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2 

 

Abstract   21 

 22 

Frailty is a clinically relevant phenotype with significant gaps in our understanding of its 23 

etiology. We performed a genome-wide association study of frailty in FinnGen (N=500,737) and 24 

replicated the signals in the UK Biobank (N=429,463) using polygenic risk scores (PRSs). We 25 

prioritized genes through proteomics integration (N~45,000; UK Biobank) and colocalization of 26 

protein quantitative trait loci. Frailty was measured using the Hospital Frailty Risk Score (HFRS). 27 

We observed 1,588 variants associated with frailty (p<5×10-8) of which 1,242 were novel, i.e., 28 

previously unreported for any trait. The associations mapped to 106 genes of which 31 were 29 

novel. PRS replication validated the signals (β=0.074, p<2×10-16). Cell type enrichment analysis 30 

indicated expression in neuronal cells. Protein levels of KHK, CGREF1, MET, ATXN2, ALDH2, 31 

NECTIN2, APOC1, APOE and FOSB were associated with HFRS, whereas colocalized signals 32 

were observed within APOE and BRAP. Our results reveal novel genetic contributions and causal 33 

candidate genes for  frailty.   34 
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Main 35 

Aging is a highly complex process with substantial heterogeneity in health trajectories among 36 

individuals. Frailty represents a clinically relevant aging phenotype that gauges health in aging1 37 

and predicts various adverse outcomes independent of chronological age2. Frailty describes a 38 

syndrome of decreased physiological reserves across multiple homeostatic systems1. Currently, no 39 

gold standard exists to measure frailty; instead, several scales with different properties have been 40 

developed, each capturing partially different at-risk populations3. Created based on 109 weighted 41 

International Classification of Diseases, 10th Revision (ICD-10) codes characterizing older adults 42 

with high resource use and diagnoses associated with frailty, the Hospital Frailty Risk Score 43 

(HFRS) presents a relatively new scale to measure frailty4. It has a fair overlap with existing frailty 44 

definitions based on the deficit accumulation (frailty index [FI]) and phenotypic (frailty phenotype 45 

[FP]) models of frailty and has a moderate agreement with the FI4.  46 

The etiology of frailty remains incompletely understood. Twin studies by us and others 47 

suggest that frailty, measured using the FI, is up to 52% heritable5,6, with relatively stable genetic 48 

influences across age7. To date, only two previous large-scale genome-wide association studies 49 

(GWASs) of frailty exist. Atkins et al. performed a meta-analysis GWAS of FI identified 34 loci 50 

and estimated the single nucleotide polymorphism (SNP) heritability of the FI at 11%8. Ye at al. 51 

identified 123 loci for FP and estimated the SNP heritability of the FP at 6%9. It is however likely 52 

that additional genetic signals exist and analyses in other large populations can shed further light 53 

on the genetic underpinnings of frailty.  54 

To the best of our knowledge, no previous studies into the genetics of frailty using HFRS 55 

as the definition exist. To this end, we set out to perform a GWAS of the HFRS in the FinnGen 56 

sample (N=500,737), with replication of the signals in using a polygenic risk score of the HFRS in 57 
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the UK Biobank (N=429,463). As dementia has the highest weight in the HFRS definition, we 58 

performed a sensitivity the analysis by removing the contribution of dementia from the HFRS. A 59 

functional follow up to identify causal genetic loci was performed through  integration of measured 60 

protein levels in the UK Biobank (N up to 44,678) and a colocalization analysis of protein 61 

quantitative trait locus (pQTL)10.  62 

 63 

Results 64 

Sample characteristics  65 

The workflow of the analyses is presented in Figure 1. In the HFRS GWAS and subsequent PRS 66 

analyses, we included 500,737 (282,202 females, 56.4%) FinnGen participants and 429,463 UK 67 

Biobank participants (232,380 females, 54.1%) of European descent (white British). 68 

Characteristics of the study populations are presented in Table 1.  69 

 70 

GWAS of HFRS  71 

We identified 1,588 variants associated (p<5×10-8) with the HFRS in the main analysis and 492 72 

variants in the sensitivity analysis removing the dementia weights from the HFRS (Figure 2a & b; 73 

Supplementary Tables 1 & 2). As dementia diagnosis has the highest weight in the HFRS formula, 74 

the most influential peak expectedly resided in the APOE (rs7412) region on chromosome 19 75 

