 3 

 4 

Léo Moutet,
1,

*, Paquito Bernard,
2
 Rosemary Green,

 3
 James Milner,

3,4
 Andy Haines,

3,4,
 Rémy 5 

Slama
5,6

 Laura Temime,
1
 and Kévin Jean

1,6,7
 6 

 7 

1 MESuRS Laboratory, Conservatoire national des Arts et Métiers (Cnam), Paris, France 8 

2 Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - 9 

UMR_S, 1085, Rennes, France 10 

3 Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, 11 

London WC1E 7HT, UK 12 

4 Department of Public Health, Environments and Society, London School of Hygiene & Tropical 13 

Medicine, London WC1H 9SH, UK 14 

5 Smile Team, IBENS, Inserm, École Normale Supérieure (ENS-PSL), CNRS, INSERM, Paris, France 15 

6 PARSEC (Paris Recherche Santé Environnement Climat), Ecole Normale Supérieure, Inserm, Paris, 16 

France 17 

7 Eco-Evolutionary Mathematics team, IBENS, École Normale Supérieure, CNRS, INSERM, Université 18 

Paris Science & Lettres, Paris, France 19 

 20 

* Author to whom any correspondence should be addressed. Email: leo.moutet@gmail.com 21 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2024. ; https://doi.org/10.1101/2024.08.26.24312597doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.08.26.24312597
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

ABSTRACT 22 

Moving toward net-zero emission societies is projected to provide health co-benefits, yet their 23 

magnitude is not well documented and may be context-specific. Synthesizing the evidence on these 24 

co-benefits could enhance the engagement of decision-makers and populations in climate mitigation 25 

actions. We performed a systematic review including 58 quantitative studies exploring 125 scenarios. 26 

Across air quality, physical activity and dietary changes pathways, substantial health co-benefits were 27 

found, with half of scenarios showing a mortality reduction by more than 1.5%, in addition to 28 

benefits directly related to climate stabilization. However, these co-benefits varied with explored 29 

emission sectors, decarbonization levers, modelling approaches and locations. Among studies 30 

including a cost-benefit analysis, 11 of 13 estimated that monetized benefits outweighed the costs of 31 

implementing climate policies. This review highlights the need for a standardised framework to 32 

assess and compare health impacts of climate mitigation actions across sectors, and confirms that 33 

achieving net-zero goals supports far-reaching public health policies. 34 

Keywords: Health impact assessment, Net-zero emission pathways, Systematic review, health co-35 

benefits of climate policies, climate change mitigation  36 
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INTRODUCTION 37 

In 2016, 196 governments signed the Paris agreement that aims to  reduce anthropogenic 38 
greenhouse gas (GHG) emissions to net-zero by mid-century to limit global warming well below 2°C 39 
above preindustrial levels.1 Resulting nationwide commitments, identified as Nationally Determined 40 
Contributions (NDCs), fall short  of  addressing these objectives and a majority of currently 41 
implemented policies do not achieve pledged contributions.2,3 Beyond NDCs, various governmental 42 
or non-governmental organizations have been developing roadmaps that outline technical and 43 
political solutions for society to attain net-zero emissions  (i.e. GHG emissions reduced to the lowest 44 
possible level with remaining emissions being offset by natural or artificial carbon sinks). These 45 
strategies activate different levers, such as technological innovation improving energy efficiency and 46 
allowing decarbonized energy production; or political, fiscal and behavioural instruments, reducing 47 
the use of energy and materials, often referred to as demand-side policies. 48 

Many climate mitigation policies are likely to also benefit human health by directly and indirectly 49 

targeting modifiable environmental and behavioural risks, such as air pollution or diet.2,4 Several 50 

studies have assessed the health co-benefits arising from either single climate mitigation actions or 51 

regional or national multi-sectoral climate policies.5,6 Recently, the Lancet Pathfinder initiative 52 

produced an umbrella review exploring the health co-benefits of a wide range of specific GHG 53 

mitigation actions.4 As yet, no systematic review has explored the health impact of  combinations of 54 

actions aimed at achieving net-zero emissions.  55 

Such an appraisal could provide valuable insights for identifying specific health pathways, sectors of 56 

activity or levers of decarbonization that are likely to optimize the co-benefits of climate mitigation 57 

actions. Summarizing the existing evidence regarding the health co-benefits of pathways to net-zero 58 

