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Abstract 

Background/Objective: SeptiCyte RAPID is a transcriptional host response assay that 

discriminates between sepsis and non-infectious systemic inflammation (SIRS) with a one-hour 

turnaround time. The overall performance of this test in a cohort of 419 patients has recently been 

described [Balk et al., J Clin Med 2024, 13, 1194]. In this study we present results from a detailed 
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stratification analysis in which SeptiCyte RAPID performance was evaluated in the same cohort 

across patient groups and subgroups encompassing different demographics, comorbidities and 

disease, sources and types of pathogens, interventional treatments, and clinically defined 

phenotypes. The aims were to identify variables that might affect the ability of SeptiCyte RAPID 

to discriminate between sepsis and SIRS, and to determine if any patient subgroups appeared to 

present a diagnostic challenge for the test. Methods: 1) Subgroup analysis, with subgroups 

defined by individual demographic or clinical variables, using conventional statistical comparison 

tests. 2) Principal component analysis and k-means clustering analysis, to investigate phenotypic 

subgroups defined by unique combinations of demographic and clinical variables. Results: No 

significant differences in SeptiCyte RAPID performance were observed between most groups and 

subgroups. One notable exception involved an enhanced SeptiCyte RAPID performance for a 

phenotypic subgroup defined by a combination of clinical variables suggesting a septic shock 

response. Conclusions: We conclude that for this patient cohort SeptiCyte RAPID performance 

was largely unaffected by key variables associated with heterogeneity in patients suspected of 

sepsis.   

 

 

Keywords: sepsis, SIRS, sepsis likelihood, SeptiCyte, host immune response, stratification, 

phenotype 

 

1. Introduction  

 

Accurate and rapid identification of sepsis is often clinically challenging, in part due to non-

specific presenting clinical signs [1,2], patient heterogeneity [3-5],  and a lack of timely 

information [6]. Clinical signs of sepsis are often vague and can include dyspnea, weakness, 

altered mental status, pain and cough, which are signs commonly associated with other disease 

conditions including heart failure, stroke and respiratory failure [1,2].  

 

To enable better identification and personalized treatment for sepsis, efforts have been made to 

identify subclasses of patients based on “phenotypes” [3,7,8] or “endotypes” [9-11]. For example, 

Seymour et al. [3] described four phenotypes differentiated by clinical parameters such as 
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vasopressor requirement, age, chronic illness, renal dysfunction, inflammation, pulmonary 

dysfunction, shock and liver dysfunction. As another example, Sinha et al. [8] showed that the 

“hyperinflammatory” and “hypoinflammatory” phenotypes previously identified in ARDS patients 

could also be applied to septic shock patients. Categorizing sepsis patients into clinically relevant 

phenotypes could potentially lead to personalized treatments (precision medicine) and better 

outcomes [12].  However, successful application of precision medicine in sepsis assumes that this 

condition can be identified early and accurately in the first place.  Traditional sepsis diagnostics 

that rely on the isolation and/or identification of causative pathogens, such as blood culture, have 

been shown to lack sensitivity, timeliness and in general have not taken patient heterogeneity into 

account [13].  More recent efforts to improve sepsis diagnosis have included identification of host 

immune response biomarkers [14]. 

 

SeptiCyte RAPID is a host immune response test which measures mRNA expression levels of two 

genes, PLAC8 and PLA2G7, using a small peripheral blood sample [15,16].  Results are reported 

as a “SeptiScore”, on a scale of 0-15 and in four “Bands”, with increasing likelihood of sepsis 

associated with higher SeptiScores and Bands. The discovery of these biomarkers was achieved 

via machine learning on a heterogenous patient dataset [17]. Because the signature discovery 

process was performed on a heterogeneous set of patients, we hypothesized that the SeptiCyte 

RAPID signature would continue to perform robustly in independent heterogeneous validation 

datasets. 

 

In the present study, as a test of the above hypothesis, we investigated the performance of 

SeptiCyte RAPID in a heterogeneous, critically ill adult patient cohort stratified by demographics, 

comorbidities and diseases, sources and types of infecting pathogen, therapeutic interventions, and 

clinical phenotypes. We sought to determine if the performance of SeptiCyte RAPID for 

differentiating sepsis from infection-negative systemic inflammatory response syndrome (SIRS) 

was robust and generalizable across different patient subgroups. The subgroups examined included 

patients with conditions that 1) present with overlapping clinical signs of sepsis, 2) may 

predispose to sepsis, and 3) could affect performance of a host immune response assay.   

 
 
2. Methods 
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Dataset: The dataset for this analysis (N=419 patients) was from the MARS, VENUS and 

NEPTUNE studies [16]. Stratifications were performed according to sex, age, race/ethnicity, 

comorbidities and diseases, therapeutic interventions, and clinically defined phenotypes. 

 

SeptiCyte RAPID Performance vs. Comparator: The performance of SeptiCyte RAPID for 

discrimination of sepsis vs. SIRS was evaluated using Retrospective Physician Diagnosis (RPD) 

as the comparator. The RPD process is a clinical evaluation by a panel of three expert clinicians 

not involved in the care of the patients [15, 16]. In this study only “forced” RPD was used. That is, 

if a patient was initially called “indeterminate” by the RPD panelists, the panelists were then 

forced to make a consensus or unanimous call of sepsis or SIRS. 

 

Statistics: Statistical tests were mainly conducted with R packages or with Medcalc (medcalc.org). 

Additional details and cross-checks were as follows. p-values for two-group comparisons were 

calculated with the Wilcoxon-Mann-Whitney test as implemented in the R ‘stats’ package [18] 

unless otherwise noted. Some p-value calculations for small N strata were conducted with 

Student’s t-test as implemented in Microsoft Excel, and also with the Mann-Whitney U test as 

implemented in Medcalc (medcalc.org) and cross-checked with the web applet at 

www.socscistatistics.com/tests/mannwhitney/default2.aspx. Proportions tests were conducted with 

the R ‘stats’ package and cross-checked with Medcalc. One-way ANOVA was conducted with the 

R ‘stats’ package. Cohen’s kappa was calculated with the web applet at 

http://vassarstats.net/kappa.html. 

 

Receiver Operating Characteristic (ROC) curve analysis and calculation of area under curve 

(AUC) values was performed using the pROC library in R [19] and cross-checked with JROCFIT 

[http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html] and Medcalc. Confidence intervals for 

AUC were calculated by the Binomial Exact method, the method of Hanley & McNeil [20], or the 

method of DeLong et al. [21] as implemented in Medcalc, or by bootstrapping as implemented 

with the web applet of Skalsk´a & Freylich [22] at http://www.freccom.cz/stomo/input.php. The 

Hanley & McNeil CI values were cross-checked with  the web applet at https://riskcalc.org/ci/. 