(Figure 2a). Sensitivity analysis confirmed the expected loss of the APOE peak (Figure 2b). Of 76 

the 1,588 and 492 variants associated with HFRS and HFRS without dementia, 1,242 and 440, 77 

respectively, were novel with respect to the GWAS Catalog and previously reported GWAS results 78 

on the FI8, FP9 and mvAge11 (Supplementary Tables 1 & 2). The variants mapped to 106 and 50 79 

genes of which 31 and 8 were novel, i.e., previously unreported for any trait at p<5×10-8, also 80 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.26.24312584doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312584


5 

 

revealing unique (non-shared) associations in both analyses (Figure 3a, Supplementary Tables 1 81 

& 2). The overlap between our findings and previous GWAS on frailty and mvAge is presented 82 

individually for each GWAS gene set in Supplementary Figure 1.  83 

 84 

Genetic correlation and heritability 85 

We observed a lambda genomic control value of 1.27 with an intercept of 1.19 (standard error 86 

[SE]=0.011) for HFRS and 1.11 with an intercept of 1.23 (SE=0.010) for HFRS without dementia 87 

(QQ plots provided in Supplementary Figure 2). Despite the relatively high lambda values, the 88 

intercepts suggest that the inflation in test statistics was mainly due to polygenicity, rather than bias 89 

due to population stratification. The single nucleotide variant (SNP) heritability was 0.06 90 

(SE=0.002) for HFRS and 0.04 (SE=0.002) for HFRS without dementia. Statistically significant 91 

and positive genetic correlations (p<2.2×10-16) were observed between HFRS and previous 92 

GWASs on frailty and mvAge (Figure 3b).  93 

 94 

Cell type and pathway enrichment 95 

For HFRS, the top (p<3.7×10-5, corrected for multiple testing) cell types enriched for expression 96 

were limbic system neurons in cerebrum, excitatory neurons (Ex6) in visual cortex, 97 

oligodendrocyte precursor cells (OPCs) in cerebellar hemisphere and oligodendrocytes in 98 

cerebellum (Supplementary Figure 3 & Supplementary Table 3). For HFRS without dementia, 99 

the top cell types were OPCs and astrocytes in cerebellar hemisphere, skeletal muscle satellite cells 100 

in muscle, endocrine cells in stromal cells in stomach (Supplementary Figure 4 & 101 

Supplementary Table 4). Enrichr12 pathway analysis (adjusted p<0.05) showed that the top 102 

pathways for HFRS functions relevant to the nervous system (Herpes simplex virus 1 infection, 103 

Netrin Mediated Repulsion Signals), cell adhesion and lipid metabolism (Supplementary Table 104 
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5). For HFRS without dementia, none of the pathways were significant after multiple testing 105 

correction (Supplementary Table 6).  106 

 107 

Exploring potentially causal and functional variants through proteomics integration 108 

To identify potentially causal and functional variants (i.e., missense, splice region, loss of 109 

function and 5’ and 3’ untranslated region [UTR] variants associated with the HFRS and HFRS 110 

without dementia at p<5×10-7) (Supplementary Tables 7–8), we associated the protein levels of 111 

the corresponding prioritized genes to HFRS (13 proteins available in UK Biobank Olink 112 

platform) and HFRS without dementia (8 proteins available in UK Biobank Olink platform). 113 

After adjusting for birth year, sex, and the first 10 principal components (PCs), 9/13 (KHK, 114 

CGREF1, MET, ATXN2, ALDH2, NECTIN2, APOC1, APOE and FOSB) and 2/8 (CDK and 115 

POF1B) proteins were significantly associated with the HFRS and HFRS without dementia, 116 

respectively, at a false discovery rate (FDR) <0.05 (Figure 4 & Supplementary Table 9).  117 

 118 

Colocalization analysis  119 

We further conducted pQTL colocalization analyses for the 24 loci identified for HFRS and 15 loci 120 

identified for HFRS without dementia GWASs (Supplementary Tables 10 and 11). A total of 20 121 

loci for HFRS and 9 loci for HFRS without dementia had enough power for the analyses (posterior 122 

probability > 0.88, see Methods). Of them, the colocalized signal (i.e., shared single causal variant, 123 

H4<90, see Methods) was detected within APOE and BRAP genes for HFRS (Supplementary 124 