GHG emissions is also key to increasing the commitment of people and their governments to climate 59 

actions in a context where implemented or pledged policies fall short of  the goals of the Paris 60 

Agreement.7,8  61 

Here, we systematically reviewed the current evidence regarding the health co-benefits of 62 

prospective net-zero GHG emission scenarios (thereafter “net-zero scenarios”). We compare the 63 

predicted health co-benefits across published health impact assessment (HIA) studies, accounting for 64 

various sectors of activity and co-benefit pathways. We also identify the main gaps in knowledge, 65 

needs for future research, and provide some recommendations for health impact assessments of  66 

prospective net-zero emission scenarios.   67 
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METHODS 68 

We conducted a systematic review, following the Preferred Reporting Items for Systematic Review 69 

and Meta-analysis (PRISMA) 2020 guidelines9. The PRISMA checklist is available as Table S1. The 70 

study protocol was registered in PROSPERO (ID: CRD42023429759). 71 

Search strategy 72 

We searched three literature databases for studies published prior to January 2024: PubMed, Web of 73 

Science and Scopus. The search query included two mandatory terms, referring to health or mortality 74 

on the one side; and to net-zero emissions targets or limited climate change on the other. The 75 

detailed strategy is available in Table S2. 76 

Selection criteria and screening 77 

Studies were screened by two independent reviewers (LM and KJ) using the Covidence management 78 

tool.10 A third researcher (LT) resolved any conflicts. 79 

Screening was first carried out based on titles and abstracts (step 1), from which only original 80 

research pieces were included. At this stage, we only included studies explicitly referring to a GHG 81 

emission objective and assessing quantitative health outcomes or an economic valuation of health 82 

impacts. Qualitative studies, reviews, meta-analyses or opinion pieces were excluded although we 83 

screened meta-analyses and reviews for potential studies to include. 84 

In the full-text assessment (step 2), we included studies which: 1) relied on a prospective scenario 85 

that included socio-economic and/or technical choices sufficient to attain net-zero GHG emissions or 86 

meet Paris agreement objectives (a climate warming limited to 1.5 °C or failing that to well under 2 87 

°C); 2) provided quantitative estimates of health impacts or economic assessments of such benefits; 88 

and 3) explored at least one health co-benefit pathway of mitigation actions. The studies were not 89 

required to assess all health pathways that would be affected by the emission sectors considered in 90 

the overall prospective scenario.  91 

Co-benefits pathways were defined here as climate mitigation actions that improve human health by 92 

pathways, unmediated by climate. They included, but were not a priori limited to, air quality 93 

improvement, enhanced active transport and healthy dietary patterns. We considered the mitigation 94 

of extreme heat or extreme climatic events as a direct benefit of climate mitigation policies; and 95 

therefore excluded them from quantitative analyses. 96 

Data extraction 97 

For all included articles, two authors (LM and PB) independently extracted information on the 98 

following characteristics: time and geographical scale, emission sector(s) considered (power 99 

generation, transportation, agriculture), explored co-benefits pathways (e.g. diet, physical activity, air 100 

pollution…) and assessed health outcome metrics (number of deaths prevented, life-years gained…). 101 

