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 2 

Abstract 45 

Parkinson’s disease (PD) is a neurodegenerative disorder associated with alterations 46 
of neural activity and information processing primarily in the basal ganglia and cerebral cortex. 47 
Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) is the most effective 48 
therapy when patients experience levodopa-induced motor complications. A growing body of 49 
evidence points towards a cortical effect of STN-DBS, restoring key electrophysiological 50 
markers, such as excessive beta band oscillations, commonly observed in PD. However, the 51 
mechanisms of STN-DBS remain elusive. Here, we aim to better characterize the cortical 52 
substrates underlying STN-DBS-induced improvement in motor symptoms. We recorded 53 
electroencephalograms (EEG) from PD patients and found that, although apparent EEG 54 
features were not different with or without therapy, EEG signals could more accurately predict 55 
limb movements under STN-DBS. To understand the origins of this enhanced information 56 
transmission under STN-DBS in the human EEG data, we investigated the information 57 
capacity and dynamics of a variety of computational models of cortical networks. The extent 58 
of improvement in decoding accuracy of complex naturalistic inputs under STN-DBS depended 59 
on the synaptic parameters of the network as well as its excitability and synchronization levels. 60 
Additionally, decoding accuracy could be optimized by adjusting STN-DBS parameters. 61 
Altogether, this work draws a comprehensive link between known alterations in cortical activity 62 
and the degradation of information processing capacity, as well as its restoration under DBS. 63 
These results also offer new perspectives for optimizing STN-DBS parameters based on 64 
clinically accessible measures of cortical information processing capacity.   65 

 66 

 67 

 68 

Significance statement: Parkinson’s disease, a neurodegenerative disorder associated with 
a variety of motor symptoms, is due to the progressive degeneration of dopaminergic neurons. 
Neuronal networks in turn display abnormal activity associated with high excitability and 
abnormal synchronization. Treatments based on the electrical stimulations of deep brain nuclei 
(DBS) provide major symptomatic improvement, but their mechanisms of action remain 
unknown. Here, using mathematical models of the corticalcircuits involved, we show that DBS 
restores neuronal ability to encode and transmit information. We further show that movements 
from human patients can be better predicted from brain signals under treatment. These new 
theory and metrics open the way to personalized and adaptive DBS allowing to personalize 
stimulation patterns to each patient.  
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Main Text 69 
 70 
 71 
Introduction 72 

Parkinson’s disease (PD) is a neurodegenerative disorder associated with motor 73 
symptoms, including bradykinesia, rigidity, and tremor (1). These motor symptoms result from 74 
the progressive loss of dopaminergic innervation in the basal ganglia and alterations of 75 
neuronal activity in cortico-basal ganglia-thalamic circuits. In particular, at the cortical level, 76 
changes in excitability (2-4) and inhibitory activity (5-8), excessive oscillations and elevated 77 
synchronization in the beta frequency band (9-10), together with structural changes (11), have 78 
been reported in PD patients and animal models (12-20), as reviewed in (4,21). Furthermore, 79 
functional alterations of information processing during movement execution have been 80 
described in PD animal models, as illustrated by less precisely timed cortical spiking activity 81 
(22,23) and decreased sensitivity to incoming inputs (22,24,25). Altogether, this body of 82 
experimental evidence suggests that the detrimental changes in cortical dynamics arising in 83 
PD blur motor-related information and lead to a decrease in signal-to-noise that propagates to 84 
downstream circuits. 85 

Chronic high-frequency stimulation of deep brain structures (called Deep Brain 86 
Stimulation, DBS), targeting the subthalamic nucleus (STN-DBS) or internal globus pallidus in 87 
the basal ganglia, has been shown to provide an effective symptomatic treatment in PD 88 
(1,26,27). However, the mechanisms of action of STN-DBS remain unclear (28-31). Various 89 
hypotheses have been proposed to explain the therapeutic effect of STN-DBS. In particular, 90 
several lines of evidence point out that, in PD patients and rodent models of PD, STN-DBS 91 
efficacy could be cortically mediated (32,18,13). Moreover, STN-DBS was shown to curtail 92 
primary motor cortex (M1) hyperexcitability in PD patients (33,3,34) and in PD rodent models 93 
(12,13), and to dampen cortical beta oscillations and bursting activity patterns (35-37). As a 94 
possible mechanistic explanation, STN-DBS is thought to recruit cortical GABAergic 95 
interneurons, as indicated by the restored cortical inhibition in PD patients (38,39) and by the 96 
increased activity in somatostatin (SST)-expressing cells in rodents (13). Hence, by restoring 97 
the dynamics of cortical networks, we hypothesize that STN-DBS could improve their 98 
information processing capacity, accompanying the alleviation of motor symptoms. In line with 99 
this hypothesis, a recent theoretical work showed that high-frequency stimulation, mimicking 100 
STN-DBS, restores the physiological activity of a neuronal network, by curtailing highly 101 
synchronized activity, and reinstates its information processing capabilities (40).  102 
 Here, we aimed at exploring this hypothesis based on EEG recordings from PD patients 103 
under pharmacological and STN-DBS treatments, and based on computational models. While 104 
EEG features did not show statistical differences between the OFF and ON-therapy conditions, 105 
we found that STN-DBS improved the ability to predict the type of movement that patients were 106 
planning to execute. To better understand the origins of the improvement in information 107 
processing capacity under STN-DBS, we tested the impact of STN-DBS on information 108 
encoding in multiple spiking models of cortical networks exhibiting various population activity 109 
and dynamics. We found that STN-DBS could reliably improve decoding accuracy of complex 110 
naturalistic inputs across most model configurations, and that STN-DBS parameters could be 111 
optimized according to the pathological activity profile of the computational model. Finally, we 112 
observed that STN-DBS could act by decreasing the excitability of pyramidal neurons, which 113 
in turn could shift the synchronization level of the network. This phenomenon was particularly 114 
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exacerbated in PD networks exhibiting high levels of synchrony. Hence, our work finely 115 
investigates links between known alterations in cortical activity and the degradation of 116 
information processing capacity, and also opens new perspectives for more finely optimizing 117 
STN-DBS parameters, by relying on clinically accessible measures of cortical information 118 
processing capacity.   119 
 120 
 121 
Results  122 
 123 
Improvement of movement decoding from human EEG under STN-DBS 124 

We set out to test the theoretical hypothesis that cortical circuits in PD patients display 125 
reduced information processing capabilities that are restored under STN-DBS. We aimed to 126 
quantify cortical information non-invasively in humans, using EEG, and compare these 127 
measures between control individuals and PD patients ON or OFF-therapy. To this purpose, 128 
we recruited a cohort of twenty human subjects, composed of 10 control individuals and 10 129 
PD patients implanted with STN-DBS electrode (Material & Methods and Table S1), and 130 
performed multi-channel EEG recordings combined with electromyograms during the 131 
spontaneous execution of three movements. The three movements belonged to the clinical 132 
MDS-UPDRS severity scale for PD (41): finger tapping (item 3.4), fist clenching (item 3.5) and 133 
hand pronation (item 3.6) (see Material & Methods and Movie S1 and S2). Electromyograms 134 
of the specific muscles involved (musculus extensor indici, flexor digitorum superficialis and 135 
profundus, and pronator teres muscles, respectively) were recorded and used to align EEG 136 
recordings relative to the onset of movement, allowing the extraction of movement-related 137 
potentials (Fig. 1A). PD patients were tested in both OFF and ON-therapy conditions. In OFF-138 
therapy, patients were tested with STN-DBS OFF and weaned for more than 12 hours from 139 
their usual pharmacological antiparkinsonian therapy, while in ON-therapy, both STN-DBS and 140 
pharmacological medication were reinstated. While PD patients ON-therapy and control 141 
subjects successfully executed all three movements, two patients OFF-therapy were not able 142 
to perform enough repetitions for all three movements (< 50 trials) and one additional patient 143 
was not able to execute the hand pronation movement. In one last patient, the EEG signal was 144 
too noisy. These patients were excluded from further analyses since the associated dataset 145 
would not contain enough data points to be analyzed accurately. For statistical purpose (n=7 146 
PD patients, n=10 control subjects), we centered most of our analyses of the EEG signals 147 
during the execution of two movements – finger tapping and fist clenching. 148 