Table 10), whereas no colocalized signal was detected within genes for HFRS without dementia. 125 

For most of the tested genes, the H3 values were greater than or close to 90, indicative of distinct 126 

causal variants for protein levels and HFRS (Supplementary Tables 10 and 11). Regional 127 
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association plots of the APOE gene demonstrated that the strongest signal peak rs429358 and 128 

variants in high LD with it fall in the vicinity (Supplementary Figure 5A).  129 

 130 

HFRS PRS analyses in FinnGen and UK Biobank: early-onset frailty and outcome prediction  131 

The PRS of the HFRS (PRS-HFRS) was associated with HFRS in the full sample of the UK 132 

Biobank (β=0.074 per SD increase; p<2×10-16) after adjusting for birth year, sex, smoking and first 133 

10 PCs (Figure 5a). Next, using similar adjustments, we analyzed whether the HFRS-PRS could 134 

predict early-onset frailty i.e., HFRS>5 before age 65, and observed an odds ratio of 1.25 (p<2×10-135 

16) in the sample of all self-identified whites of the UK Biobank (Figure 5b). The estimates of the 136 

HFRS-PRS were essentially similar in men and women compared to the full sample across all 137 

analyses (Figure 5a–d). The numeric results of all the HFRS-PRS analyses are presented in 138 

Supplementary Table 14. Lastly, we examined whether the HFRS-PRS predicts all-cause 139 

mortality and number of hospitalizations and found significant associations with both outcomes 140 

(Figure 5c and d); adjusting for the HFRS-PRS based on a crude model with age and sex improved 141 

model performances (Supplementary Table 11).  142 

 143 

Discussion  144 

Our results represent the largest GWAS of frailty to date and the first GWAS of frailty assessed 145 

through the HFRS, revealing 1,588 variants, of which 1,242 were novel i.e., previously unreported 146 

for any trait. The variants mapped to 106 genes, of which 31 were novel and highlights that the 147 

genetic etiology of frailty is largely unrelated to previously known disease risk variants. Protein 148 

levels of KHK, CGREF1, MET, ATXN2, ALDH2, NECTIN2, APOC1, APOE and FOSB were 149 
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associated with HFRS, whereas colocalized signals were observed within APOE and BRAP. 150 

Enriched expression of the associated genes was observed in various neuronal cells, also when the 151 

contribution of dementia was removed from the frailty definition. Using the HFRS-PRS, we 152 

replicated the genetic signals in an independent sample (UK Biobank) and validated our findings 153 

(β=0.074, p<2×10-16). The HFRS-PRS also predicted early-onset frailty as well as all-cause 154 

mortality and number of hospitalizations.  155 

 The strongest GWAS signals were observed in the TOMM40/APOE/APOC1/NECTIN2 156 

locus on 19q13.3, a locus in strong LD and known for its associations with cognitive13 and 157 

cardiometabolic14 traits. We observed the strongest signal for the missense variant rs429358 158 

(388 T > C) that together with rs7412 defines the APOE ε2, ε3, and ε4 haplotypes. The rs7412 was 159 

however not associated with frailty in our study. A similar pattern of finding has been observed for 160 

longitudinal weight loss – a feature that also characterizes frailty – where rs429358 increased the 161 

risk, while rs7412 did not15. Previous studies have shown that this locus is pleiotropic, such that 162 

rs429358 influences cognitive traits, while rs7412 controls plasma lipid levels16. We did 163 

nevertheless identify lipid-level-increasing variants, such as the APOC1 rs4420638 (G allele)17 164 

associated with frailty, but lipid-associated variants were not abundant in our signals. Our 165 

sensitivity analysis removing the contribution of dementia from the HFRS truncated the 166 

chromosome 19 peak as expected and revealed additional loci. Of the 106 genes identified for 167 

HFRS, 16 were shared with HFRS without dementia, while 34 genes were unique to HFRS without 168 

dementia. Genetic correlation between HFRS and HFRS without dementia was nevertheless almost 169 

perfect (0.98), indicating the same underlying genetic construct. 170 

 Intersecting the HFRS-associated signals with previous frailty GWASs of FI8 and FP9 171 

revealed a negligible overlap. Genetic correlations between HFRS, FI and FP were nevertheless 172 
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moderate, ranging from 0.54 to 0.63. We estimated the SNP heritability of HFRS at 6%, an estimate 173 

in the same range as previously reported for the FI (11%)8 and FP (6%)9. In our previous study18, 174 

we assessed the phenotypic correlation between HFRS and FI at 0.21 and HFRS and FP at 0.31 in 175 

the UK Biobank participants, indicating somewhat lower than phenotypic correlations compared 176 

to their genotypic counterparts. These findings thus suggest that while the different 177 

operationalizations of frailty share their genetic etiologies to a significant extent, environmental 178 

risk factors and relevant interactions contributing to the expression of frailty may differ.  179 