AUC comparisons were performed with either DeLong’s test [21] or the bootstrap method, both 
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implemented in R. Note that the ROC analysis of small sample sets (AUC and 95% CI) relies on 

the equivalence relation AUC = U/(n1*n2) where U = the Mann-Whitney U statistic and n1, n2 are 

the sizes of the SIRS and sepsis groups ( see refs. [23, 24] and Supplementary Material, Section 

6). 

 

Principal components analysis (PCA) was performed using the FactoMineR package in R [25].  

The following 16 quantitative clinical variables measured within the first 24 hours of ICU 

admission defined the dimensions (vectors) by which patients were separated in n-dimensional 

space: temperature (min & max), heart rate (HR, min & max), respiratory rate (RR, min & max), 

mean arterial pressure (MAP, min & max), glucose (min & max), white blood cells (WBC, min & 

max), platelets (min), procalcitonin (PCT), lactate and age. Each of these variables had <=33% 

missing data, and missing values were replaced with mean values before conducting the PCA. 

SeptiScore and RPD category were not used in the analysis.  

 

The following qualitative or ordinal variables (not used in constructing the PCA dimensions) were 

also mapped onto the PCA plot: sex, vasopressor use, mechanical ventilation, pathogen type 

(bacterial, viral, fungal) and source of infection (blood, urine, sputum, or other), SOFA score, 

SOFA component scores, and qSOFA & component scores. Missing values for the ordinal 

variables SOFA, SOFA components and qSOFA were replaced with mean values, as for the 

quantitative variables. 

 

Hierarchical clustering (HC) was then performed upon the PCA according to the method 

described in refs. [26-28]. This method allowed the PCA-based separation of patients to be further 

stratified into subgroups, based on combinations of all the variables (quantitative, qualitative, and 

ordinal) defined above. 
 

k-means clustering: The k-means clustering algorithm, implemented in the stats package in R, was 

applied to either the sepsis group (N=176; results in the main text), or to the entire cohort 

(Sepsis+SIRS) (N=419; results in the Supplementary Material). Many of the same variables used 

for the PCA analysis were also used for the k-means, including: temperature (min & max within 

24 hours), heart rate (HR, min & max), respiratory rate (RR, min & max), mean arterial pressure 
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(MAP, min & max), glucose (min & max), white blood cell count (WBC, min & max), platelets 

(min), procalcitonin (PCT), lactate, SOFA score, individual SOFA component scores, qSOFA 

score, age, sex, vasopressor use (Y/N), mechanical ventilation (Y/N), culture/PCR result (+/-) for 

bacterial, viral or fungal pathogen, source of positive culture/PCR result (urine, blood, sputum, 

other). To impute missing data for each variable, the overall mean value for that variable was 

used. Prior to clustering, the continuous variables were transformed to have a mean of zero and a 

standard deviation of one. SeptiScore and RPD category were not used as input variables. 

 
 
 
3. Results 

 

3.1. Demographics 

 

Patient stratification was performed according to sex, age, and race/ethnicity. Patient ages ranged 

from 18 – 90 years and were binarized into subgroups <60 years or ≥ 60 years of age. The 

performance of SeptiCyte RAPID for discriminating sepsis vs. SIRS never fell below AUC 0.80 

for any subgroup. For each demographic comparison, the p-value for discriminating sepsis vs. 

SIRS was significant at p<0.05. When considered together in a multiple comparison context, the 

p-values all remained significant (p<0.05/8) after applying a Bonferroni correction. No significant 

AUC differences were observed between subgroups except for a marginal difference for White vs. 

Hispanic (p = 0.03) (Table 1). 

 

Upon further analysis, a significant White vs. Black difference in SeptiScore performance 

(p<0.003) was observed for the discrimination of septic shock vs. SIRS. For this stratification, the 

White demographic subgroup gave AUC = 0.83, while the Black subgroup gave AUC = 0.96. See 

Supplementary Material, Section 1. 
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Table 1 – SeptiCyte RAPID performance for sepsis / SIRS discrimination for patients stratified by sex, age, or race/ethnicity. 
Performance quantified by AUC and p-value using forced adjudication. Comparison of AUC values by DeLong’s test [21]. AUC 
confidence intervals (CI) by formula of Hanley & McNeil [20] as computed by the applet at https://riskcalc.org/ci/. 
Condition N sepsis N SIRS AUC AUC 95% CI p-value DeLong’s p-value 
male (M) 95 137 0.81 0.75 - 0.87 1.4 E-15 M vs. F: 0.52 

female (F) 81 106 0.84 0.78 - 0.90 1.6 E-15 

age < 60 years 77 138 0.83 0.77 - 0.89 3.9 E-14 Age (< 60) vs. (≥ 60): 0.82 

age ≥ 60 years 99 105 0.82 0.76 - 0.88 5.7 E-16 

Black (B)* 45 70 0.85 0.77 - 0.93 5.9 E-11 B vs. W: 0.30 
B vs. H: 0.21 
B vs. A: 0.62 
W vs. H: 0.03 
W vs. A: 0.23 
H vs. A: 0.63 
 

White (W)* 108 146 0.80 0.74 - 0.86 7.2 E-16 

Hispanic (H)* 10 12 0.93 0.81 - 1.05 0.00014 

Asian (A)* 10 11 0.89 0.74 - 1.04 0.0013 

* Seven patients were unclassified as to race/ethnicity, so were left out of this analysis. 
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3.2. Comorbidities and disease 

Patients were stratified by the presence or absence of different comorbidities or diseases, 

specifically hyperglycemia, impaired immunity, hypertension, cardiovascular disease, kidney 

disease and obesity. These comorbidities and diseases were chosen for analysis based on available 

patient numbers, presumed influence on sepsis predisposition, and potential for presenting clinical 

signs that overlap with those of SIRS or sepsis. The ‘impaired immunity’ category included 

patients with organic immune deficiencies, cancer patients on immunosuppressant drugs, and 

patients that received immunomodulators such as glucocorticoids; some patients fell in more than 

one sub-category. Patients for whom a particular co-morbidity or disease was not mentioned in the 

physician notes were assumed to not have the condition. Point-estimate AUCs ranged from 0.81-

0.86 with the only exceptions being AUC 0.79 for patients categorized as hypertensive, and AUC 

0.75 for patients with diabetic hyperglycemia (Table 2). Box and whisker plots corresponding to 

the entries of Table 2 are shown in Figure 1 (A-F). By DeLong’s test there were no significant 

AUC differences in SeptiCyte performance between patients with vs. without the stated condition. 

 

We note several limitations to this analysis, because of small sample sizes. The AUC value of 1.0 

for patients with acute cardiovascular disease should be considered imprecise, because of low N. 