To investigate whether EEG features varied across conditions, we quantified the 149 
average beta band power during each movement, either across the full session (Fig. 1B for 150 
finger tapping) or across individual trials, restricting the time window of the EEG signals to the 151 
pre-movement preparatory period (Fig. 1C for finger tapping and Fig. S1B for first clenching). 152 
A 700 ms-window preceding the EMG-detected onset of muscle activation was chosen in 153 
accordance with the start time of pre-movement readiness potentials reported in previous 154 
works (42). We focused on the electrode positioned over the primary motor cortex and 155 
contralateral to the movement side (labelled C electrode). During finger tapping, no differences 156 
in the average beta band power were observed across conditions (paired Wilcoxon test: 157 
OFF/ON: p=0.81 and p=0.81 for full session and individual trials, respectively; Wilcoxon test: 158 
OFF/Control: p=0.60 and p=0.37 respectively; ON/Control: p=0.60 and p=0.42); in particular 159 
no excessive beta-band power could be detected in PD patients OFF therapy. Alternatives 160 
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measures of beta band power yielded a similar conclusion (Fig. S1A). In addition, we 161 
quantified the maximal amplitude of the preparatory movement-related potentials and did not 162 
find significant differences between OFF/ON-therapy conditions (p=0.94). Similarly, the trial-163 
to-trial temporal variability, quantified by the standard deviation of the voltage signals across 164 
trials, did not reveal any modulation by STN-DBS (p=0.94). These observations were valid 165 
during fist clenching (Fig. S1B) and were consistent across electrodes (Fig. S1C).  166 

Hence, although turning STN-DBS ON elicited an improvement in movement 167 
execution, no differences in basic EEG features were visible between the OFF and ON-therapy 168 
conditions. These observations are in line with previous EEG studies (43,44) (for review, see 169 
43). We thus reasoned that quantifying cortical information might be more sensitive to capture 170 
latent signatures of movement planning in the EEG signals, and reveal differences in motor 171 
encoding between OFF/ON-therapy conditions. To this purpose, we compared the quality of 172 
decoding the identity of the executed movement from the EEG signals across conditions. 173 
Three supervised machine-learning algorithms – linear discriminant analysis (LDA), nearest 174 
centroid classifier (NN) and multinomial logistic regression (MLR) –, were trained and tested 175 
on EEG signals recorded during the preparatory period of the movement, to avoid biases due 176 
to the quality of movement execution (Fig. 1D). We ensured that movement identity could be 177 
decoded from control subjects and determined which configuration of input signals – either 178 
from individual trials or six-trial averages, and either from a single or a combination of 179 
electrodes – yielded the highest decoding accuracy (Fig. 1E, Fig. S2A and Table S2). When 180 
decoding two movements (finger tapping vs. fist clenching), we found that the signals from the 181 
electrodes contralateral to the movement were the most informative using LDA algorithm. 182 
Furthermore, combining the signals of four contralateral electrodes (Fp, F, C and P electrodes) 183 
yielded the best average accuracy across subjects (60.8%, p = 0.0059). Six-trial average 184 
allowed for better decoding accuracies than individual signals. 185 
 To test the impact of STN-DBS on cortical information processing, we compared the 186 
accuracy of decoding limb movement from EEG signals for each of the STN-DBS-implanted 187 
PD patients in both OFF/ON-therapy conditions. A significant improvement was found in the 188 
majority of patients (from 67 to 85%) once ON-therapy when decoding either two or three 189 
movements. More precisely, for 2 movements, out of 7 PD patients, 5 showed a significant 190 
increase in decoding accuracy using MLR and LDA algorithms, and 6 for NN; for 3 movements, 191 
out of 6 patients, 5 displayed increased accuracy for MLR and NN and 4 for LDA. On average, 192 
decoding of two movements performed by LDA and NN classifiers was significantly increased 193 
in the ON-therapy condition (LDA: 59.5% vs. 50.3 %, p = 0.0156; NN: 64.6 % vs. 51.1 %, 194 
p = 0.0312; MLR: 63.8 % vs. 51.1 %, p = 0.0781), and reached similar levels to those of control 195 
subjects (LDA: p = 0.193; NN: p = 0.962; MLR: p = 0.601). In contrast, decoding accuracy in 196 
the OFF-therapy condition relative to control was significantly worse (LDA: p < 0.001; NN: p 197 
= 0.0068; MLR: p = 0.0097) and did not differ on average to random chance level (Fig. 1F, 198 
Fig. S2B and Table S3). A similar trend was observed when considering other input 199 
configurations (individual vs. averaged trials, and using either all, or only the C electrode 200 
contralateral to the movement side) and when classifying the three movements. Yet, in these 201 
configurations, due to our small sample size, no statistical significance was observed between 202 
patients OFF and ON-therapy. Nonetheless, decoding accuracies OFF-therapy were 203 
significantly lower compared to control patients (Fig. S2C and S2D and Table S3). To verify 204 
whether these results could be affected by the quality of detection of movement onset, we 205 
repeated our analyses on control subjects by adding an artificial jitter of ± 50 to ± 200 ms to 206 
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the original movement onset detected from the EMG recordings. While the decoding 207 
performance decreased, as expected from the addition of a source of randomness to the 208 
signal, accuracies remained consistently higher than that of PD patients OFF-therapy (Fig. 209 
S2E and Table S4), indicating that possible differences in the precision of detecting movement 210 
onset across conditions could not fully account for changes in decoding accuracy.  211 

Overall, our EEG analyses indicate that hidden features, not easily captured by direct 212 
quantifications of movement-related potentials, may underlie the differences in decoding 213 
capacity observed between recordings of patients OFF vs. ON-therapy. These hidden features 214 
originate most likely from cortical dynamics, the access to which remains relatively limited in 215 
EEG.  216 

 217 
Emulating EEG results using motor cortex network spiking models 218 

To emulate the results obtained from EEG data and further explore the links between 219 
cortical dynamics and information transmission, we developed a spiking network model of layer 220 
5 of the primary motor cortex (M1), including three neuronal populations (Fig. 2A): pyramidal 221 
excitatory cells, parvalbumin (PV) and somatostatin (SST) inhibitory interneurons. The model 222 
relied on realistic parameters, based on our previous model (13) and published experimental 223 
data (Tables S5-6). Notably, consistent with experimental data, the model included the 224 
absence of a feedback connection from pyramidal cells to SST interneurons (45), as well as 225 
the fact that PV interneurons inhibit each other strongly while providing little inhibition to other 226 
interneurons, in contrast to SST interneurons (46,47). To recapitulate the diversity of cortical 227 
dynamics and activity regimes that are associated with different disease stages over the 228 
course of PD, different subtypes of PD as well as patient-to-patient variation in cortical wiring 229 
preceding PD onset, we generated multiple model configurations. We randomly varied three 230 
parameters of the original model, consistent with reports of altered excitation/inhibition balance 231 
in PD (2-8,12,13): the synaptic strengths reciprocally connecting pyramidal cells and PV 232 
interneurons (we for pyramidal to PV and wi for PV to pyramidal cells), as well as the excitatory 233 
external input Iext received by pyramidal cells (Fig. S3A). This collection of network models 234 
generated a constrained repertoire of activity profiles (Fig. 2B), from highly regular periodic 235 
behaviors to asynchronous regimes, and from low to high firing rates. To organize the models 236 
according to the properties of the spontaneous dynamics they displayed, each network activity 237 
regime was characterized by (i) the mean firing rate of pyramidal neurons and (ii) the entropy 238 
of the average probability of pyramidal cells firing a spike, a proxy for synchrony (see also Fig. 239 
S3 for additional quantifications and characterizations of the activity of the different networks). 240 
Two broad regimes emerged from this classification: oscillating regimes associated with low 241 
entropy (1-2 bits) and asynchronous regimes with high (> 3 bits) entropy. A small number of 242 
parameter configurations yielded relatively sparse activity (firing rate < 1 Hz) and intermediate 243 
entropy levels, creating a narrow tunnel connecting the two larger clusters of activity; no 244 
parameter combination generated intermediate levels of entropy with medium (1-4 Hz) to high 245 
(> 4 Hz) firing rates (Fig. 2B).  246 