  Cell type enrichment indicated enriched expression of the genes associated with the signals 180 

in various neuronal cells, such as limbic system and excitatory neurons, OPCs and 181 

oligodendrocytes located in the cerebrum, visual cortex, cerebellar hemisphere and cerebellum, 182 

respectively. Enrichment of OPCs (cerebellar hemisphere) persisted also after removing the 183 

contribution of dementia diagnoses from the HFRS. Expression enrichment in brain tissues was 184 

likewise observed in our previous GWAS of FI8 in which we identified frontal cortex BA9, 185 

cerebellar hemisphere, spinal cord cervical c‐1 and hippocampus as significant. The GWAS on FP9 186 

by Ye et al. also identified their genetic signals enriched in brain tissues, such as cerebellar 187 

hemisphere, frontal cortex BA9 and cerebellum. What is noteworthy is that neither FI or FP include 188 

any items of cognition or dementia diagnosis in the frailty definition. Our findings thus reinforce 189 

the role of central nervous system functions in frailty, regardless of the definition. The previous FI 190 

and FP GWAS signals were also enriched in inflammatory mechanisms or pathways8,9, a finding 191 

not observed by us with the exception of the Herpes simplex virus 1 infection pathway. Our 192 

pathway analyses instead highlighted cell adhesion and lipid metabolism relevant to the signals. 193 

Our results included several cell adhesion molecules, such as CNTNAP2, CADM1, NCAM1, PVR, 194 

NECTIN2, suggesting novel contributions to frailty. While cell adhesion molecules mediate the 195 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.26.24312584doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312584


10 

 

transport of leukocyte migration towards the inflammation site19, previous results linking cell 196 

adhesion directly to frailty are scarce, except for the association of circulating ICAM-1 with 197 

frailty20.  198 

 The protein level associations of the potentially functional variants with frailty revealed the 199 

largest effect sizes for CGREF1, NECTIN2, MET and APOC1, with elevated levels of the former 200 

two and lower levels of the latter two associating with higher HFRS score. CGREF1 is a secretory 201 

cell growth regulator whose involvement in disease is currently unknown. A previous GWAS has 202 

however demonstrated associations of CGREF variants with plasma lipids21. NECTIN2, a cell 203 

adhesion molecule and mediator of viral entry into neuronal cells has been linked to Alzheimer’s 204 

disease22 and plasma lipid profiles21 in previous GWASs. Elevated serum levels of NECTIN2 have 205 

been reported in colorectal cancer23. MET is a proto-oncogene and a receptor tyrosine kinase with 206 

previous GWAS findings on body height and liver enzymes24 but limited evidence on genetic 207 

disease associations. We found that lower plasma levels of APOC1 and APOE were associated with 208 

greater frailty, a finding that is in line with previous results on low APOE levels associated with 209 

progression of cognitive impairment25 and dementia-related mortality26. Findings on all-cause, 210 

cardiovascular and cancer mortality and APOE26, and hyperlipidemia and APOC127, nevertheless 211 

demonstrate higher levels of these proteins associated with increased risks, indicating pleiotropic 212 

functions of these proteins. When the dementia weights were removed from the HFRS, higher 213 

plasma levels of CDK1 and POF1B were associated with greater frailty. Previous findings on 214 

variants in these genes are limited to height28 and bone mineral density29 for CDK1 and 215 

velopharyngeal dysfunction30 for POF1B. Results from the pQTL colocalization analysis suggest 216 

that the same causal variants in APOE and BRAP, a BRCA1 associated protein, underlie the protein 217 
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level and HFRS. Most tested genes nevertheless showed distinct causal variants for the proteins 218 

and HFRS. 219 

 Replication of the GWAS signals through the HFRS-PRS in the UK Biobank validated the 220 

results, including individually for men and women. We also showed that the HFRS-PRS can 221 

identify individuals at risk of early-onset frailty. As frailty manifests relatively late in life for most 222 

individuals, risk assessment through PRS may offer possibilities for early intervention to mitigate 223 

frailty before it escalates where prevention is still effective. PRSs of various age-related phenotypes 224 

associated with negative outcomes, such as frailty, epigenetic clocks and functional capacity could 225 

perhaps be jointly considered to yield more robust predictions. Future studies are however needed 226 

to ascertain the clinical utility of such approaches.  227 

 This study has several strengths, the most notable being the large sample size, equaling to 228 