Additionally, while the uncorrected p-value for each individual comparison falls below the 

conventional cutoff for significance (p~0.05), if we consider as a group the nine 

comorbidity/disease comparisons with low numbers, then upon applying a Bonferroni correction, 

the p-values for diabetes and obesity now fall above the adjusted significance cutoff (p~0.05/9) 

and the p-value for chronic CVD becomes borderline significant.  
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Table 2 - SeptiCyte RAPID performance stratified by comorbidities and disease.  AUC confidence intervals (CI) by formula of 
Hanley & McNeil [20] as computed by applet: https://riskcalc.org/ci/. Abbreviations: HG, hyperglycemia; II, impaired immunity; HT, 
hypertension; CVD, cardiovascular disease; KD, kidney disease. For small sample comparisons, the p-value was calculated using both 
the t-test (T) and the Mann-Whitney U test (U).  
Stratification N sepsis N SIRS AUC AUC 95% CI p-value DeLong’s p-value 

hyperglycemia (HG) 50 78 0.83  0.76 - 0.92 5.3 E-10 HG vs. no HG noted: 0.76 

diabetic hyperglycemia 10 16 0.75 0.51 - 0.93 0.035 (T) 
0.038 (U) 

diabetic hyperglycemia not noted 40 62 0.85  0.77 - 0.93 3.7 E-09 

no hyperglycemia noted (no HG) 126 165 0.82 0.76 - 0.86 5.8 E-21 

impaired immunity (II) 27 32 0.83 0.72 - 0.94 6.8 E-06 II vs. No II noted: 0.84 

no impaired immunity noted 149 211 0.82 0.77 - 0.87 4.9 E-25 

hypertension (HT) 24 26 0.79 0.66 - 0.92 1.8 E-04 HT vs. no HT noted: 0.59 

no hypertension noted 152 217 0.83 0.78 - 0.88 1.03 E-26 

cardiovascular disease (CVD) 16 23 0.85 0.72 - 0.98 1.7 E-04 CVD vs. no CVD noted: 0.63 

cardiovascular disease (acute) 7 6 1.0  0.75 – 1.0 0.0031 (T) 
0.0034 (U) 

cardiovascular disease (chronic) 9 17 0.81 0.62 - 1.00 0.0046 (T) 
0.0105 (U) 

no cardiovascular disease noted 160 220 0.82 0.78 - 0.86 1.9 E-26 

kidney disease (KD) 33 34 0.83 0.73 - 0.93 5.6 E-07  

kidney disease (acute) 13 13 0.86 0.70 -1.00 0.0012 (T) 
0.0023 (U) 

KD vs. no KD noted: 0.89 

kidney disease (chronic) 20 21 0.83 0.70 - 0.96 0.0001 T) 
0.0004 (U) 

no kidney disease noted 143 209 0.82 0.77 - 0.87 7.4 E-24 
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Stratification N sepsis N SIRS AUC AUC 95% CI p-value DeLong’s p-value 

obesity (BMI >= 30) 6 14 0.86 0.66 - 1.06 0.0141 (T) 
0.0135 (U) 

Obesity vs. no obesity noted: 

0.63  no obesity noted 170 229 0.82 0.78 - 0.86 1.8 E-28 
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Figure 1: Box and whisker plots of SeptiCyte RAPID performance in patients with (A) hyperglycemia, (B) impaired immunity,  

(C) hypertension, (D) cardiovascular disease, (E) kidney disease, (F) obesity.  

 
A: Hyperglycemia 

 

 
B: Impaired Immunity 

 
 
C: Hypertension 

 
 

 
D. Cardiovascular disease 
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E. Kidney disease 

 

F. Obesity 
 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.08.26.24312552doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312552
http://creativecommons.org/licenses/by-nd/4.0/


	 14	

Hyperglycemia - The cohort was stratified based on whether or not patients had hyperglycemia 

(>=200 mg/dl) (Figure 1A). A few patients with hypoglycemia were also noted, but their numbers 

were too small (14 sepsis, 3 SIRS) for reliable statistical analysis. Hyperglycemia included those 

patients with and without diabetes (as indicated in the physician notes). For patients without 

diabetes indicated, data were based on “Glucose.Min” or “Glucose.Max” values recorded over a 

24-hour period. The SeptiCyte RAPID performance for patients with diabetic hyperglycemia 

(AUC 0.73) appeared marginally lower than for all hyperglycemic patients (AUC 0.83) or for non-

hyperglycemic patients (AUC 0.82). Note that, although the p-value for sepsis vs. SIRS 

discrimination in the diabetic hyperglycemia subgroup (p » 0.04) falls below the conventional 

cutoff (p~0.05), after a Bonferroni correction this p-value now falls above the adjusted 

significance cutoff (p~0.05/9). 

 

Impaired immunity - The cohort was stratified based on whether or not patients could be 

considered to have impaired immunity (Figure 1B). The category of impaired immunity included 

use of immunosuppressants (including corticosteroids), adrenal insufficiency, splenectomy, 

asplenia, HIV/AIDS and cancer. Of the 13 patients with cancer, no consideration was given to the 

type of cancer, or whether the patients were being treated with cancer therapy, or the duration of 

cancer therapy.  White blood cell counts (WBC, min) in patients with impaired immunity as 

defined above ranged from 300 – 37,000 cells / uL, and for patients with no such impaired 

immunity the range was 300 – 52,000 cells / uL.  SeptiCyte RAPID AUCs were 0.83 and 0.82 for 

patients with impaired immunity vs immunocompetent respectively.   

 

Hypertension - The cohort was stratified based on whether hypertension was noted in the 

physician comments (Figure 1C). The AUC for differentiating sepsis from SIRS was 0.79 for 

hypertensive patients and 0.83 for those without hypertension noted, a difference that was not 

significant according to DeLong’s test (p=0.59).  

 

Cardiovascular disease (CVD) - The cohort was stratified based on whether patients had been 

diagnosed with CVD (Figure 1D).  CVD patients were further subdivided into those with acute 

(cardiac arrest) vs. chronic disease. The chronic CVD patients included those with congestive 

heart failure, aortic valve replacement, and bradycardia with cardiogenic shock.  Of the patients 
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with CVD, there were 16 with sepsis, and 23 with SIRS.  The remainder of the cohort (without 

CVD) consisted of 160 patients with sepsis and 220 with SIRS. We calculated AUC 0.85 for 

patients with CVD as opposed to AUC 0.82 for patients without CVD. This difference was 

deemed not significant by DeLong’s test (p = 0.63). 

 

Kidney disease – the cohort was stratified into those with kidney disease (acute or chronic) vs. no 

kidney disease noted (Figure 1E).  Kidney disease included patients with acute renal failure/injury 

vs. patients with chronic conditions (renal insufficiency/ disease, end stage renal disease, renal cell 

carcinoma, nephrolithiasis with bilateral ureteral stents, or chronic dialysis).  AUCs for 

differentiating sepsis from SIRS were 0.82 (no kidney disease noted) and 0.83 for those with 

chronic kidney disease, a difference that was not significant. 