When available, the disaggregated impacts estimated across different sectors or pathways were 102 

extracted. We also retrieved characteristics regarding the modelling methods: demographic 103 

hypothesis, models of exposure, health impact assessment approach, and exposure-response 104 

function applied.  105 

For each study (and each scenario assessed when the study assessed several), we categorized net-106 

zero scenarios based on the major lever of mitigation assumed, using the following in-house 107 
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categorisation: energy decarbonization, demand reduction, health in climate policies, financial 108 

instrument. Baseline scenarios were also categorized based on their assumptions regarding evolution 109 

of GHG emissions or utilization of a reference year (Figure S1).  110 

Confidence assessment 111 

Since there is no validated tool to assess methodological bias in health impact assessment studies, 112 

we referred to guidelines reported by Hess et al for modelling and reporting health effects of climate 113 

change mitigation actions.11 Among 36 modelling and/or reporting criteria suggested by Hess et al, 114 

we retrieved those relevant to our study context and merged them into major topics, ending up with 115 

13 final criteria (see table S3 for details). 116 

Health impacts scaling 117 

In order to compare health impacts across studies, we retrieved and scaled estimates of the number 118 

of deaths prevented and/or life-years gained. When only life-years gained were estimated and if the 119 

region of investigation was available in the Global Burden of Disease 2021, they were converted into 120 

premature deaths prevented.12 The scaled outcome analysed was the preventable mortality fraction, 121 

estimated based on the ratio between the number of deaths prevented by a scenario relative to a 122 

baseline and the number of deaths projected for the associated location, time and age range. More 123 

details on the scaling calculations are provided in supplementary text 1. Analyses were conducted 124 

using R and are available at:  https://github.com/LeoMoutet/revue_syst.  125 
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RESULTS 126 

Descriptive findings 127 

Figure 1. Flow-chart of study selection 128 

 129 
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We identified 3,976 records from the three databases, of which 1,433 duplicates were removed 130 

(Figure 1). Of the 2,582 abstracts screened (step 1), 92 qualified for full-text screening. In the full-text 131 

assessment (step 2), 34 studies were excluded, mainly because they did not estimate quantitative 132 

health metrics (n=10) or because they were not explicitly based on net-zero scenarios (n=14). All 133 

corresponding authors from included studies were contacted in December 2023 to request potential 134 

relevant unidentified peer-reviewed studies, resulting in the inclusion of two additional studies. 135 

Eventually, 58 studies met our inclusion criteria.  136 

In addition to 12 worldwide studies,13–24 eight were conducted on a multinational scale (Figure 2) 137 

involving from two to 139 countries5,6,25–30, and 25 on single countries. These national assessments 138 

focused on north-east Asia,31–48 Europe,49–52 India53,54or the USA55 and 13 sub-national studies 139 

conducted in east-China,56–61 Europe,62,63 California (USA),64–66 Virginia (USA),67 and Santiago de 140 

Chile.68  141 

 142 

Figure 2. Geographical distribution of studies included. Worldwide studies (n=12) are not 143 

represented on the map. 144 

 145 
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The main characteristics of included studies are described in Figure 3. The majority (91%) of the 146 

included papers were published since 2018 (Figure 3A).  147 

 148 

Figure 3. Descriptive analysis of included studies, by publication year (A), type of scenario (B), 149 

emission sector (C) and co-benefit pathway studied (D). 150 

 151 

Net-zero emission scenarios 152 

14 studies assessed comprehensive scenarios from external prospective net-zero emission plans, i.e. 153 

developed by a governmental or non-governmental institution. Ten studies based their scenarios on 154 

official NDCs and 20 studies relied on the temperature target from the Paris agreement to estimate 155 

subsequent GHG emissions and air pollution projections. For 14 studies, the authors developed an in-156 

house scenario (e.g. Net-zero CO2 emission target year for each G20 countries) to assess the impacts of 157 

various specific measures (more details in supplementary text 2). 158 

Out of 125 scenarios, 58 provided specific details on the projected levers to achieve net-zero 159 

emissions (Figure 3B). The main policy lever identified was decarbonization of the energy sector 160 

through the scale-up of technologies such as carbon capture and storage, renewable energy, 161 

electrification or development of nuclear energy production. Some scenarios aimed specifically at the 162 

improvement of human health in a “health in all policies” approach, most commonly by improving air 163 

quality.5,18,19,21,27,29,38,53,57,62,66,68 A few scenarios relied on demand-side interventions (e.g. decreased 164 

energy or transport demand, n=7)6,17,31,35,47,52,56 or financial instruments (e.g. carbon taxes or prices of 165 

parking, n=4)16,53,62,66, projected to induce various behavioural shifts (Figure S1).  166 