~1 million participants. Functional follow-up through proteomics integration provided additional 229 

insight into the roles of the identified genes in frailty. Our definition of frailty was based on clinical 230 

diagnoses in register data; such an approach has both advantages and disadvantages. A notable 231 

advantage is that in Finland and the UK, public healthcare is primarily tax-funded, and each citizen 232 

has equal access. With a diagnosis-based ascertainment of frailty, issues pertinent to self-reported 233 

data, such as recall bias and missing information were avoided. On the other hand, some conditions 234 

may be underreported in the registers, while others may have a lag from the onset of symptoms to 235 

assigning the diagnosis. We also note that the HFRS-PRS associations were weaker in the UK 236 

Biobank compared to FinnGen, a finding likely explained by healthy selection due to volunteer-237 

based participation to the UK Biobank compared to FinnGen that consists of national cohorts and 238 

biobank samples of hospitalized individuals. Also pertinent to all GWASs, the discovery samples 239 
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tend to have stronger association statistics compared to replication, a phenomenon known as the 240 

winner’s curse.  241 

 In conclusion, our results provide the first GWAS on HFRS and reveal novel genetic 242 

contributions and causal candidate genes. Our results also highlight previously unreported 243 

associations between cell adhesion molecules and frailty. Overall, the results reinforce previous 244 

findings that central nervous functions are relevant to the etiology of frailty, regardless of how 245 

frailty is defined. 246 

 247 

Methods 248 

Samples 249 

FinnGen is a large national genetic resource (N=520,210; Release 12) established in 2017 and 250 

consisting of Finnish individuals, aged 18 years and older at study baseline31. FinnGen includes 251 

prospective epidemiological and disease-based cohorts as well as hospital biobank samples. 252 

Information on diagnoses since 1969 was linked by the unique national personal identification 253 

number to national healthcare, population and cause of death registries and recorded using the ICD 254 

Revisions 8–10. Information on dates and causes of death were obtained via linkages to the 255 

population and cause of death registers through (September 30, 2023, R12 v1). After excluding 256 

individuals with missing information on baseline age, birth year and sex, and samples not passing 257 

genotyping quality control (see below), we included 500,737 FinnGen participants in this study.  258 

 The UK Biobank includes 502,642 volunteer participants, aged 37 to 73 years old at 259 

baseline, recruited through 22 assessment centers across England, Scotland and Wales between 260 

2006 and 201032. The participants provided self-reported information on demographics, lifestyle 261 

and disease history via questionnaire and underwent physiological measurements, including 262 
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providing a blood sample for genetics data. Hospital inpatient data were sourced from the Hospital 263 

Episode Statistics containing electronic medical records (i.e., ICD-10 codes) for all hospital 264 

admissions to National Health Service hospitals in England through December 31, 2022. Death 265 

register data covered all deaths in the population through December 31, 2022, including primary 266 

and contributory causes of death. Ethics statements of FinnGen and UK Biobank are presented in 267 

Supplementary methods.  268 

 269 

Assessment of frailty  270 

The HFRS was calculated according to a previously described protocol4 based on 109 weighted 271 

ICD-10 codes, such that each code was assigned with a weight ranging from 0.1 to 7.1 according 272 

to the strength of the association with frailty (Supplementary Table 12). The HFRS score was 273 

then calculated by summing up all the weights and used as a continuous variable in the GWAS.  274 

We also categorized the HFRS into low (<5), intermediate (5–15) and high (>15) risk of frailty as 275 

previously described4 and used the cut points to describe frailty in our study populations. In the 276 

main analysis, we included all available ICD-10 codes for each person from age 30 years to the 277 

age at the end of follow-up to calculate the HFRS. As dementia diagnoses have the highest weight 278 

tin the HFRS, we calculated the HFRS also by excluding dementia weights form the formula and 279 

performed all analyses, except for PRS associations, using the HFRS without dementia.  280 