 

Obesity - the cohort was stratified into obese (BMI>=30 or obesity noted in physician comments), 

vs. BMI<30 or no obesity noted (Figure 1F). Obesity is a known risk factor for sepsis [29, 30]. 

AUCs for differentiating sepsis from SIRS were 0.86 (obese patients) and 0.82 for non-obese 

patients; DeLong’s test indicates this AUC difference is not significant. Note that, while the p-

value for sepsis vs. SIRS discrimination in the obese subgroup (p » 0.014) falls below the 

conventional cutoff (p~0.05), after a Bonferroni correction this p-value now falls above the 

adjusted significance cutoff (p~0.05/9). 

 

3.3 Source and Type of Infection 

 

3.1.1 Infection source – Of the 176 sepsis patients in the cohort, 150 had an identified source of 

infection, specifically pulmonary (n=59), abdominal (n=30), blood (n=17), central nervous system 

(CNS) (n=6), urinary tract (UTI) (n= 24) and “other source” (n=14, as detailed in legend of Figure 

2).  There were 26 sepsis patients for whom an initial source of infection could not be identified 

(NI).  In the cohort, 243 patients were retrospectively determined to have SIRS (deemed non-

infectious), however only 215 did not have a source of infection identified.  Figure 2 presents box 

and whisker plots for subgroups of septic patients vs. the SIRS patients, with AUCs and p values 

indicated. SIRS patients with an identified source of infection (4 abdominal, 5 CNS, 15 

pulmonary, 2 urinary, 2 other) were excluded from the analysis. For all sepsis subgroups with 
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identified sources of infection, the median SeptiScore was in Band 4 (highest sepsis probability), 

as defined in the banding scheme of Balk et al. [16]. For septic patients without an identified 

source of infection, the median SeptiScore was in Band 3. For the subgroups with sufficient 

numbers to allow for a reliable AUC comparison, DeLong’s test showed no significant differences 

(pulmonary vs. NI, p=0.08; abdominal vs. NI, p=0.21; UTI vs. NI, p=0.35). 

 

Figure 2 –SeptiCyte RAPID performance stratified by infection source. The “other” group 

included the following (N per group): cellulitis (3), Fournier’s gangrene (1), hip arthroplasty (1), 

osteomyelitis (1), toe infection (1), sacral wound (1), post-surgical sternal wound (1), 

bladder/prostate abscess/ peritonitis from cecum micro perforation (1), influenza (1), tracheitis (1), 

erysipelas (1), skin or soft tissue necrotizing fasciitis (1).   Significance: p<=0.01**, p<=0.001***. 
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3.1.2 Infection type – We previously determined that SeptiCyte RAPID performance was not 

affected by the Gram (+/-) category of the sepsis pathogen (see Section 9 of the Supplement to 

Balk et al. [16]). In the present study, we extended this analysis to determine if different sepsis 

pathogens were associated with different sources of infection. Results of this analysis are provided 

in Supplementary Material, Section 2. To summarize, viral pathogens were more often detected 

in patients with pulmonary sepsis, which may reflect a bias in the types of pathogen identification 

tests ordered for this subgroup.  Staphylococcus aureus was the most frequently isolated pathogen 

(19% of all pathogen detection events) and was mostly associated with pulmonary and blood 

sources of septic infection. Gram negative pathogens, in particular Escherichia coli and 

Pseudomonas aeruginosa, were most isolated in urosepsis.   
 
3.4.  Therapeutic Interventions 

We examined the performance of SeptiCyte RAPID after stratification along two treatment 

dimensions: either (+/-) pharmaceuticals (immunosuppressants; antibiotics, inotropes, 

vasopressors); or (+/-) mechanical ventilation. Pharmaceutical treatments were selected from a list 

of >400 drugs noted in the patient records. Further detail on the immunosuppressants, antibiotics, 

anti-neoplastics, inotropes and vasopressors listed in patient records is provided in the 

Supplementary Material, Section 3.  

 

Results in Table 3 and Figure 3 show that the use of a broad range of immunosuppressants did 

not affect the overall performance of SeptiCyte RAPID in our cohort. AUC values in patients 

treated with immunosuppressants (0.80) or not treated (0.82) were not statistically different 

(p=0.75 by DeLong’s test).   

 

Patients treated with antibiotics (Abx) were subdivided into three groups based on when the 

antibiotic treatment was started relative to SeptiCyte RAPID blood sampling. In total, 190 patients 

(110 sepsis, 80 SIRS) were given antibiotics up to one day prior, 76 patients (34 sepsis, 42 SIRS) 

were given antibiotics on the same day, and 148 (29 sepsis, 119 SIRS) received antibiotics on the 

day following the blood sampling.  SeptiCyte RAPID AUCs were not significantly affected by 

timing of antibiotics over these time periods, with AUCs ranging from 0.79 to 0.84 (Figure 4). 

The purpose of this comparison was to determine if antibiotics interfered with SeptiCyte RAPID 

performance in a restricted time window from -1 days to +1 day relative to blood draw at day 0. 
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We limited the analysis to this relatively narrow time window, because a recent study [31] 

indicated that a reduction in SeptiScore is expected over the period 2-6 days following initiation of 

antibiotics. 

 

Use of vasopressors or inotropes had no evident effect on SeptiCyte RAPID performance (AUC 

0.83 versus AUC 0.81 in the absence of vasopressors or inotropes, p= 0.60 by DeLong’s test). 

Similarly, SeptiScores in patients on mechanical ventilation (AUC 0.80) did not differ 

significantly from patients not on mechanical ventilation (AUC 0.84), p= 0.36 by DeLong’s test. 
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Table 3 - SeptiCyte RAPID performance stratified by therapeutic interventions. Abbreviations: Abx, antibiotics; I, inotropes; IS, 

immunosuppressants; MV, mechanical ventilation; V, vasopressors. AUC confidence intervals (CI) by formula of Hanley & McNeil 

[20] as computed by applet: https://riskcalc.org/ci/. 