Emission sectors and co-benefit pathways considered  167 

Heterogenous combinations of emission sectors and co-benefits pathways were explored (Figure 4). 168 
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The emission sectors most frequently studied were energy (n=40), transport (n=27), industry (n=21), 169 
housing (n=15) and Agriculture, Forestry and Other Land Use (AFOLU) (n=13) (Figure 3C). A majority 170 
(n=23) of the studies were multi-sectoral and 14 studies modelled global anthropogenic emissions, 171 
with some studies including natural emissions (such as vegetation fire, dust, sea sprays, biogenic 172 
volatile organic compounds…). These models do not incorporate any specific changes in natural 173 
emissions based on the scenarios. The vast majority of studies (n=56) assessed health impacts 174 
related to air quality, including fine particulate matter or PM2.5 (n=53), O3 (n=22), SO2 (n=4), NOx 175 
(n=3), NO2 (n=4), and PM10 (n=3); five of these included household exposures to PM2.5 (n=5), radon 176 
and tobacco smoke (n=2), O3 (n=1), increased winter temperature attributable to home energy 177 
efficiency (n=1) and mould (n=1). Out of the studies including PM2.5, 17 considered specifically black 178 
carbon. Six scenarios investigated physical activity enhanced by active transport, while five scenarios 179 
examined dietary changes, with notably a reduction in red meat consumption (Figure 3D). Two 180 
studies combined air pollution, diet and physical activity,5,6 two studies focused exclusively on 181 
physical activity 52,62 and one on household air temperature and air quality (PM2.5, radon, tobacco 182 
smoke and mould).63 183 
 184 

Figure 4. Linkage between typology of scenario, sector of emission, co-benefit pathway and health 185 

outcome across net-zero scenarios. Each scenario can have links to several emissions sectors, 186 

exposition and outcome. AFOLU: Agriculture, Forestry and Other Land Use. 187 

 188 
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Methods used 189 

Various health outcomes were quantified in the studies selected: 46 estimated the number of 190 

premature deaths prevented, four calculated changes in life expectancy, six assessed life-years 191 

gained and one calculated disability-adjusted life years. Additionally, seven studies specified 192 

morbidity outcomes and 28 studies conducted an economic assessment, mainly using the value of a 193 

statistical life year (n=24), with some studies adding a cost of illness (n=5) or a social cost of carbon 194 

(n=2) assessment. Others based their assessment on external costs from the European Commission 195 

(n=2), the unit value of health outcome (n=1) or the cost of conserved energy (n=1). 196 

Several framework for modelling exposure were used across included studies to: 1) spatialize air 197 

pollution concentrations based on emissions reduction using a single model or a model mixture 198 

(atmospheric-chemistry, energy system, integrated assessment with air quality module); 2) attribute 199 

health outcomes to changes in active transport in the population; 3) attribute health outcomes to 200 

changes in dietary patterns in the population.  201 

Methods to quantify health impacts were more limited in number, with 44 studies using comparative 202 

risk assessment methods (CRA), 13 studies relying on lifetable approaches, and one employing 203 

microsimulations.53  204 
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Confidence assessment 205 

According to our criteria adapted from Hess et al.11, general modelling methods were overall well 206 
conducted (Figure 5, criteria 1 to 6). The policies, scenarios and timeframes were well defined, 207 
whereas the most overlooked criterion was the evaluation of the equity impacts of policy adoption. 208 
Discussion of the adverse consequences of mitigation actions, sources of uncertainty and sensitivity 209 
analyses were limited. There were also very little data and code publicly available. Detailed results of 210 
the confidence assessment by study are available in Table S4. 211 

 212 

Figure 5. Confidence assessment of included studies per criterion adapted from Hess et al.
11