   281 

Genotyping and imputation  282 

Genotyping in FinnGen was performed on Illumina (Illumina Inc., San Diego, CA) and custom 283 

AxiomGT1 Affymetrix (Thermo Fisher Scientific, Santa Clara, CA) genome-wide arrays and 284 

imputed to 16,387,711 (INFO > 0.6) variants using a population-specific SISu v.3 imputation 285 

reference panel as previously described33. Individuals with ambiguous sex and non-Finnish 286 
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ancestry were excluded. UK Biobank samples (v3 genotyping release) were genotyped on custom 287 

Affymetrix microarrays and imputed using the 1000 Genomes and the Haplotype Reference 288 

Consortium reference panels to ~93M variants34. Participants were excluded if they were flagged 289 

as having unusually high heterozygosity or missing genotype calls (<5%). Our analysis was 290 

restricted to white British participants (N=429,463). Detailed procedures on genotype calling, 291 

quality controls and imputation have been previously described for FinnGen31 and UK Biobank34.   292 

 293 

GWAS 294 

The analytical pipeline for GWAS and post-GWAS analyses is presented in Figure 1. We first 295 

performed a GWASs of HFRS in FinnGen using the SAIGE35 (v0.35.8.8) software, which uses 296 

linear mixed-effects modeling to account for genetic relatedness and confounding by ancestry36. 297 

We included variants (N=21,294,561) with minor allele frequency >0.01%, Hardy-Weinberg p-298 

value >1×10-9 and imputation INFO score ≥0.9. The models were adjusted for birth year, birth 299 

region, sex and the 10 first PCs. HFRS was inverse normal transformed prior to modeling. The 300 

genome-wide significance level was set to 5×10-8. Using the GWAS Catalog and results of previous 301 

GWASs into frailty (using the FP9 and FI8 to measure frailty) and mvAge11, a genomic structural 302 

equation modeling-derived composite construct of healthspan, parental lifespan, extreme 303 

longevity, frailty and epigenetic aging, we assessed the number of novel and previously unreported 304 

associations.  305 

 306 

Genetic correlation and heritability 307 

Using linkage disequilibrium score regression37 (v1.0.1) and LD merged with the HapMap3 308 

reference panel of ~1.1 million variants, we estimated 1) the potential bias from e.g. population 309 
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stratification and cryptic heritability in the GWAS results, 2) heritability of HFRS and 3) genetic 310 

correlations between HFRS and previous GWASs of FI8, FP9 and mvAge11. As the FI GWAS8 used 311 

an opposite effect allele compared to the standard FinnGen workflow, we inverted the genetic 312 

correlation coefficient to facilitate interpretation.  313 

 314 

Functional annotation: cell type and pathway enrichment  315 

To explore tissue and cell type specificity of the annotated genes underlying HFRS, we applied 316 

WebCSEA, a web platform to derive context-specific expression patterns of genes underlying 317 

complex traits, encompassing the Human Cell Atlas and single cell data resources38. Enrichr 318 

pathway analysis12 based on KEGG39, Reactome40 and WikiPathway41 resources, was applied to 319 

explore enriched pathways (FDR<0.05) of the identified genes (GWAS p<5×10-8). 320 

 321 

Proteomics integration 322 

To prioritize genes and identify potentially functional and causal variants, we narrowed down the 323 

association signals to a smaller number of missense, splice region, loss of function and 5’ and 3’ 324 

UTR variants (the two last mentioned potentially affecting transcript stability, localization and 325 

signal response) identified from the Variant Effect Predictor pipeline42, that were associated with 326 

the HFRS at a slightly more relaxed threshold (p<5×10-7). Using the Olink proteomics data, we 327 

then examined if the protein levels of the variants (at a gene level resolution) were associated with 328 

HFRS in the UK Biobank. Details of the UK Biobank Olink proteomics assay, quality control and 329 

data processing procedures have been described elsewhere43. Briefly, ~50,000 UK Biobank 330 

participants were randomly selected for the proteomics profiling using EDTA plasma samples 331 

collected at the baseline assessment. A total of 2,923 proteins was measured across 8 protein panels 332 

using the antibody-based Olink Explore 3072 platform. Protein levels were measured in normalized 333 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.26.24312584doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312584


16 

 

Protein eXpression (NPX) values, which represent the relative concentration of proteins on a log-334 