Based on this broad benchmark of network profiles, we investigated the effect of STN-247 
DBS on information processing in a subset of networks (n=44), by examining the network 248 
responses to complex and naturalistic stimuli, i.e. containing some periodicity and noise, 249 
encoding possibly multiple latent features and showing trial-to-trial variability. To this purpose, 250 
we built a set of complex non-stationary signals from audio-recordings (Fig. 2C and Material 251 
& Methods), that served as external inputs to pyramidal cells. The audio nature of the signals 252 
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is indifferent to our purposes, but it captures features of naturalistic inputs, that could mimic 253 
the nature of inputs received by pyramidal cells of the motor cortex during movement 254 
preparation.  Indeed, it provides us with a set of non-stationary signals (different spoken words) 255 
with trial-to-trial variability in the repetitions of the same sentences by the same individual, and 256 
two latent variables: the identity of the person speaking (the voice), and the meaning of the 257 
sentence. The voice or the meaning of the sentences, shared across different stimuli, can 258 
participate in creating common underlying features, such as the preferential activation of 259 
subsets of pyramidal cells (due to over-representation of a frequency for a given voice across 260 
sentences) or a common temporal pattern of activation (for a similar sentence across voices). 261 
We thus aimed at decoding these latent features by training the same supervised machine 262 
learning classifiers used for decoding movement identity from EEG signals (Fig. 2D and S4A, 263 
respectively). In absence of STN-DBS, the highest decoding accuracies (> 35%) were 264 
observed for very low-activity regimes (< 1 Hz), as well as high-entropy regimes with low firing 265 
rates (~ 1-2 Hz). In contrast, the lowest accuracy scores were obtained for low-entropy (1-2 266 
bits) or high-activity regimes (> 4 Hz), very close to random chance level (equal to 25% 267 
decoding accuracy).  268 

Then, to mimic STN-DBS, we applied high-frequency pulse-like inputs to all three 269 
populations (13). Indeed, the currents associated with STN-DBS generates sequences of 270 
depolarizations along axons and synaptically-mediated depolarizations in the cortex, that 271 
originate from different anatomical routes: pyramidal cells can be antidromically activated 272 
through the hyperdirect pathway and orthodromically through the rapid STN-cortex pathway 273 
and the basal ganglia-thalamo-cortical route (48,49,12). Antidromic spikes can also excite 274 
deep-layer parvalbumin (PV) interneurons through the axon collaterals of pyramidal cells 275 
(antidromic axonal reflex) (50). SST interneurons have been shown to be activated under STN-276 
DBS (13); while the mechanisms mediating the recruitment of SST interneurons remain to be 277 
investigated and most likely involve superficial layers, not included in our model, a high-278 
frequency external current was added to SST interneurons to replicate experimental 279 
observations. For a fixed set of STN-DBS parameters (200 pA pulses at 130 Hz), decoding 280 
accuracy was increased under STN-DBS in 59% or 68% of networks when decoding the 281 
meaning or the voice respectively (Fig. 2E and S4A). 282 

Altogether, we recapitulated the experimental observations made on EEG recordings 283 
by applying the same quantification of information – the decoding accuracy – to spiking 284 
network models in response to naturalistic stimuli. We found that STN-DBS consistently 285 
improved information transmission. These results allow us to further examine theoretically how 286 
the efficacy of STN-DBS can be optimized and predicted according to the properties of the 287 
network.  288 

 289 
Optimizing STN-DBS parameters for maximal decoding accuracy 290 

In Fig. 2E, the extent of STN-DBS-induced change in decoding accuracy scores varied 291 
across network configurations. This variability may arise from differences in network sensitivity 292 
to external stimulation, which could be compensated by varying stimulation intensity. To test 293 
whether decoding accuracy could be maximized by varying STN-DBS parameters and explore 294 
how these optimal parameters relate to each network configuration, we varied both the 295 
amplitude and frequency of STN-DBS pulses (Fig. 3A and Fig. S4B) and evaluated changes 296 
in decoding accuracy in 20 network configurations exhibiting various levels of excitability and 297 
synchronization. The subset of network configurations examined here covered most regimes 298 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.25.24310748doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.25.24310748
http://creativecommons.org/licenses/by/4.0/


 8 

of the 2D-map presented in Fig. 2B. With optimal STN-DBS parameters, turning the 299 
stimulation ON always improved the decoding accuracy, with an average 60% (range from 300 
30% up to 100%) increase in decoding accuracy compared to the OFF-DBS condition. We 301 
found that a single parameter – the total current of the stimulation (frequency multiplied by 302 
amplitude multiplied by pulse duration) – summarized well the effects of varying both STN-303 
DBS frequency and amplitude: indeed, a notable peak in decoding accuracy arose for all 304 
network configurations when projecting STN-DBS amplitude and frequency onto the total 305 
current of the stimulation (Fig. S4B).  306 

In line with the necessity for individualized clinical adjustments of STN-DBS 307 
parameters, information decoding could not be optimized across all network configurations 308 
using the same unique set of STN-DBS parameters. Indeed, the optimal STN-DBS parameters 309 
varied between network configurations (Fig. 3B and Fig. S4B). Importantly, for each network, 310 
the optimal STN-DBS current was robust to the choice of classifiers (Pearson’s correlation 311 
coefficient r = 0.81, p < 0.001 between MLR and NN and r = 0.92, p < 0.001 between MLR and 312 
LDA classifiers) and to the decoding feature (voice or meaning; Pearson’s correlation 313 
coefficient r = 0.81, p < 0.001) (Fig. 3C). These results support the hypothesis that the optimal 314 
STN-DBS current mostly depends on the intrinsic features of the network rather than the 315 
decoding task. In the same idea, networks with initially low firing rates necessitated the lowest 316 
currents (50-100 pA), since higher currents (> 150 pA) caused a complete and detrimental 317 
silencing of pyramidal cells (Fig. 3B). Among the three network configuration parameters we 318 
varied, the external excitatory input Iext targeting pyramidal cells was strongly correlated with 319 
the intensity of the optimal STN-DBS current (Pearson’s correlation coefficient r = 0.81, p < 320 
0.001) (Fig. 3D and Fig. S4C). In the majority of networks, we also found a large gap between 321 
the high intensity of efficient STN-DBS current compared with the average strength of the 322 
stimulus, which was two to four times smaller. This gap was not prejudicial to information 323 
processing, underlining the strong filtering capacity of the cortical network relative to its shared 324 
STN-DBS input. 325 

These analyses indicate that decoding of naturalistic inputs can be efficiently optimized 326 
by fine-tuning STN-DBS total current. The optimal STN-DBS current depended on the network 327 
configuration, and could be predicted from the level of cortical excitability.  328 

 329 
Linking STN-DBS impact on decoding accuracy to cortical profiles 330 

To further decipher how STN-DBS affects the properties of the networks, and yields an 331 
improvement in information transmission, we studied a wider set of networks (those generated 332 
in Fig. 2B). We first investigated how STN-DBS impacted the firing rate and synchronization 333 
levels of pyramidal cells depending on network synaptic connectivity profile and intrinsic 334 
activity. Three main observations emerged from the comparison of OFF/ON STN-DBS 335 
conditions, using a fixed set of STN-DBS parameters (200 pA pulses at 130 Hz) (Fig. 4A and 336 
Fig. S5A): (i) high-frequency STN-DBS decreased the firing rate of pyramidal cells in 88 % of 337 
the network configurations, with at least a 50% reduction in firing rate in 62% of all networks; 338 
(ii) STN-DBS partially curtailed the synchronous activity of low-entropy regimes, resulting in 339 
increased entropy and decreased firing rate; (iii) high-entropy regimes became less entropic, 340 
yet without generating a regularized activity pattern imposed by STN-DBS. The strongest 341 
effects of STN-DBS were obtained in regimes dominated by a strong inhibition from PV to 342 
pyramidal neurons (high wi), and a low we/wi ratio (Pearson’s r(we/wi, ΔFiring/Firing) = 0.69, 343 
p < 0.001 and r(wi, ΔFiring/Firing) = -0.71, p < 0.001) (Fig. 4B and Fig. S5B). Conversely, a 344 
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high we/wi ratio was associated with an increase or no net change in firing rate under STN-345 
DBS, while a strong external input Iext rendered pyramidal cells more resistant to 346 
desynchronization (Pearson’s r(Iext, ΔEntropy/Entropy) = 0.68, p < 0.001). Finally, STN-DBS 347 
did not alter the anti-correlation between pyramidal and PV firing rate, but accrued SST activity, 348 
hence enhancing SST inhibition on pyramidal cells (Fig. S5C).  349 