Therapeutic Intervention N sepsis N SIRS AUC (95% CI) sepsis vs. SIRS 
p-value 

DeLong’s p-value 

Immunosuppressants (IS) 29 31 0.80 (0.67-0.91) 1.6 E-05 IS vs. no IS: 0.75 

No immunosuppressants 147 212 0.82 (0.77-0.87) 5.8 E-25 

Antibiotics (Abx) 1 day prior to 

SeptiScore 

110 80 0.79 (0.73-0.85) 7.5 E-13 Abx prior vs. on = 0.46 
Abx on vs. after = 0.71 
Abx after vs. prior = 0.79  

Antibiotics same day as SeptiScore 34 42 0.84 (0.75-0.93) 4.9 E-08 

Antibiotics 1 day after SeptiScore 29 119 0.81 (0.71-0.91) 9.4 E-06 

Vasopressors (V) or inotropes (I) 81 76 0.83 (0.77-0.89) 2.3 E-14 V/I vs. no V/I: 0.60 

No vasopressors (V) or inotropes (I) 95 167 0.81 (0.75-0.87) 4.8 E-15 

Mechanical ventilation (MV) 62 91 0.80 (0.72-0.88) 3.1 E-10 MV vs. no MV: 0.36 

No mechanical ventilation 114 152 0.84 (0.79-0.89) 5.4 E-21 
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Figure 3: Box and whisker plot of SeptiCyte RAPID performance for patients treated vs. not 

treated with immunosuppressants. 
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Figure 4: Box and whisker plots of the influence of antibiotic treatment (Abx) initiation time on SeptiCyte RAPID performance. The 

day of blood draw is defined as day 0. (A) treatment initiated -1 days to 0 days relative to blood draw; (B) antibiotic treatment initiated 

on the same day as blood draw. (C) antibiotic treatment initiated +1 day after blood draw. 
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3.5. Phenotypic Subgrouping 

We used two unsupervised machine learning methods - Principal Component Analysis / 

Hierarchical clustering (PCA / HC) and k-means clustering - to conduct stratification analyses. 

These methods employed combinations of readily available clinical variables as input. 

 

      3.5.1. Phenotypic subgrouping of the septic patients (N=176) by PCA / HC 

We first conducted a PCA, based on 16 pre-selected clinical variables and excluding SeptiScores 

and RPD determinations. The first two PCA dimensions captured 15.32% and 12.29%, 

respectively, of the total variation. A hierarchical clustering (HC) analysis was then performed 

upon the PCA, which gave a separation into three major subgroups (Figure 5). There is 

additionally a single outlier patient, denoted as “subgroup 4” and represented by the blue point. 

This patient has a combination of elevated values for Glucose (min & max), lactate, WBC (max), 

SOFA (Liver component score) & lower values for temperature (min). Of note is that blood 

culture positive patients did not cluster in any particular subgroup (not shown in figure). 

 
Figure 5 – PCA plot of the sepsis group (N=176) with superimposed HC using 16 phenotypic 

variables. Each variable used in this analysis had <=33% missing data, and mean values were used 

to impute the missing data.  In the plot, the peripheral points in each subgroup were used to define 

the cluster boundaries for that subgroup. Sepsis subgroup 1 (black) N=110. Sepsis subgroup 2 

(red) N=50. Sepsis subgroup 3 (green) N=15. Sepsis subgroup 4 (blue) N=1. 
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We next evaluated the performance of SeptiCyte RAPID for discriminating the SIRS group 

(N=243) from each of the three sepsis subgroups defined by PCA / HC. Results are given in Table 

4. DeLong’s test indicates that SeptiCyte RAPID performance is significantly better for subgroup 

3 (AUC 0.93) than for subgroups 1 or 2 (AUC 0.81). 
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Table 4 – SeptiCyte RAPID performance in the three subgroups defined by PCA + HCC analysis 

Comparison N sepsis N SIRS AUC sepsis vs. 
SIRS 
p-value 

DeLong’s 
p-value 

sepsis PCA subgroup 1 vs. SIRS 110 243 0.81 6.9 E-19 1vs2 p=0.95 

1vs3 p=0.015 

2vs3 p=0.035 

sepsis PCA subgroup 2 vs. SIRS 50 243 0.81 4.5 E-09 

sepsis PCA subgroup 3 vs. SIRS 15 243 0.93 2.2 E-06 
Subgroup 4 only had 1 patient, so was not included in this table.  
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To identify the phenotypic variables that cause the three subgroups to differ - and particularly to 

identify the variables that make subgroup 3 distinct from subgroups 1 and 2 - we conducted an 

ANOVA. Phenotypic variables with greatest statistical significance (p<0.01) are presented in 

Table 5. This analysis revealed that patients in subgroup 3 appeared the most seriously ill as 

indicated by relatively higher SOFA, PCT, RR (min & max), HR (max), WBC (max), lactate 

values and vasopressor use, and relatively lower MAP (min), glucose (min), platelets (min) and 

temperature (min).	Of the 15 patients in subgroup 3, a total of 11 were clinically diagnosed with 

septic shock and 3 with severe sepsis based on sepsis-2 definition with no viral infections. 

Notably, we find no significant differences between the three sepsis subgroups with respect to site 

of infection or type of infecting pathogen. 
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Table 5 - Phenotypic characteristics of patients in the three subgroups from the PCA / HC analysis). p-values were calculated by one-
way ANOVA for quantitative variables, and by a proportions test for categorical variables.  

Characteristic Missing values  
(%) 

Subgroup 1 
(N = 110), 

median (IQR) 

Subgroup 2 
(N = 50), 

median (IQR) 

Subgroup 3 
(N = 15), 

median (IQR) 

p-value 

Vital signs      
Temperature (Min) 24 (14%) 36.3 (35.5-36.7) 36.0 (35.3-36.7) 35.4 (33.5-35.7) <0.001 

HeartRate (Max) 0 (0%) 113 (102-128) 128 (114-138) 138 (122-156) <0.001 
Mean Arterial Pressure (Min) 2 (1%) 62 (55-74) 59 (48-65) 50 (45-57) 0.006 

Respiratory Rate (Max) 53 (30%) 27 (24-31) 27 (23-31) 37 (33-43) <0.001 
Respiratory Rate (Min) 56 (32%) 20 (14-24) 17 (12-23) 32 (15-36) <0.001 

      
Clinical parameters      

Glucose (Min) 5 (3%) 123 (98-160) 129 (108-160) 90 (65-115) 0.009 
WBC (Max) 7 (4%) 12 (8-15) 21 (18-29) 23 (18-29) <0.001 
WBC (Min) 5 (3%) 9 (6-12) 18 (15-23) 14 (8-23) <0.001 

PCT 27 (15%) 3 (0-17) 5 (2-13) 36 (14-130) <0.001 
Lactate 47 (27%) 2.0 (1.45-3.15) 2.4 (1.60-3.40) 9.3 (4.13-11.88) <0.001 

Platelets (Min) 52 (30%) 145 (102-212) 309 (238-367) 80 (53-221) <0.001 
SOFA 19 (11%) 6 (4-9) 6 (4-8) 11 (7-14) <0.001 

Vasopressor (Y/N) - 42 Y (38%) 20 Y (40%) 12 Y (80%) 0.008 
      

Infection Site** 
 

   
1vs2, 1vs3, 2vs3 
(proportions test) 