2 scale. All the protein levels were scaled to mean=0 and SD=1 before the association testing. 335 

Linear regression models were then performed to assess the association between the proteins that 336 

were available in the Olink platform and HFRS, adjusting for birth year, sex, and the first 10 PCs. 337 

We considered an FDR<0.05 as statistically significant in the proteomics analysis. 338 

 339 

Colocalization analyses 340 

To further prioritize the genes, we summarized gene loci to which the genome-wide significant or 341 

potential functional variants were mapped (Supplementary Tables 1, 2, 7 & 8). We performed a 342 

Bayesian-based colocalization analysis for each locus, using a flanking window of 1Mb and default 343 

parameters for prior probabilities10. The analysis assumes that only one causal variant exists for 344 

each trait in a genomic locus and returns posterior probabilities indicating the likelihood that the 345 

following hypotheses (H) are true: there is no association at the locus with either protein level or 346 

HFRS (H0); there is an association with protein level but not HFRS (H1); there is no association 347 

with protein level but there is an association with HFRS (H2); there is an association with both the 348 

protein level and HFRS but with distinct causal variants (H3); there is an association with both the 349 

protein level and HFRS with a shared causal variant (H4). We considered the analysis having 350 

enough power if the sum posterior probabilities of having a distinct or shared causal variant 351 

exceeded 88%. A colocalized signal was detected if the posterior probability of a shared causal 352 

variant (H4) existence was greater than 90%. 353 

 354 

PRS analyses 355 

Using the GWAS summary statistics from FinnGen, we calculated the PRS for HFRS by applying 356 

PRS with continuous shrinkage44 (PRS-CS) and using the European panel from the 1000 357 
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Genomes45 LD reference, where ~1.1 million variants were selected. All the PRS analyses were 358 

performed in FinnGen (the discovery sample) for reference and replicated in the UK Biobank. 359 

Using linear regression, we fitted linear model to assess how the HFRS-PRS associates with the 360 

HFRS. HFRS was considered as a standardized z-score in the linear regressions. We also performed 361 

logistic regressions to assess the associations of the HFRS-PRS with early-onset frailty, defined as 362 

HFRS >5 before age 65. The PRS was modeled as per SD change and all the models included birth 363 

year, birth region (FinnGen), sex and the first 10 PCs as covariates.  364 

 Lastly, as frailty manifests in late life for most individuals, we asked whether the HFRS-365 

PRSs could be used in early risk stratification to identify individuals at risk of adverse outcomes. 366 

To this end, Cox models with attained age as the timescale and linear regression models were fitted 367 

to assess whether the HFRS-PRS predicts all-cause mortality and number of hospitalizations, 368 

respectively. The added value of the HFRS-PRS beyond age and sex in the prediction was assessed 369 

using the F-test for linear regressions and likelihood ratio test for Cox models. The number of 370 

hospitalizations was scaled to a mean=0 and SD=1 prior to modeling.  371 

  372 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.26.24312584doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312584


18 

 

Data availability 373 

Individual-level data cannot be stored in public repositories or otherwise made publicly available 374 

due to ethical and data protection restrictions. However, data are available upon request for 375 

researchers who meet the criteria for access to confidential data. Data from the UK Biobank are 376 

available to bona fide researchers upon application at https://www.ukbiobank.ac.uk/enable-your-377 

research. FinnGen results, according to FinnGen consortium agreement, are subjected to one year 378 

embargo and summary statistics are then made available to the scientific community and release 379 

two times a year. Information on accessing FinnGen data can be found at 380 

https://www.finngen.fi/en/access_results. 381 

 382 

 383 

 384 

Code availability 385 

All the data processing, visualization, and statistical analyses were performed using Python 3.8 386 

(2.7 for LDSC) and R v.4.3.2 (R Foundation for Statistical Computing, Vienna, Austria; 387 

https://www.r-project.org/). Venn diagrams were created using the R package ggvenn (version 388 

0.1.10; https://cran.r-project.org/web/packages/ggvenn/index.html). Correlation plots were created 389 

using the R package corrplot (v.0.92; https://cran.r-project.org/web/packages/corrplot/index.html). 390 

Forest plots were created using the R package ggforestplot (v.0.1.0; 391 

https://nightingalehealth.github.io/ggforestplot/). R codes used to create the figures are available 392 

from the authors upon request.  393 
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Table 1. Characteristics of the study samples.  