Altogether, these observations suggest that STN-DBS is able to mitigate a wide 350 
spectrum of pathological cortical activity profiles. While STN-DBS was modeled as an external 351 
excitatory input to pyramidal, PV and SST neurons, its mechanism of action was paradoxically 352 
mediated by a decrease in excitatory tone. These results are in line with experimental findings, 353 
showing that the majority of pyramidal neurons decreased their firing rate whereas SST 354 
interneurons became activated under STN-DBS (13). We also found that the relative efficiency 355 
of STN-DBS depended on the intrinsic dynamics and connectivity of the network. Importantly, 356 
the impact of STN-DBS on cortical dynamics remained consistent when lowering the 357 
proportion of neurons receiving STN-DBS input (Fig. S6A).   358 

To investigate how levels and patterns of cortical activity facilitate or hinder information 359 
encoding, we simplified the set of stimuli considered in the previous section and used constant 360 
or time-varying external stimuli as inputs targeting a subset of pyramidal cells (nine stimuli: two 361 
constant pulses, three Ornstein-Uhlenbeck processes and four deterministic ramps). We then 362 
compared the performance of supervised classifiers between OFF and ON STN-DBS. As 363 
observed in the decoding of naturalistic stimuli, high decoding accuracy (>55%, with random 364 
decoding accuracy equal to 11.1 %) was found in very low-activity regimes and in high-entropy 365 
regimes with low firing rates (~ 0-2 Hz) in the OFF condition (Fig. 4C and Fig. S7A). In contrast, 366 
the lowest accuracy scores (< 40%) were consistently obtained for low-entropy regimes. STN-367 
DBS efficiently improved the decoding accuracy of low-entropy regimes, with up to 160 % 368 
increase (Fig. 4D and Fig. S7B). In comparison to changes in excitability induced by STN-369 
DBS, changes in entropy were a stronger predictor of changes in accuracy (linear regression 370 
model of ΔAccuracy based on MLR algorithm: ΔFiring: t = -1.02; p = 0.307; ΔEntropy: t = 9.58, 371 
p < 0.001). Indeed, both the sign and relative change in entropy governed the change in 372 
decoding accuracy. As such, in contrast to low-entropy regimes, networks characterized by a 373 
high entropy, slightly decreased upon STN-DBS application, were associated with a small 374 
decrease in decoding accuracy under STN-DBS. The robustness of these observations was 375 
supported by the high correlation between the decoding accuracy results obtained across all 376 
three machine-learning algorithms (Fig. S7A, Pearson’s r(MLR, LDA) = 0.96; r(MLR, NN) = 377 
0.87; r(LDA, NN) = 0.86, p < 0.001). These results were also consistent when varying the 378 
proportions of neurons recruited by STN-DBS (Fig. S6B).  379 

These analyses reveal that the low-entropy regimes, the most detrimental regimes for 380 
decoding external stimuli, are desynchronized by STN-DBS through a decrease in pyramidal 381 
cell activity, and constitute the regimes for which the impact of STN-DBS on information 382 
processing is the most prominent. Overall, the observations from our modeling framework, 383 
once adapted to the clinics, could have important implications for patient screening and STN-384 
DBS parameter optimization.  385 
 386 
 387 
Discussion  388 
 389 
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PD has been characterized by functional alterations of information processing in the 390 
motor cortex during movement execution (22,23,25), together with changes in excitability and 391 
levels of synchronization (15,19,14,4,21). Based on previous experimental data (13), we 392 
further hypothesized that STN-DBS restores physiological activity patterns at the cortical level. 393 
To test this hypothesis and explore the links between information processing capacity and 394 
cortical activity in PD and under STN-DBS, we relied on EEG recordings from PD patients and 395 
data-driven simplified models of motor cortex.  396 

While we did not find changes in basic EEG features, such as beta synchronization 397 
levels, across the OFF and ON-therapy conditions, in line with previous EEG reports (43,44), 398 
decoding movement identity from EEG signals, occurring before movement execution, was 399 
consistently more accurate in control and ON-therapy condition vs OFF-therapy. Indeed, in the 400 
latest condition, decoding accuracy reached chance level. These data thus indicated that 401 
cortical activity conveys more reliable information in control conditions and ON-therapy. Yet, 402 
such functional differences between conditions were not easily captured by basic signal 403 
statistics of the EEG, likely because of its limited spatial and cell-type resolution and low signal-404 
to-noise ratio. This last observation prompted us to develop a modeling approach initiated in 405 
previously published works (13,40). To draw a close parallel to the EEG data, our metric for 406 
quantifying information processing in computational models relied on decoding known external 407 
stimuli targeting pyramidal cells based on pyramidal cells responses. In line with previous 408 
studies (16,51), we found that low-entropy regimes, characterized by highly synchronous 409 
activity across pyramidal neurons, were the most detrimental regimes for information encoding, 410 
whereas regimes of sparse spiking activity were associated to the highest decoding scores. 411 
Our results were consistent throughout the set of stimuli investigated, from simple deterministic 412 
currents to trial-to-trial variable and spatio-temporally structured inputs. Deficiencies in 413 
information processing can reflect various aspects of PD symptoms and can be related to 414 
altered network dynamics. Indeed, hyperexcitability or highly synchronized activity prevent 415 
external stimuli from affecting the spatio-temporal structure of the network responses to 416 
external inputs, making it more difficult to extract the relevant signals, as observed 417 
experimentally (22-24). Such abnormal activity associated to a decreased signal-to-noise ratio 418 
might cause an elevation in the detection threshold that would delay the initiation and slow 419 
down the sequential activation of voluntary movements, i.e. bradykinesia. In direct relation to 420 
decoding external inputs, PD patients often exhibit impairments in discrimination and 421 
perception of sensory stimuli, showing reduced sensitivity for detecting tactile and haptic 422 
stimuli as well as proprioceptive inputs, and reduced precision to differentiate between two 423 
stimuli (52-56).  Altered decoding can be caused by a loss of specificity and of functional 424 
segregation of receptive fields, which in the motor domain can lead to the inaccurate 425 
recruitment of muscles and rigidity (14,57-59).  426 

As observed from the increase in decoding accuracy, STN-DBS dramatically improved 427 
information processing in low-entropy regimes, and has milder effects in networks with similar 428 
activity levels but high-entropy. Interestingly, closely aligned to our information indicators, STN-429 
DBS improves not only movement initiation and motor sequence execution, but also 430 
somatosensory and proprioceptive discrimination in PD patients (60,61). In line with our 431 
hypothesis, the STN-DBS-induced improvement in information processing was accompanied 432 
by a restoration of more physiological activity patterns: a decrease in the firing rate of pyramidal 433 
neurons was observed in most network configurations, mediated in part by the recruitment of 434 
SST interneurons, consistent with previous experimental work in rodents demonstrating the 435 
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activation of cortical L5 SST interneurons and inhibition of pyramidal neurons under STN-DBS 436 
(12,13), and clinical studies (33,34,38,39). When applied to a low-entropy state, the decrease 437 
in firing rate further allowed a reduction in the level of synchronization of pyramidal cells spiking 438 
activity and the restoration of temporally richer dynamics, in accordance with experimental (18) 439 
and clinical findings (36,37).  440 