Pulmonary  34 (30.9%) 20 (40%) 4 (26.7%) 0.26, 0.73, 0.35 

Abdominal  15 (13.6%) 10 (20%) 5 (33.3%) 0.30, 0.05, 0.29 

Blood  12 (10.9%) 4 (8.0%) 1 (6.7%) 0.57, 0.23, 0.33 

CNS  6 (5.5%) 0 (0%) 0 (0%) 0.08, 0.33, ND 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.08.26.24312552doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312552
http://creativecommons.org/licenses/by-nd/4.0/


	 27	

Characteristic Missing values  
(%) 

Subgroup 1 
(N = 110), 

median (IQR) 

Subgroup 2 
(N = 50), 

median (IQR) 

Subgroup 3 
(N = 15), 

median (IQR) 

p-value 

Urinary Tract  13 (11.8%) 8 (16%) 3 (20%) 0.47, 0.37, 0.13 

Other  9 (8.2%) 4 (8.0%) 1 (6.7%) 0.97, 0.84, 0.87 

Site not identified**  21 (19.1%) 4 (8.0%) 1 (6.7%) 0.07, 0.24, 0.87 

      

Pathogens* 
 

   
1vs2, 1vs3, 2vs3  
(proportions test) 

Viral (including coinfections) 
 

23 (21%) 6 (12%) 0 (0%) 
 
0.17, 0.05, 0.16 

Escherichia coli  11 (10%) 5 (10%) 2 (13.3%) 1.00, 0.70, 0.72 

Staphylococcus aureus  18 (16.4%) 15 (30%) 2 (13.3%) 0.05, 0.76, 0.20 

Streptococcus  6 (5.5%) 3 (6%) 2 (13.3%) 0.90, 0.25, 0.36 

Enterococcus  4 (3.6%) 3 (6%) 0 (0%) 0.49, 0.46, 0.34 
** site of infection was not apparent or identified at time of enrollment or within 24 hours of ICU admission, according to study investigator(s) 
Percentages are calculated column wise. 
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In the sepsis group, the PCA variables contributing greater than average (>6%) phenotypic 

variability for dimensions 1 and 2 were WBC (min & max), glucose (min & max), platelets (min), 

Age, Temperature (min) and MAP (min). We analyzed SeptiCyte RAPID performance in different 

subgroups defined by either these individual driving variables or other biomarkers used for sepsis 

adjudication (Figure 6). Similar SeptiCyte RAPID performance levels (AUC 0.79-0.85) were 

observed for most subgroups, indicating that SeptiCyte RAPID should still have utility regardless 

of the values of these driving variables. The highest SeptiScore AUCs (0.85) were found for 

patient subgroups having high WBC counts (>12E+06/mL) or normal platelet counts (150,000 - 

450,000/uL). The lowest SeptiScore AUC (0.71) was found for the subgroup with PCT <0.5 

ng/mL. This low PCT subgroup contained 32 sepsis patients which appeared less seriously ill than 

the high PCT (>0.5 ng/mL) subgroup, as indicated by lower mean SOFA score, and a lower 

proportion on mechanical ventilation.  The low PCT sepsis subgroup also had fewer patients that 

were bacterial-culture positive (40.6%), and a higher percentage of patients that were viral positive 

(31.3%), as compared to the high PCT subgroup which had 66% bacterial-culture positive 

(p<0.01) and only 15% viral positive (p<0.03). The detailed quantitative analysis corresponding to 

Figure 6 is presented in the Supplementary Material, Section 5, Table S5. We note that the 

individual clinical parameters driving separation in the PCA were not themselves effective at 

discriminating sepsis vs. SIRS (AUC 0.5-0.6), consistent with the previous analysis of Balk et al. 

[16]. 

 

 

Figure 6: Performance for discriminating sepsis vs. SIRS in different phenotypic subgroups 

defined by individual driving variables in PCA / HC and other biomarkers used for sepsis 

adjudication. Red: SeptiScore. Black: driving variable. Additional details corresponding to this 

figure are presented in Supplement Table S5. 
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    3.5.2. Phenotypic subgrouping of the septic patients (N=176) by k-means clustering 

    We conducted another stratification of the septic patients using a different approach (k-means 

clustering). Results of this analysis are shown in Figure 7. The k-means clustering algorithm 

indicated that 2 subgroups was an optimal number, and produced a very clear separation of the 

sepsis patients into the two subgroups. We next conducted an ANOVA to identify which of the 

phenotypic variables in the analysis provided the most significant discrimination between the two 

subgroups. Results of the ANOVA are presented in Table 6. (For vital signs, clinical chemistry 

measurements, and interventions only those variables giving p<0.01 are presented.) Interestingly, 

with the sole exception of viral infections being more prominent in subgroup 1, neither the site of 

infection, or pathogen type, were significant drivers of the separation between the two k-means 

subgroups. Also, blood culture positive patients did not cluster in either of the two subgroups (not 

shown in figure). Compared to subgroup 1, the subgroup 2 appeared more seriously ill, being 
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distinguished by depressed temperature and MAP; elevated WBC, lactate, PCT, and SOFA; and 

increased administration of vasopressors and mechanical ventilation.  Despite these clinical 

differences between subgroups, SeptiCyte RAPID AUCs for differentiating subgroup 1 sepsis 

patients (n=96) and subgroup 2 sepsis patients (n=80) from SIRS patients (n=243) were 0.80 and 

0.85, respectively. 

 

Finally, we performed a Venn diagram analysis to determine overlap(s) between the subgroups 

identified by PCA / HC stratification vs. k-means stratification. We determined that all 15 of the 

patients classified as subgroup 3 in the PCA / HC analysis - patients resembling septic shock or 

severe sepsis according to the Sepsis-2 criteria - fell within k-means subgroup 2, as indicated in 

Figure 7. 

 

Figure 7 - Sepsis subgroups 1 (red; N=96) and 2 (blue; N=80) identified by k-means clustering. 
The small, most seriously ill subgroup 3 from the PCA / HC analysis (black; N=15) is contained 
entirely within k-means group 2. The large colored symbols indicate the centroids of the 
subgroups.  
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Table 6 - Phenotypic variables contributing to separation between the two sepsis subgroups in the k-means analysis of Figure 6. p-

values were calculated with 1-way ANOVA for quantitative variables, and with Pearson’s Chi-squared test or two-sample proportions 

test for categorical variables. For vital signs, clinical chemistry measurements and interventions, only those variables giving p<0.01 

are presented.  