Characteristic FinnGen UK Biobank 

No. of individuals 519,200 429,463 

Age at baseline assessment, mean (SD) 53.1 (17.9) 56.9 (8.0) 

Age at end of follow-up/death, mean (SD) 60.8 (18.0) 70.8 (7.9) 

Sex, n (%) 
  

Women 292,784 (56.4) 232,380 (54.1) 

Men 226,416 (43.6) 197,083 (45.9) 

BMI (kg/m2), mean (SD) 27.35 (5.53) 27.41 (4.76) 

Missing, n (%) 142,454 (27.4) 1348 (0.3) 

Smoking, n (%)   

Non-smoker 156,355 (50.9) 232,968 (54.2) 

Former smoker 70,317 (22.9) 151,248 (35.2) 

Current smoker 80,736 (26.2) 43,776 (10.2) 

Missing 211,792  1,471  

HFRS, median (IQR) 5.2 (1.6–10.4) 1.5 (0–5) 

Women, median (IQR) 5.3 (1.6-10.5) 1.5 (0–4.7) 

Men, median (IQR) 5.0 (1.5-10.3) 1.5 (0–5.4) 

HFRS categories, n (%) 
  

Low risk (<5) 241,656 (48.4) 320,961 (74.7) 

Intermediate risk (5–15) 188,147 (37.8) 78,292 (18.2) 

High risk (>15) 65,925 (13.2) 30,210 (7.0) 

HFRS >5, n (%) 254,874 (51.0) 106,645 (24.8) 

HFRS >5 before age 65, n (%) 95,410 (18.4) 35,556 (8.3) 

Died during follow-up, n (%) 62,764 (12.1) 38,636 (9.0) 

Time to mortality follow-up (year), median (IQR) 4.4 (2.6–8.5) 14.4 (13.6–15.0) 

Number of hospitalizations, median (IQR) 8 (4–17) 1 (0–3) 

 Note. FinnGen participant characteristics are presented for the sample with non-missing phenotypic data 

(N=519,200). 

BMI, body mass index; HFRS, Hospital Frailty Risk Score; IQR, interquartile range; SD, standard deviation. 
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Figure 1. Outline of the study. GWAS, genome-wide association study; HFRS, Hospital Frailty 

Risk Score; ICD-10, International Classification of Diseases, 10th Revision; PRS, polygenic risk 

score  
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Figure 2. Manhattan plots for the associations with (a) Hospital Frailty Risk Score (HFRS) and 

(b) HFRS excluding dementia in FinnGen. The dashed lines indicate the genome-wide 

significance threshold (p=5×10-8). The annotations represent the strongest signals in genes 

containing potentially functional variants (p<5×10-7) associated with frailty; red font indicates 

genes that include variants previously unreported in the GWAS Catalog or previous GWASs of 

frailty. 
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Figure 3. Novel genes and genetic correlations of the with other related traits. (a) Venn diagram 

showing the overlap of genes associated with the full HFRS and the HFRS without dementia at 

p<5×10-8 in FinnGen and those reported in the literature. Previous GWASs refers to genes 

identified in for the FI (Atkins et al., 2021), FP (Ye et al., 2023), and mvAge (Rosoff et al., 2023). 

(b) Genetic correlations between HFRS in FinnGen and other frailty-related traits. All the 

correlations were statistically significant at p<2.2×10-16. FI, frailty index, FP, frailty phenotype; 

GWAS, genome-wide association study; HFRS, Hospital Frailty Risk Score; PRS, polygenic risk 

score  
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Figure 4. Protein associations with the (a) full HFRS and (b) HFRS without dementia the in UK 

Biobank using linear regression models. All models were adjusted for birth year, sex, and the first 

10 principal components. Solid dots indicate significant associations at a false discovery rate 

<0.05. HFRS, Hospital Frailty Risk Score; SD, standard deviation 
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Figure 5.  Associations of the HFRS-PRS with the HFRS (a), early-onset frailty (b), all-cause 

mortality and number of hospitalizations (d) in FinnGen and UK Biobank. All models included 

birth year, birth region, sex, smoking and first 10 principal components as covariates. HFRS, 

Hospital Frailty Risk Score; HR, hazard ratio; OR, odds ratio; PRS, polygenic risk score; SD, 

standard deviation. 
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