We further investigated whether and how STN-DBS parameters could be adjusted to 441 
restore optimal information processing in cortical networks. We found that such optimization 442 
directly reflected the extent of STN-DBS-mediated desynchronization. In line with this result, a 443 
correlation between STN-DBS clinical efficacy and STN-DBS-mediated reductions in beta 444 
band oscillation power has been reported for STN (62,63) and at the cortical level (35). Our 445 
results also highlighted that STN-DBS efficiency is modulated by the initial regime of cortical 446 
activity. In particular, the higher the excitability of pyramidal cells (modeled by high values of 447 
the external current Iext), the higher the DBS current needed to be for optimized decoding. STN-448 
DBS was also more effective at improving decoding accuracy in regimes characterized by a 449 
low entropy. Hence, we proposed that the levels of cortical excitability and synchronization 450 
could serve as predictive biomarkers of STN-DBS efficiency (64). Such features could be 451 
assessed in patients using transcranial magnetic stimulation and EEG recordings. If these 452 
predictions are first validated in the clinics, then statistics of cortical dynamics could be 453 
considered as additional criteria when screening PD patients for STN-DBS. We also observed 454 
that in our models the connectivity of the cortical circuit, controlling the excitation-inhibition 455 
balance, mattered in predicting STN-DBS efficiency: STN-DBS does not improve information 456 
encoding when pyramidal to PV connectivity is characterized by a low feedback inhibition and 457 
a strong excitatory drive. A tentative parallel can be made with known clinical and experimental 458 
observations: indeed, it is well acknowledged that patients who do not respond to L-DOPA are 459 
unlikely to benefit from STN-DBS (1). Despite the effects of L-DOPA in cortical circuits not 460 
being well elucidated, L-DOPA is known to affect cortical excitability and its oscillatory 461 
properties (65,66): D2 agonist increases PV-mediated GABAergic transmission onto pyramidal 462 
cells in vitro (67), while dopamine microinjections decrease the firing rate of pyramidal cells in 463 
anesthetized animals (68-70). Hence, in line with our modeling prediction, impaired or 464 
abnormally low GABAergic inhibition from PV interneurons might prevent L-DOPA efficiency 465 
and STN-DBS-mediated effects. In such regimes of activity, it may be interesting to test 466 
whether direct activation of neuronal subpopulations, for instance through the optogenetic 467 
activation of SST interneurons (13), might be more efficient than STN-DBS. Altogether, 468 
because our work explored a wide variety of network configurations and regimes of activity, 469 
we could better delineate and predict the range of STN-DBS efficiency, that could be tested in 470 
the clinics and used for patient screening. 471 

Finally, our modeling framework opens the door to an alternative method for adaptive 472 
STN-DBS. Indeed, recent clinical research has relied on machine-learning algorithms and 473 
aimed at detecting the physiological states of vigilance of the patient (awake active, awake at 474 
rest, asleep) as well as the type of movement in combination with the level of beta bursts for 475 
adjusting STN-DBS parameters (71-73). We propose that the accuracy with which simple 476 
machine-learning algorithms decode movement identity from brain activity could also be used 477 
for adjusting STN-DBS parameters. This criterion might encompass a broader range of 478 
pathological markers compared to a single parameter (such as the amplitude of beta power or 479 
duration of beta bursts) currently used in adaptive DBS. Whether this method is best adapted 480 
to cortical signals (using EEG or electrocorticography, which has a better signal-to-noise ratio) 481 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 28, 2024. ; https://doi.org/10.1101/2024.08.25.24310748doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.25.24310748
http://creativecommons.org/licenses/by/4.0/


 12 

or can be extended to other recording sites (for instance, STN) remains to be tested. 482 
Importantly, our results indicate that this method could be implemented non-invasively, in 483 
contrast to current procedures relying on LFP features and requiring higher signal-to-noise 484 
ratio measurements such as electrocorticography (72). The setup would allow to dynamically 485 
define optimal STN-DBS parameters based on cortical readability levels and an automatized 486 
estimation of movement improvement (74,75). Since optimizing stimulation parameters 487 
requires frequent visits to the hospital, a stressful environment for patients, especially in the 488 
first months after implantation, relying on an objective measure such as the accuracy of 489 
decoding movement-related information from brain signals should help both patients and 490 
neurologists.  491 

Of course, implementing a model of cortical activity always relies on major assumptions 492 
and simplifications. Our model uses simplified equations for describing neural activity, and 493 
considers the impact of STN-DBS on cortex as an excitatory pulse-like current input delivered 494 
at high-frequency to all neurons. This simplification, together with the absence of local 495 
connectivity motifs among cell types, causes a homogeneity of responses within each 496 
population. Nonetheless, our model accounts for non-trivial network effects, such as the 497 
decrease in the activity of pyramidal neurons and PV neurons observed in vivo (13), and 498 
reproduced in a majority of cases in silico. In addition, our results remained robust when 499 
changing the proportion of neurons recruited under STN-DBS. Finally, we opted for a stimulus-500 
based definition of information. If Shannon information theory has also been used in 501 
neuroscience, we chose a more functional quantification metric, which could be linked to 502 
different aspects of PD symptoms, as discussed above, and potentially be useful in the clinics. 503 
Interestingly, our previous work showed a high consistency between Shannon information and 504 
stimulus-response correlations (40).  505 

Overall, our theoretical work highlights how a strong and extremely regular external 506 
input could nonetheless be compatible with the enrichment of intrinsic dynamics and 507 
information encoding of cortical networks, especially when applied to pathological cases. This 508 
effect is mediated through the filtering properties of reciprocal synaptic connections together 509 
with the recruitment of SST interneurons which efficiently reduces and redistributes pyramidal 510 
cells activity. In line with our previous works (40,13) and other computational models (76,77), 511 
STN-DBS mechanisms of action might be subtler than imposing an “information lesion” onto 512 
basal ganglia circuits (29). Beyond the theoretical analyses, our work could also have 513 
important consequences in the clinics, for patient screening and fine-tuning of STN-DBS 514 
parameters.  515 
 516 
  517 
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Materials and Methods 518 
 519 
Spiking network models. The network model of the motor cortex L5 consists of 800 520 
pyramidal, 120 PV and 80 SST cells. Neurons are modeled as adaptive exponential integrate-521 
and-fire (78). The voltage of neuron i and its adaptation variable w satisfy the following system 522 
of differential equations: 523 

𝑑𝑣!" =	
1
𝐶
'−𝑔#$%& 	*𝑣!" − 𝐸#$%&, +	𝑔#$%& 		∆!'($) exp '

𝑣!" − 𝑉!'($)
∆!'($)

3 − 𝑤!" + 𝑔$*+" 	*𝐸$*+ − 𝑣!",524 

+ 𝑔",'" *𝐸",' − 𝑣!", + 𝐼$*! + 𝐼-./ +	𝐼)!"01#1)3𝑑𝑡 +	
𝜎
8𝜏0

𝑑𝜉!" 525 

𝜏2𝑑𝑤!" =	 *𝑎	*𝑣!" − 𝐸#$%&, − 𝑤!",	𝑑𝑡 526 
A spike is triggered when the voltage v reaches a threshold noted Vthres. Upon firing, the voltage 527 
is reset to a fixed value noted Vreset. Independent Gaussian white noise driven by a Brownian 528 
motion 𝜉!" was added to the dynamics of each neuron to account for the variety of sources of 529 
fluctuations of the voltage (79). Choices of intrinsic parameters and connectivity parameters 530 
(Tables S5 and S6) were guided by experimental data, as previously detailed in (13). The 531 
presence of a synaptic connection between two neurons was randomly drawn as a Bernoulli 532 
random variable with probability p to reflect the density of connections between various 533 
populations. The connection probability p ranged between 0.1 and 0.6. Synaptic weights were 534 
set to a fixed value w. Time constants for exponential decay of post-synaptic events were set 535 
to τe = 5 ms and τi = 8 ms for excitatory and inhibitory synapses respectively. To investigate 536 
different activity regimes, we randomly varied the connectivity weights between pyramidal cells 537 
and PV neurons (we: synaptic weight from pyramidal cells to PV neurons; and wi: from PV to 538 
pyramidal cells) and the external input Iext to pyramidal neurons.  539 