Characteristic Missing values (%) Subgroup 1 (N = 96), 
median (IQR) 

Subgroup 2 (N = 80), 
median (IQR) 

p-value* 

Vital signs     
Temperature (Min) 24 (14%) 36.4 (36.0-36.8) 35.3 (34.4-35.8) <0.001 

Mean Arterial Pressure (Min) 2 (1%) 67 (57-78) 55 (46-61) <0.001 
Respiratory Rate (Max) 53 (30%) 25 (23-31) 29 (25-35) 0.01 

     
Clinical chemistry     
WBC (Max) 7 (4%) 12 (8-18) 18 (14-25) <0.001 
WBC (Min) 5 (3%) 10 (6-14) 14 (9-19) <0.001 
Lactate 47 (27%) 2.10 (1.45-3.00) 3.00 (1.83-5.85) <0.001 
GCS<15 (qSOFA component) 25 (14%) 18 (18.8%) 42 (52.5%) <0.001 
qSOFA>=2 - 22 (23%) 68 (85%) <0.001 
qSOFA<2 - 62 (65%) 8 (10%) <0.001 
SOFA 19 (11%) 4 (2-6) 9 (7-12) <0.001 
PCT_binary (>0.5 ng/ml) 27 (15%) 52 (64%) 65 (96%) <0.001 
     
Interventions     

Vasopressors used - 15 (16%) 60 (75%) <0.001 
Mechanical Ventilation - 18 (19%) 44 (55%) <0.001 

     
Infection Site*     
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Characteristic Missing values (%) Subgroup 1 (N = 96), 
median (IQR) 

Subgroup 2 (N = 80), 
median (IQR) 

p-value* 

Pulmonary - 36 (37.5%) 23 (28.8%) 0.22 
Abdominal - 13 (13.5%) 17 (21.2%) 0.18 

Blood - 13 (13.5%) 4 (5%) 0.06 
Central nervous system (CNS) - 4 (4.2%) 2 (2.5%) 0.54 

Other - 5 (5.2%) 9 (11.2%) 0.14 
Urinary tract infection (UTI) - 9 (9.4%) 15 (18.8%) 0.07 

Site not confirmed initially - 16 (16.7%) 10 (12.5%) 0.44 
     
Pathogens*     

Viral (including coinfections) - 23 (24%) 6 (7.5%) 0.006 
Escherichia coli - 8 (8.3%) 10 (12.5%) 0.36 

Staphylococcus aureus - 20 (20.8%) 15 (18.8%) 0.74 
Streptococcus - 5 (5.2%) 6 (7.5%) 0.53 
Enterococcus - 4 (4.2%) 3 (3.8%) 0.89 

* Percentages are calculated column wise. 
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4. Discussion 

 

It is well known that patients with sepsis are heterogenous with respect to clinical signs, response 

to therapy, and outcome.  Factors contributing to this heterogeneity include patient demographics, 

comorbidities and diseases, infecting pathogen, locus of the infection, concurrent therapies, and 

disease progression and stage [32]. For maximum clinical utility, any sepsis diagnostic test should 

retain a high level of performance when confronted with these sources of variability. Accordingly, 

we investigated the performance of a commercial gene-expression based sepsis test (SeptiCyte 

RAPID) across a broad range of patient characteristics.  We demonstrated generally consistent and 

robust diagnostic performance of SeptiCyte RAPID in a heterogenous, adult, critically ill patient 

population suspected of sepsis. 

 

Demographics: We found no statistically significant differences in AUC for SeptiCyte 

performance in discriminating sepsis vs. SIRS with respect to age, sex or ethnic/racial group, 

when appropriate number of cases per group were analyzed (Table 1). Upon closer examination, 

however, we did observe a race/ethnicity -based difference in SeptiScore performance for 

distinguishing septic shock from SIRS (AUC 0.83 for septic shock vs. SIRS in Whites; AUC 0.96 

for septic shock vs. SIRS in Blacks;  p<0.003 by DeLong’s test; see Supplementary Material, 

Section 1). Higher SeptiScores for septic shock cases in Black as opposed to White patients could 

relate to genetics or environment, or a mixture of both. However, a number of studies suggest that 

genetic differences do not influence sepsis mortality or hospital length of stay once socioeconomic 

factors, such as number of comorbidities and access to healthcare, are taken into account [33, 34]. 

Without further data, to include increased patient numbers and details on socioeconomic variables, 

it is not possible to definitively identify the factors contributing to the observed higher SeptiScores 

in Black vs. White patients with septic shock. 

 

Comorbidities and diseases: Risk factors for sepsis include certain comorbidities, for example 

diabetes [35-37], hypertension [37], chronic kidney disease [38, 39], obesity [29, 30], cancer [40], 

and cardiovascular disease [41]. Because SeptiCyte RAPID is based on measurement of host 

immune response, comorbidities that involve the immune system could affect assay performance.  
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AUC values for subgroups based on comorbidity and disease generally clustered around 0.82-

0.83. One of the lowest SeptiCyte AUC values observed in this analysis was for patients with 

hypertension (AUC 0.79), but this was not significantly different (p=0.59) from the AUC 0.83 

observed for patients with no hypertension noted. (Table 2). Another low SeptiCyte AUC value 

was observed for patients with diabetic hyperglycemia (AUC 0.73) – a finding which would 

benefit from additional study in an expanded patient cohort.  Despite the small sample sizes in 

some patient subgroups, these results suggest that certain patients suspected of sepsis need not be 

excluded from SeptiCyte RAPID testing due to the specific pre-existing comorbidities and 

diseases we were able to examine in our study cohort. 

 

Type and site of infection: The immune status of leukocytes varies greatly depending upon the 

body compartment from which they are derived [42] and type of infection being responded to [43]. 

For example, in humans an intravenous lipopolysaccharide (LPS) injection suppresses the ex vivo 

peripheral blood mononuclear cell (PMBC) response to LPS but primes that of alveolar 

macrophages [44].  Therefore, the primary site of infection in sepsis could be expected to 

influence the PBMC response and hence SeptiCyte RAPID results.  To investigate this further, we 

compared SeptiCyte RAPID performance in patient subgroups stratified by the primary site of 

infection, including the categories lung, abdomen, central nervous system, urinary tract, blood 

(bacteremia), other identified site, and ‘site not identified’ (i.e. sepsis of unknown origin) (Figure 

2).  We observed no statistically significant differences in SeptiCyte RAPID performance across a 

broad range of identified infection sites. AUC did appear lower (0.72) for patients with sepsis of 

unknown origin, which may relate to uncertainty in the retrospective diagnosis of patients in this 

subgroup [6, 45]. 

 

Therapeutic interventions: immunosuppressants - We did not observe any significant effect of 

immunosuppressant therapy on performance of SeptiCyte RAPID (Table 3). However, this 

comparison covered a broad range of immunosuppressants, so no firm conclusions on the effect of 

any individual immunosuppressant on SeptiCyte RAPID can be drawn without performing a 

larger study with sufficient patient numbers.  Regarding the glucocorticoid class specifically, it is 

known that short-term oral prednisone (4 days, 30mg/day) produces a distinct blood gene 

expression signature in COPD patients and that neither PLAC8 nor PLA2G7 were differentially 
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expressed when comparing pre-treatment patients to Day 4 of treatment [46]. Further, PLAC8 and 

PLA2G7 are not known to be glucocorticoid regulated genes [47]. This suggests that treatment 

with glucocorticoids does not affect peripheral blood gene expression of the two biomarkers of 

SeptiCyte RAPID, and therefore is not expected to affect SeptiCyte RAPID results. 