  213 

 214 
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Synthesis of the evidence 215 

Quantitative health impact 216 

We were able to retrieve and scale the preventable mortality fraction of 96 scenarios across 45 217 

studies. Across these scenarios, two (from one study) reported detrimental health impacts (i.e. 218 

adverse effects on health) in the energy sector (-0.09% and -0.04% of mortality fraction).51 All other 219 

scenarios (i.e. 94 over 96) yielded considerable reductions in all-cause mortality, with an inter-220 

quartile range between 0.55% and 3.59%, and up to 18.74% (highest estimated impact),45 with a 221 

median value of 1.48% (Figure 6A). The estimated health impacts seemed lower in studies using 222 

lifetables and higher when accounting for increasing GHG emissions in the baseline scenario (Figure 6 223 

B/C), a finding which holds true even when considering air pollution pathway only (Figure S2). 224 

Although very few studies assessed the impacts of diet and physical activity pathways, the benefits 225 

arising from changing their patterns have the potential to yield significant health benefits (Figure 6D). 226 

Modelling emissions from multiple or unique sectors may have provided as much health benefit 227 

compared with using whole economy models (Figure 6E). We did not identify any single common 228 

factor among the scenarios that yielded the greatest health benefits. When comparing the economic 229 

benefits arising from health impacts and the implementation costs of the policies (n=13), most 230 

studies (n=11) found net benefits and two found a partial compensation (or a net benefit depending 231 

on the country). 232 

 233 

Figure 6. Preventable mortality fraction (%) across net-zero scenarios. We depicted all scalable 234 

mortality fractions from our total sample  (A) and stratified by health impact assessment methods 235 

(B), choice of  the baseline scenario (C), type of co-benefit pathway (D) or sector of emission (E). 236 

Horizontal bar represents the median value of preventable mortality (%). CRA: Comparative risk 237 

assessment. 238 

 239 
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Health impact across emission sectors and pathways of co-benefits 240 

Most studies focused only on air pollution in association with one or several emission sectors (Figures 241 

6D and S2), with a wide amplitude of health impacts, as for physical activity and diet pathways.  242 

Regarding the most frequently studied air pollutants, fine particulate matter <2.5µm (PM2.5) and 243 

ozone (O3), the sectors associated with the largest health co-benefits were industry, household, 244 

energy, transport and agriculture.26,42,46,68 Population density, the sectors of emissions and baseline 245 

levels represented important drivers of potential health benefits arising through better air 246 

quality.24,26,37,47,66 Health co-benefits from decreasing air pollution arose mainly from reduced acute 247 

and chronic cardiovascular and respiratory tract diseases.31,32,48,61 248 

Increased physical activity also generated substantial public health benefits, which were comparable 249 

to the gains expected by large scale health prevention interventions.52 In many countries, attainment 250 

of net-zero emissions yielded larger co-benefits through dietary shifts, compared to air pollution 251 

reduction or active travel.5 The pathway yielding the greatest health benefits depended on regional 252 

context and the number of mitigation actions modelled.5,6 253 

Health impact across the typology of net-zero scenarios 254 

Due to a higher potential for reducing air pollution, a scenario that implemented demand reduction 255 

policies provided greater health benefits than an energy decarbonization scenario.17 Greater benefits 256 

were expected if the energy sector was based on renewable instead of carbon capture and storage 257 

technologies.31 “Health in all policies” scenarios (electrification and clean renewable energy) yielded 258 

four times more health co-benefits than financial instrument (combustible renewable fuels).66 A city-259 

level study (Beijing) found that developing active travel and public transport yielded higher health co-260 

benefits than the electrification of private vehicles (even without accounting for increased physical 261 

activity).57 Different socio-economic projections, priorities given and levels of ambition yielded very 262 

different health impacts,19 especially for physical activity and diet.6 263 

Equity impact and regional disparities in net-zero scenarios 264 

Very few studies explored the distribution of health impacts regarding socially and economically 265 

marginalized populations (n=6). In India, health benefits of net-zero emission scenarios were 266 