To mimic the somatic impact of STN-DBS on cortical neurons, we added an external 540 
current IDBS to the equation of the voltage variable in every cell of the network. More precisely, 541 
considering the periodic nature of STN-DBS-induced somatic currents, IDBS corresponds to a 542 
series of square pulses (of 2 ms duration and 200 pA amplitude, repeated at 130 Hz, unless 543 
otherwise stated), corresponding to the depolarizations induced by each pulse of DBS. These 544 
depolarizations are the source of various anatomical and experimental observations of a 545 
cortical impact of DBS: first pyramidal cells can be antidromically activated through the 546 
hyperdirect pathway and orthodromically through the STN-cortex pathway (48, 49, 12). 547 
Antidromic spikes can also excite PV interneurons through the axon collaterals of pyramidal 548 
cells (50) and SST neurons are activated under STN-DBS (13). Finally, additional recruitment 549 
may come from a filtered STN-DBS input passing through the entire cortico-thalamic-basal 550 
ganglia loops. Due to these different putative activation pathways, IDBS might impact neurons 551 
with specific delays, chosen to be: 0 ms for half of pyramidal and PV cells (fast antidromic 552 
pathways), 2 ms for the other half of pyramidal cells (orthodromic loops), and modulo 2 ms for 553 
SST interneurons (slow antidromic pathways to superficial layers and synaptic transmission). 554 
Note that the presence of such delays had no impact on network dynamics. Simulations of the 555 
network activity were done using a custom code developed in MATLAB R2022 (The 556 
Mathworks, Natick, MA, USA) using a Euler-Maruyama scheme with time step dt = 0.05 ms. 557 
 558 
Analyses. In the absence of a stimulus. For each network configuration, the firing rate and 559 
synchronization indices of the different neuronal populations in the absence of a stimulus were 560 
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computed based on the average of 20 simulations lasting 300 ms (after an initial transient of 561 
200 ms). Spike variance was estimated as the variance of the moving sum of all pyramidal 562 
cells’ spiking activity (with a window of 5 ms). This moving sum forms a time series typically 563 
characterized by peaks of activity, which are more or less exacerbated depending on the level 564 
of synchronized firing. Entropy was also calculated based on this moving sum, following 565 
Shannon’s definition, using 20 uniformly spaced bins from 0 to its maximal value. The Fano 566 
factor was defined as the average of the variance over the mean firing rate of all pyramidal 567 
cells over the variance for every 5 ms bin.  The intrinsic frequency of the network was computed 568 
as the peak frequency of the modulus of the fast Fourier transform applied on the moving sum 569 
of pyramidal cells spiking. Unless specified otherwise, the firing rate and entropy measures 570 
are specifically applied to pyramidal cells only, and were used for a 2D description of neuronal 571 
activity.  572 
 573 
Stimuli. In order to test the capacity of the network to discriminate and respond selectively to 574 
inputs, an additional current was injected to a subset of pyramidal cells (200 randomly chosen 575 
cells).  576 
Simple stimuli. A set of nine simple stimuli were each presented during 500 ms: 2 constant 577 
inputs (70 and 60 pA amplitude), 4 ramps (from 0 to 70 and 0 to 60 pA upwards and 578 
downwards), and 3 Ornstein-Uhlenbeck noises (with different means, variances and time 579 
constants).  580 
Naturalistic stimuli. Naturalistic stimuli originated from utterances recorded in MATLAB, 581 
obtained from 9 different voices. Overall, we could use 29 different sentences in French, with 582 
4 shared meanings (“Je suis à Brandeis”, “J’habite à Paris”, “Je suis au Collège”, “J’enregistre 583 
ma voix”). Each sentence was repeated 20 times. Each audio recording lasted 2.5 seconds. 584 
To align all repetitions of the same sound stimuli, the beginning and end of each repetition 585 
were identified from a threshold crossing condition, common to all the repetitions of the same 586 
sound, except for some instances characterized by lower overall volume or higher noise, and 587 
for which thresholds were adjusted. For each aligned sentence, a spectrogram was computed 588 
based on the amplitude of the short-time Fourier transform of our signal: a windowing was 589 
made using segments of length 50, and 40 samples of overlap between adjoining segments. 590 
In total, 38 sampling points were used to calculate the discrete Fourier transform. The 591 
spectrogram was renormalized using a maximal thresholding value of 0.1 or 0.2 (this difference 592 
arises from the use of different audio-recorders). In the end, we obtained a spectrogram 593 
composed of 20 frequency bands, which was then fed as input to the network. Across stimuli, 594 
we decided to use the same set of frequency-dependent receptor cells, such that every 10 595 
cells of the 200 receptor cells received the same frequency component over a 1000 ms of 596 
stimulus presentation. To make sure that all stimuli had similar input amplitudes (from 0 to 597 
about 70 pA) that were sufficient to elicit spiking activity, we multiplied the values of the 598 
spectrograms by 750 or 150. 2D maps as a function of DBS frequency and amplitude were 599 
obtained from the decoding of a subset of 12 stimuli (3 voices and 4 different meanings). 600 
Information measures. We used the decoding accuracy of supervised learning algorithms 601 
trained on network responses to quantify the information capacity of the network. As described 602 
in (13), we used three supervised learning algorithms (nearest centroid classifier, multinomial 603 
logistic regression, and linear discriminant analysis) to estimate the efficiency with which 604 
neurons encoded various stimuli. Our approach consists of the following steps (Fig. 2D). First, 605 
our network responses are converted into a time-binned matrix M in which each row 606 
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corresponding to a given pyramidal cell contains the number of spikes emitted for every 10 ms. 607 
The first 200 rows corresponded to the responses of the pyramidal cells directly activated by 608 
the stimulus. In order to reproduce the highly convergent cortical motor inputs received by 609 
striatal neurons, we densify the responses by contracting the M matrices of 800 × 50 (for simple 610 
stimuli) or 800 x 100 (for naturalistic stimuli) dimensions into a 100 × 50 (or 100 x 100) matrix 611 
S, defined as: S = W.M, where the weight matrix W is a random matrix, identical for all stimuli 612 
presentations, with each element generated from the uniform distribution on the interval [0, 1]. 613 
These S matrices are then used as inputs for the supervised-learning algorithms, (80).  614 
For each condition, the dataset consisted of 60 repetitions for each of the 9 simple stimuli or 615 
20 repetitions for the naturalistic stimuli (with the same network parameters and convergence 616 
matrix W, but independent realizations of the intrinsic noise ξ, and in the case of naturalistic 617 
stimuli trial-to-trial variable input patterns). The classifiers were trained to discriminate the 618 
population response given the stimulus on 80% of the data sample, using stratified k-fold cross 619 
validation (k = 5). This procedure was repeated using 5 independent seeds. In the case of 620 
naturalistic stimuli, the classifiers could be trained on different rules: recognizing voices, 621 
recognizing meaning, or recognizing both attributes. Training and testing of the classifiers were 622 
run using scikit-learn and keras packages in Python 3.5 (Python Software 623 
Foundation, www.python.org).  624 
 625 
EEG acquisition. Participants. Twenty human subjects participated in the study (see Table 626 
S1 for detailed characteristics). All subjects gave informed consent for participating in the 627 
study. The study protocol was approved by the Ethics Committee of the APHP (Assistance 628 
Publique-Hôpitaux de Paris, Paris, France), commission CPP 09-2022. It is registered on 629 
ClinicalTrials.gov as NCT05284526. The cohort was composed of two groups:  630 
- 10 control subjects  631 
- 10 PD patients with implanted STN-DBS and dopaminergic treated, recorded on four 632 
sessions: OFF STN-DBS and OFF medication; ON STN-DBS and OFF medication treatment; 633 
OFF STN-DBS and OFF medication; ON STN-DBS and ON medication. In this study, we 634 