 

Interventional treatment: antibiotics - Although blood cultures are the ‘gold standard’ for 

confirming bacteremia, up to fifty percent of patients suspected of sepsis and admitted to the ICU 

have negative cultures [48], some of which could be caused by prior use of antibiotics [49]. 

Standard practice in patients suspected of sepsis is to take blood cultures prior to antibiotic 

administration to avoid the potential negative impact on growth of organisms in blood culture.  In 

this study we show that use of prophylactic antibiotics within 1 day prior to a patient presenting to 

ICU does not affect SeptiCyte RAPID performance.  Therefore, a clinician need not withhold 

antibiotics prior to taking a blood sample for SeptiCyte RAPID analysis.  However, treatment with 

antibiotics outside of this timeframe would be expected to affect SeptiScores as patients recover in 

response to appropriate antibiotic treatment [31]. 

 

Phenotypic analysis - We conducted phenotypic analyses along the lines described by Seymour et 

al. [3] on our sepsis patient cohort (N=176). We employed two different unsupervised clustering 

methods (PCA/HC, and k-means) using a selection of readily available clinical variables. We 

identified three sepsis subgroups by PCA / HC, and two sepsis subgroups by k-means clustering.  

Key driving variables separating the sepsis subgroups included WBC, platelets, MAP, glucose, 

platelets, age, temperature.  

 

We also conducted the same type of analyses on the entire sepsis+SIRS dataset (N=419). Similar 

to what we observed in the first analyses, these same phenotypic variables also resolved three 

subgroups in the PCA / HC analysis and two subgroups in the k-means analysis (Supplementary 

Material). Separation between subgroups in either analysis appeared to be driven at least partly by 

clinical severity of the sepsis response. Interestingly, neither the infection source or type of 

infecting pathogen was a significant factor, except that viral infections appeared to be less severe 

and more highly associated with sepsis of pulmonary origin. 
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Individual clinical variables that were identified as driving the PCA separation were assessed for 

their ability to discriminate sepsis from SIRS. Figure 6 compared the performance of these 

variables versus SeptiCyte RAPID. The results suggest that, in our study at least, patients with 

sepsis cannot easily be distinguished from those with SIRS using any of the individual clinical 

variables.  In contrast, in subgroups defined by these driving variables, SeptiCyte RAPID 

differentiated sepsis from SIRS with AUCs ranging from 0.71 – 0.86.  This finding is consistent 

with a previous demonstration [16] showing that combinations of up to 14 clinical variables do not 

outperform SeptiCyte RAPID.  These results suggest that sepsis diagnostic tools that rely on these 

clinical variables alone (e.g. qSOFA or early warning scores) will be limited in their capacity to 

differentiate sepsis and SIRS patients. 

 

The clinical variables we have identified as “driving” the separations in this study can be broadly 

mapped onto the phenotypes defined by Seymour et al. [3]: a, (systolic BP, limited use of 

vasopressors); b, (SOFA, chronic illness, renal dysfunction, age); g (RR, WBC, PCT, platelets 

inflammation and pulmonary dysfunction); and d (systolic BP, lactate, shock).  Further, Sinha et 

al. [8] have identified two subgroups in ARDS and septic shock termed “hypo-inflammatory” and 

“hyper-inflammatory”.  Patients with hyper-inflammatory septic shock had higher rates of blood 

culture positivity, increased inflammatory markers and poor outcomes (increased 28-day mortality 

and lower ICU-free days).  In our study, although not restricted to septic shock patients, we 

identified a sepsis patient subgroup using PCA / HC analysis (subgroup 3) that is more likely to 

contain a higher proportion of patients with septic shock, as indicated by higher SOFA, RR, 

lactate and use of vasopressors and lower MAP.  With respect to sepsis/SIRS discrimination, with 

the possible exception of higher SeptiCyte RAPID performance in septic shock patients, we 

observed similar SeptiCyte RAPID performance across our patient phenotypes and key driving 

variables.  An important practical result is that SeptiCyte RAPID performance appears relatively 

unaffected by phenotype, or by key clinical variables used to define the phenotypes (Tables 4, 5, 

6). 

 

There are several limitations to this study. A first limitation is that the patients in our study cohort 

consisted of only 419 patients admitted to ICU and tested on the first day of ICU admission. If the 

study had included patients who were tested at times outside the first day of ICU admission, the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2024. ; https://doi.org/10.1101/2024.08.26.24312552doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.26.24312552
http://creativecommons.org/licenses/by-nd/4.0/


	 37	

relative performance estimates and factor sensitivities might have been different. A second 

limitation is that the cohort size (N=419) was not large enough to include quantitative analyses of 

the effects of other comorbidities and diseases. A third limitation is that all the patients were adults 

≥18 years of age. We cannot say whether any differences in SeptiCyte RAPID performance occur 

in adolescents, children, infants or neonates. A fourth limitation is that, with respect to 

race/ethnicity, the dataset was sufficient only to analyze the main classes of subjects (White, 

Black, Asian, Hispanic) from North American and European geographic regions, and did not 

include other minorities or patients from other geographic regions. Future studies will need to be 

undertaken to establish performance in other racial/ethnic groups within North American and 

European populations, as well as racial/ethnic groups more generally from other areas of the 

world. A fifth limitation is that the metadata in our study was not sufficiently comprehensive or 

granular to allow a stratification according to socioeconomic factors, which are known to correlate 

with sepsis comorbidities [37]. 

 

Clinical identification of sepsis, even retrospectively, is characterized by significant diagnostic 

uncertainty [6,50]. This motivates the development of objective sepsis diagnostic tests [51,52]. In 

this study we have shown that SeptiCyte RAPID provides consistent discrimination of sepsis vs. 

SIRS across many subgroups within a heterogeneous adult, ICU patient population suspected of 

sepsis.  Further studies involving larger numbers of patients will be required to confirm the 

robustness of SeptiCyte RAPID in broader populations.  

 

5. Conclusions 

 

We conducted a stratification analysis of SeptiCyte RAPID data from the pivotal studies MARS, 

VENUS, NEPTUNE (N=419). SeptiCyte RAPID demonstrated consistent performance for 

discrimination of sepsis vs. SIRS, using AUC as the performance measure, across a heterogenous 

adult, critically ill patient population when stratified by key demographic, clinical, microbiological 

and interventional parameters.  This helps to support a clinical utility claim for SeptiCyte RAPID. 

Stratification analysis with phenotypic variables may be useful for resolving sepsis patients into 

subgroups based on clinical severity. 
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Supplementary Material: Supplementary material is available for this manuscript. References [20-

23, 53-62] are cited in the Supplementary Material. 
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