modelled to be greater for men, urban and high socio-demographic index population.54 The 267 

implementation of integrated climate, air quality, and clean energy access interventions had a 268 

synergistic impact, avoiding millions of stunted children, particularly for the most disadvantaged 269 

children and geographic regions.53  270 

Ambitious GHG reduction efforts in California provided substantial health co-benefits, especially for 271 

residents of disadvantaged communities.64 In the US, the enhanced electrification of the transport 272 

sector was shown to benefit disadvantaged communities more effectively than building 273 

electrification.65 Accounting for air pollution-related health impacts showed that climate policies 274 

have the potential to reduce inequality and increase welfare at several geographical scales, partly 275 

because the most disadvantaged communities were more exposed in some regions.16,67 However, 276 

even if inequalities were reduced with air quality improvements, they would remain high as long as 277 

control measures do not target lower-income regions.20 278 

Partially due to a high baseline exposure and population density, air pollution co-benefits were the 279 

greatest for China (Figure S3) and India.5,15–17,20–22 In G20 countries, benefits were mainly attributable 280 

to PM2.5 emission reduction.26 Mitigation policies affecting air pollution emissions had substantial 281 

transboundary health impacts, with the transport sector being a major contributor to these benefits. 282 
13,26 Carbon trading based on historical mitigation rate and low-carbon investment transfer across 283 
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regions improved the efficiency of global mitigation actions in some contexts.14 Disparities in health 284 

impacts were also influenced by population aging, which is expected to increase in the coming years. 285 

However, the health co-benefits arising from air pollution mitigation have the potential to offset the 286 

effects of population ageing, even for a rapidly  ageing country such as China.41,43–45,59
  287 
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DISCUSSION 288 

Review findings 289 

Studies assessing the health impact of scenarios aiming at net-zero emissions show public health co-290 

benefits arising from a wide array of scenarios, emission sectors, and co-benefit pathways (Figure 4). 291 

98% of scenarios (94 out of 96) found favourable health impacts that depended on the scenario 292 

assumptions, co-benefits pathways and region of implementation. Half of scenarios yielded more 293 

than 1.5% of preventable mortality fraction. However, the preventable fraction cannot simply be 294 

extrapolated from one setting to another because of the heterogeneity in co-benefit pathways, 295 

demographic characteristics, modelling methods and assumptions. A large majority of studies that 296 

compared implementation costs with monetized health benefits (11 out of 13) reported that the 297 

costs of net-zero policies would be offset by the economic gains provided by health benefits. 298 

The available evidence mostly focused on three major health pathways, namely dietary risks, air 299 

pollution and physical inactivity, that have been estimated to be responsible for respectively up to 7, 300 

8 and 4 million global deaths annually.12,69,70 Similarly to improved dietary patterns, reduced 301 

exposure to air pollution would have the potential to yield very important health benefits, especially 302 

in high-density and polluted regions.5 More comprehensive policies also targeting household air 303 

quality could yield larger health benefits in some regions.6 Active transport policies also have a great 304 

potential where the lack of physical activity already induces a high health burden.5  305 

Our review identified several sources of variability in the assessed impacts. In the reviewed studies, 306 

most health impacts were assessed either by CRA or lifetable approaches. CRA is a simpler approach 307 

but might overestimate health impacts because it completely averts a proportion of deaths. Lifetable 308 

approaches adopt a more realistic model of deaths over time, as they account for age-specific 309 

mortality in the population.71 The assumptions regarding the baseline scenario, especially the 310 

evolution of GHG emissions, might affect the magnitude of predicted health outcomes (Figure 6C).  311 

Explored scenarios and settings were also highly variable. Energy decarbonization based on various 312 

technologies received the highest attention, while many net-zero scenarios were not explicit in the 313 

transformations assumed to achieve net-zero. Despite their high mitigation potential and synergy 314 

with well-being, demand reduction strategies were often marginalized in climate policy and scenarios 315 