focused our analyses exclusively on the OFF STN-DBS and OFF medication condition (OFF 635 
therapy) and the ON-STN-DBS and ON medication condition (ON therapy).  636 
Patients with no cognitive impairment were selected (Montreal Cognitive Assessment score > 637 
24). PD patients were diagnosed according to the current diagnostic criteria (81,82) and were 638 
recruited from the Neurology Department of the Avicenne University Hospital.  639 
Recordings were performed at the Service de Physiologie, Explorations Fonctionnelles et 640 
Médecine du Sport, Avicenne University Hospital. The motor function of all patients was 641 
assessed for each condition before performing the task, using the International Parkinson and 642 
Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS 643 
III). During the experiment, patients were in a practically defined ‘OFF medication’ state, after 644 
overnight withdrawal (at least 12 hours) of PD medication. Sessions ‘ON medication’ started 645 
45-60 minutes after resuming the usual treatment.   646 
  647 
Post-hoc exclusion. Two PD patients were unable to perform any movements OFF therapy 648 
and were thus excluded from our analyses, since we could not reliably identify the time 649 
segments preceding movement. This increased uncertainty and the poorer performance 650 
resulting from it would have made our estimates of the PD patients decoding accuracy even 651 
lower, and it seemed a fairer comparison to estimate the accuracy only for patients able to 652 
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perform the movements. In another PD patient, the SNR of the EMG recordings during the 653 
pronation of the hand movement was too low for detecting muscle activation in STN-DBS OFF 654 
condition, due to the inability of the patient to clearly execute the movement; this patient was 655 
not included when analyzing all three movements for the same reasons. Finally, in one PD 656 
patient, large noisy fluctuations in EEG signals due to poor grounding of the electrodes 657 
prevented the extraction of clean EEG traces.  658 
 659 
Task. Subjects were positioned in a comfortable chair, half-seated with legs extended. They 660 
were asked to perform three different movements: index extension, clenching of the fist and 661 
pronation of the hand. The task was divided into eight blocks. Each block consisted of 662 
repeating each movement without external trigger, in a self-paced manner: when feasible, it 663 
was constituted of 25 repetitions of first index extension (musculus extensor indici muscle), 664 
then 25 repetitions of clenching of the fist (flexor digitorum superficialis and profundus 665 
muscles), and finally another 25 repetitions of the pronation of the hand (pronator teres 666 
muscle). These hand movements correspond respectively to the 3.4, 3.5, 3.6 items of the 667 
MDS-UPDRS III (41). Overall, we could obtain at best about 200-250 repetitions for each 668 
movement. Subjects were asked to close their eyes and relax during movement execution. 669 
See for an example Movie S1 and S2.   670 
 671 
EEG recordings. Signals were recording using a 15-channel EEG system (System PLUS 672 
Evolution manufactured by Micromed SpA, Version 1.07.00), sampled at 1024 Hz. Bipolar 673 
EMG of musculus extensor indici, flexor digitorum superficialis and profundus, and pronator 674 
teres muscles, on the same side of movement, were also recorded. EEG cup electrodes 675 
(Capsulex 333102, MEI) were positioned manually and fix with plasters to ensure good stability 676 
across the different recording sessions. The following sites were recorded: {'Fp1', 'Fp2', 'F3', 677 
'F4', 'Fz', 'T3', 'T4', 'C3', 'C4', 'Cz', 'P3', 'P4'}. A reference electrode was positioned on the skin 678 
over the mastoid bone.  679 
 680 
Extraction of movement-related potentials. EEG signals were processed using custom 681 
MATLAB scripts. Signals were first band-pass filtered (1-100 Hz). 50 Hz line noise was 682 
removed when necessary (notch filter). Continuous EEG analysis resulted from the 683 
concatenation of movement execution periods, which contained no evident artefact (cut-off 684 
amplitude of 80 µV). Movement-evoked potentials were obtained after determining the onset 685 
of movement for each trial using EMG recordings. On most cases, the SNR was sufficient to 686 
perform an automatic analysis based on a custom MATLAB script (using in particular 687 
findchangepts function). In other cases, in particular when the EMG trace was constituted of 688 
multiple upward and downward phases for a single movement, a manual inspection on the 689 
EMG trace was necessary to detect the onset of movement. Each movement onset was then 690 
verified based on video recordings alignment.  691 
 692 
Statistics of EEG signals. To compute beta band power, a fast Fourier transform was applied 693 
to the EEG voltage from individual electrodes, either on the full session of a given movement 694 
or on individual trials (using a 700 ms period preceding movement onset). Average beta band 695 
power was obtained by averaging the power in the 13-30 Hz frequency range (Fig. 1B and C), 696 
or in the 17-23 Hz range (Fig. S1A). As an alternative measure, the power of the highest peak 697 
in the 13-30 Hz band of the power spectrum was also extracted (Fig. S1A). In the 700 ms-long 698 
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movement-related potentials of the preparatory period, the maximal voltage amplitude (the 699 
envelope between maximal and minimal voltage values) of each trial were calculated and then 700 
averaged to yield a single data point per patient and per movement (Fig. 1C and Fig. S1B). 701 
Finally, the standard deviation of voltage fluctuations across trials was averaged over the 700 702 
ms window (Fig. 1C and Fig. S1B).  703 
 704 
Decoding EEG signals. Movement-related potentials, either individual or averaged over six 705 
randomly chosen trials (average-based trials), constituted our input data stream for our 706 
decoding analyses. We selected the 700 ms period preceding movement onset, such as to 707 
focus exclusively on cortical preparatory activity. This way, signal decoding was not influenced 708 
by the quality of movement execution itself. In addition, these preparatory signals were not 709 
contaminated by low-frequency movement-related artefacts, which were clearly visible in some 710 
subjects. Signal decimation by a factor of 3 did not affect decoding accuracy and was therefore 711 
applied to speed up analyses. Signals used originated from individual electrodes (contralateral 712 
to the movement for Fp, F, C and P sites) or midline (Fz and Cz), a set of four contralateral or 713 
ipsilateral electrodes (Fp, F, C and P) or all electrodes (i.e. bilateral Fp, F, C, P, Fz and Cz 714 
electrodes, excluding T3 and T4 electrodes). In the case of decoding movement identity from 715 
EMG electrodes, the signal from the three EMG electrodes was used in a window of 700 ms 716 
(but compared to EEG traces focusing solely on the preparatory period, the start of the window 717 
used for EMG traces was 200 ms delayed so as to include the beginning of the movement). 718 
Jittered EEG data were obtained by realigning EEG traces to jittered movement onsets. The 719 
jitter was randomly defined across trials and drawn from a uniform distribution bounded at ± 720 
50, 100 or 200 ms (from the initially detected movement onset). Decoding was then performed 721 
using either a fixed number of trials over all the population or a fixed number of trials per 722 
patient. Trials were then randomly assigned to the training (80%) or test (20%) data set, using 723 
a stratified k-fold cross-validation (k=5). This procedure was then repeated using 5 724 
independent seeds. The training and testing of the classifiers were run using scikit-learn 725 
(https://scikit-learn.org/) and keras (https://keras.io/) packages in Python 3.5 (Python Software 726 
Foundation, www.python.org). 100 individual trials or 20 average-based trials were used for 727 
comparing, in control subjects, the decoding accuracy between electrode sites and 728 
configurations. For comparing patients OFF and ON therapy and control subjects, a patient-729 
based selection was performed, after ensuring the absence of correlation between the number 730 
of training trials and decoding accuracy. The number of individual trials varied from 46 to 251 731 
(and consequently average-based trials from 7 to 41). We ensured the absence of a significant 732 