(Figure S1), with many studies failing to specify implementation mechanisms.4,72 A majority of studies 316 

were performed in high-income regions (Figure S4) and only a few addressed health inequalities  317 

despite their relevance for public health and environmental justice.73 318 

Implication of the results 319 

Given the long residence time  of some GHGs (especially CO2) in the atmosphere, accelerated and 320 

equitable mitigation actions have the potential to attain net-zero emissions only at mid- to long-321 

term, depending on the emission sector (2030-35 for AFOLU and 2050 for the industry).3 Conversely, 322 

these same actions have the potential to improve health and well-being in the near term2 by 323 

improving  cardio-vascular, respiratory and mental health outcomes associated with co-benefits 324 

pathways 74,75 particularly from air pollution, diet and physical activity.6 325 

Another important feature of health co-benefits of climate mitigation policies highlighted by this 326 

review is their largely unconditional nature. From a climate perspective, mitigation actions require to 327 

be implemented in a large part of countries and regions to allow for a control of global warming. This 328 

nature of climate benefits, which are conditional to global coordinated actions, may be prone to the 329 
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free-rider problem, where actors do not actively contribute to efforts while expecting to take 330 

advantage from collective benefits. Conversely, most of the studies projecting net-zero scenarios 331 

reported important health co-benefits while making no specific assumption regarding global 332 

coordinated climate actions. In other words, health co-benefits of mitigation policies are largely 333 

unconditioned to climate action from other countries or regions, and therefore likely less affected by 334 

the free-rider problem. For some pathways (such as physical activity and diet), the health benefits 335 

are restricted to the territories that implement the policies. For air quality, the magnitude of health 336 

benefits partially depends on the policies implemented by neighbouring countries,13,26 but out of the 337 

35 studies assessing air pollution pathway at a national or sub-national scale, 34 revealed that net-338 

zero policies would bring significant local air quality benefits, independently of the actions taken in 339 

neighbouring countries. 340 

Relying on monetary valuation of health impacts, studies have shown that health co-benefits of 341 

climate policies have the potential to outweigh the costs of net-zero policies, depending on the 342 

region, with India and China showing the largest benefits. The Intergovernmental Panel on Climate 343 

Change (IPCC) also reports that the global benefits of climate policies (not accounting for health) 344 

exceed the cost of mitigation.2 Economic impact assessments anticipate other benefits directly or 345 

indirectly affecting human health, such as the net creation of millions of jobs, fewer work loss days 346 

and tens of billions of dollars for labour productivity, crop yield increase, reduced hospital 347 

expenditures 13,25,55,67 and a more resilient energy system.18 348 

Research gaps   349 

The high heterogeneity of retrieved studies regarding scenarios, emission sectors, co-benefit 350 

pathways and modelling approaches prevented us from drawing conclusions about a clear ranking of 351 

co-benefits pathways in terms of potential health impact. In addition, our comparison of health 352 

impacts does not account for factors that could potentially lead to differences across studies, 353 

particularly due to variations in locations and study populations.  354 

While our review highlighted important health and economic benefits, numerous health impacts 355 

remain underestimated. For instance, modal shift to active mode of transportation could provide 356 

additional health co-benefits by reducing noise exposure.76 Included HIAs also fail to address mental 357 

health impacts, despite evidences suggesting an association between air quality and physical activity 358 

with mental health.74,77 Adaptation measures not accounted for, such as urban green space, also 359 

have the potential to yield substantial health benefits.78 Incorporating household pollution is 360 

essential for assessing potentially detrimental health impacts associated with poorly ventilated 361 

housing.63 Lastly, only one study considered the impact of prenatal environmental exposures.53 362 