correlation between decoding accuracy and the number of training templates (Fig. S2B). We 733 
used the same three algorithms previously described for decoding network spiking responses.  734 
 735 
Statistical Analysis. Results are expressed as mean±SEM. Statistical significance was 736 
assessed using R2022 (The Mathworks, Natick, MA, USA) or Jamovi (http://www.jamovi.org). 737 
For analysis of experimental data, paired or independent two-sampled two-tailed Wilcoxon 738 
sign rank were used to compare two distributions, or a one-sample Wilcoxon test for comparing 739 
decoding accuracy to chance level. Statistics of decoding results are summarized in Tables 740 
S1, S2 and S3. Linear regression models were used to assess the dependency of one variable 741 
onto another (or multiple others). Correlations were assessed using Pearson or Spearman 742 
correlation coefficients.  743 
 744 
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Code availability.  Custom MATLAB codes used for the computational model will be made 745 
publicly available on GitHub.  746 
 747 
  748 
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Fig. 1: Altered information decoding from PD human EEG signals can be restored by 993 
STN-DBS and medication therapy. (A) Clinical protocol. Left: Illustrative averaged 994 
electromyogram (EMG) traces after alignment with the movement onset extracted from EMG 995 
deflections (blue line). Middle: Electroencephalogram (EEG) electrode positions (orange 996 
window: primary motor cortex). Right: Illustrative averaged EEG potentials aligned to 997 
movement onset (blue line). The time period used for classifying movements (initiation period) 998 
is indicated in orange. (B) EEG power spectrum from contralateral C electrode during the entire 999 
finger tapping session across conditions (left) and associated quantitative measure of mean 1000 
beta-band power in the 13-30 Hz frequency range (right). Stats: ON/OFF therapy (paired 1001 
Wilcoxon test, p=0.81), OFF/Control and ON/Control (independent Wilcoxon test, p=0.60 and 1002 
p=0.60 respectively). (C) Quantitative measures of EEG features from contralateral C 1003 
electrode during the initiation period for finger tapping movement. Left: Average beta-band 1004 
power measured for each trial (ON/OFF: p=0.81; OFF/Control: p=0.37; ON/Control: p=0.42); 1005 
Middle: Average maximal voltage amplitude measured for each trial (ON/OFF: p=0.94; 1006 
OFF/Control: p=0.11; ON/Control: p=0.033); Right: trial-averaged standard deviation of the 1007 
voltage (ON/OFF: p=0.94; OFF/Control: p=0.23; ON/Control: p=0.043). (D) Procedure for 1008 
classifying movement identity from EEG signals. Signals either from a single electrode or from 1009 
a combination of multiple electrodes, either from individual trials or from averaging of six 1010 
randomly chosen trials, are used to train classifiers. (E) Decoding accuracy for control subjects 1011 
(each dot corresponds to one subject) using linear discriminant analysis (LDA) for different 1012 
input signals. One-sample Wilcoxon test (chance level: 50%, Table S2). (F) Decoding 1013 
accuracy across three classifiers (LDA: linear discriminant analysis; NN: nearest-centroid and 1014 
MLR: multinomial logistic regression) between patients ON and OFF therapy (paired Wilcoxon 1015 
test) and with control subjects (independent Wilcoxon test). See Table S3 for detailed 1016 
statistics. Four electrodes (Fp, F, C and P electrodes) contralateral to the movement side were 1017 
used.   1018 
  1019 
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 1020 
Fig. 2. STN-DBS improves the decoding accuracy of naturalistic stimuli in a cortical 1021 
spiking network. (A) Model architecture of layer V motor cortex, consisting of three cell types 1022 
(PYR: pyramidal cells; PV: parvalbumin-expressing interneurons; SST: somatostatin-1023 
expressing interneurons) with population-specific connection probability p and synaptic 1024 
weight w (arrow: excitatory, bar: inhibitory). Three parameters were varied: the external input 1025 
to pyramidal cells Iext, the pyramidal-to-PV excitatory synaptic weight we, and the PV-to-1026 
pyramidal inhibitory weight wi. (B) Left: Raster plots corresponding to distinct activity regimes: 1027 
high entropy (and a medium firing rate) in orange; low entropy (with a similar firing rate) in blue, 1028 
and low activity (with a low firing rate) in pink. Right: Scatter plot of the 2D network profile 1029 
(across 370 network configurations) as a function of the mean firing rate and entropy of 1030 
pyramidal neurons (the entropy was computed based on the average probability of pyramidal 1031 
cells firing a spike within 5 ms time binned intervals, normalized to the average firing rate). (C) 1032 
To emulate naturalistic stimuli, we used audio recordings converted into spectrograms and 1033 
turned into an input to pyramidal neurons. This resulted in complex spatio-temporal patterns 1034 
with trial-to-trial variability and latent variables (meaning of the sentence or voice of the 1035 
speaker). (D) Decoding accuracy (color-coded) when trained to recognize meaning (4 1036 
meanings, chance level: 25%) from pyramidal cells activity in the OFF STN-DBS condition, as 1037 
a function of the entropy and firing rate of the pyramidal cells OFF STN-DBS. Multinomial 1038 
logistic regression was used as the supervised machine-learning classifier. (E) Changes in 1039 
decoding accuracy under STN-DBS (ON – OFF) when trained on each dataset. Fixed STN-1040 
DBS parameters (200 pA, 130 Hz) were used.  1041 
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 1042 
 1043 
Fig. 3. Optimizing STN-DBS parameters based on decoding accuracy and network 1044 
parameters. (A) Left: Illustrative map of decoding accuracy (color-coded) of the multinomial 1045 
logistic regression when trained to recognize meaning as a function of STN-DBS frequency (x-1046 
axis) and amplitude (y-axis) for one network configuration. An optimal STN-DBS current (red 1047 
rectangle) corresponds to the amplitude x frequency x pulse duration parameters associated 1048 
with the highest decoding accuracy. Right: Decoding accuracy (color-coded) obtained for the 1049 
optimal STN-DBS current as a function of the entropy and firing rate of pyramidal cells OFF 1050 
STN-DBS. (B) Optimal STN-DBS current (color-coded) as a function of the entropy and firing 1051 
rate of pyramidal cells OFF STN-DBS. (C) Right: Correlation between the optimal STN-DBS 1052 
current found by all three classifiers (Pearson’s correlation coefficient r and p-value: r(MLR, 1053 
LDA) = 0.92, p < 0.001; r(MLR,NN) = 0.81, p < 0.001). Left: Correlation between the optimal 1054 
STN-DBS current found when training MLR on meaning recognition vs. voice recognition 1055 
(Pearson’s correlation coefficient r = 0.81, p < 0.001). (D) Correlation between optimal STN-1056 
DBS current and external current Iext added onto pyramidal cells (Pearson’s correlation 1057 
coefficient r = 0.81, p < 0.001). 1058 
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 1060 
Fig. 4. STN-DBS mitigates the pathological activity of cortical. networks by reducing 1061 
firing rates and synchrony, thereby restoring information capacity.  1062 
(A) Left: Raster plots of example networks before and after STN-DBS onset. The arrow 1063 
indicates the time when STN-DBS input (200 pA, 130 Hz) is added to all neurons of the 1064 
network. Normalized effects (ON-OFF/OFF) of STN-DBS on the firing rate of pyramidal cells 1065 
(x-axis) and entropy (y-axis) of their responses depending on their initial regime (color-coded; 1066 
middle: firing rate OFF STN-DBS; right: entropy OFF STN-DBS). (B) Impact of the parameters 1067 
of the model (color-coded, left: wi, middle: we, right: Iext.) on STN-DBS efficiency for decreasing 1068 
(x-axis) and desynchronizing (y-axis) the activity of pyramidal cells. (C) Supervised 1069 
classification of simple stimuli using machine-learning algorithms on the responses of all 1070 
pyramidal cells. Decoding accuracy in the OFF STN-DBS condition as a function of the firing 1071 
rate (y-axis) and entropy (x-axis) of pyramidal cells OFF STN-DBS. (D) Changes in decoding 1072 
accuracy under STN-DBS (ON – OFF) (y-axis) as a function of the normalized STN-DBS-1073 
induced change in firing rate (left) or entropy (right) (x-axis). Color-coded are the initial firing 1074 
rate (left) and entropy (right) of pyramidal cells OFF STN-DBS.  1075 
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