Uncertainties in health impact quantification also result from difficulties in considering multiple 363 

parameters such as specific exposure-response functions (across age, sex or social factors) or the 364 

specific distribution of exposures among the studied population. For each mitigation action, there 365 

are also potential positive synergistic effects that can be hard to account for in quantitative 366 

assessments, such as reduced air pollution emissions along with changes in active transport and 367 

dietary patterns. Conversely, extreme climate hazards can restrain cycling behaviours, and health 368 

impacts from combined air pollution and heat exposure are exacerbated.79 Prospective assessments 369 

also assume a consistent healthcare system efficiency across all scenarios while higher air pollution 370 

and temperature are associated with increased hospital admissions.80 371 

Many of the studies and scenarios are from high and upper-middle-income regions, where the 372 

mitigation efforts are expected to be the greatest, and therefore related societal changes are 373 
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expected to be important. Whether the magnitude of health co-benefits would be of the same scale 374 

in low-income countries remains unclear and will greatly depend on levels of fossil fuel related air 375 

pollution, dietary patterns and levels of physical activity.69 For instance, evidence suggests that air 376 

pollution reduction (and notably household  pollution from cooking stoves) could have a high health 377 

co-benefit potential in India.53,54 Conversely, one study showed that only modest benefits may be 378 

expected in Nigeria from sustainable diet policies.5  379 

Evidence on the feasibility and acceptability of implementing assessed actions is limited. However, 380 

known effective interventions include dietary modifications through education, persuasion, and 381 

environmental restructuring.81 In the transport sector, active mobility policies are most effective 382 

when integrating safe walking and cycling infrastructure with strong public transport support and 383 

educational programs. 82 384 

Finally, we did not investigate grey literature due to methodological issues, and may thus, for 385 

instance, have missed assessments published as reports. 386 

Perspectives and future directions 387 

Several recommendations for future HIA of net-zero scenarios may be inferred from our review.  388 

First, studies should clearly state and justify which mitigation lever(s) are implied by the policy 389 

assessed to better estimate the impacts of diverse type of net-zero emission policies.17,57,62 While 390 

they gathered a relatively low research interest, demand-side mitigation policies are essential as they 391 

have the potential to induce fundamental lifestyle changes that would support the implementation 392 

of sustainable and healthy actions.72 Policies and actions must extend beyond technological 393 

efficiency improvements to address unsustainable systems that drive high energy and material 394 

demands, leading to elevated emissions while neglecting healthy environments.4 This is particularly 395 

evident in the transport sector, where decarbonization policies exclusively focused on technological 396 

improvements could exacerbate  physical inactivity in the population.83 397 

As aging populations can have a significant impact on estimates,45 HIAs should prefer lifetable 398 

approaches to estimate more accurately health impacts over time while baseline scenarios should 399 

include a projection of the studied population to compare the impacts based on the same population 400 

pyramid. Prospective HIAs of net-zero scenarios should carefully use adapted vulnerability indicators 401 

to assess health impacts when  possible and otherwise address inequality impacts qualitatively.84 402 

Assessment of energy decarbonization policies should address energy poverty which has 403 

environmental justice implications.85  404 

The lack of code and data sharing by most of the studies presents a significant barrier to advancing 405 

health impact monitoring associated with net-zero scenarios, such as the development of living 406 

systematic reviews. Accelerating research and monitoring of health impacts is essential to provide 407 

evidence-based and timely feedback to decision-makers. 408 

Finally, our review highlights a need for a standardized framework to assess the health impacts of 409 

net-zero emission scenarios. This framework should make use of already existing scalable tools and 410 

methods to compare prospective scenarios regarding the evolution of specific exposures, to 411 

incorporate a relevant baseline scenario and attribute health impacts across populations over time. 412 
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Conclusion 413 

Our synthesis of the available evidence suggests that achieving net-zero emissions across different 414 

sectors would generate large health co-benefits and prevent a considerable fraction of mortality. 415 

Therefore, each further delay in implementing transformative changes toward net-zero society may 416 

not only increase risks induced by climate change, but also represent a missed opportunity to 417 

improve human health. Especially because health co-benefits of climate mitigation policies are 418 

expected to manifest in the short term, are not conditioned to global coordinated climate action, and 419 

may outweigh the costs of mitigation policies, highlighting these health co-benefits make a strong 420 

case for driving impactful mitigation action.  421 
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