Bacteremia Caused by Alistipes

1 Title: Retrospective Study of Bacteremia Caused by *Alistipes* Species in Japan, 2016–2023

2

3 Authors (ORCiD):

- 4 Naoki Watanabe (0000-0001-8609-4981), Tomohisa Watari (0000-0001-5507-8356), Naoto
- 5 Hosokawa (0009-0005-2858-1593), and Yoshihito Otsuka (No ID)
- 6

7 Affiliation

- 8 Kameda Medical Center, Kamogawa, Chiba, Japan (N. Watanabe, T. Watari, N. Hosokawa, Y.
- 9 Otsuka)
- 10 Corresponding Author: Naoki Watanabe
- 11 Kameda Medical Center, 296-0044, Higashi-cho 929, Kamogawa, Chiba, Japan
- 12 Phone: 81-04-7099-2323
- 13 Fax: 81-04-7099-1196
- 14 Email: watanabe.naoki.4@kameda.jp
- 15
- 16 Word counts:
- 17 Manuscript: 3163 words
- 18 Abstract: 150 words

19

20 Keywords: Alistipes, anaerobe, antimicrobial susceptibility, bacteremia, blood culture, infection

Bacteremia Caused by Alistipes

21 Abstract

22	The clinical characteristics of Alistipes bacteremia remain insufficiently described. Therefore,
23	here, we retrospectively analyzed 13 cases of Alistipes bacteremia at a tertiary care center to
24	evaluate their clinical and microbiological characteristics. Ten patients were aged \geq 65 years, and
25	seven were female. Nine patients had comorbidities, including seven with solid tumors or
26	hematological malignancies. Eleven patients presented with gastrointestinal symptoms. The
27	isolates included four Alistipes finegoldii, four Alistipes onderdonkii, three Alistipes putredinis,
28	two Alistipes indistinctus, and one Alistipes ihumii isolates. Ten available strains exhibited low
29	minimum inhibitory concentrations against β -lactam/ β -lactamase inhibitors and metronidazole,
30	whereas they exhibited high minimum inhibitory concentrations for penicillin, ceftriaxone, and
31	minocycline. Several strains harbored antimicrobial resistance genes, including <i>adeF</i> , <i>tet</i> (Q),
32	<i>cfxA3</i> , <i>cfxA4</i> , and <i>erm</i> (G). Twelve patients received β -lactam/ β -lactamase inhibitors, and two
33	elderly patients with solid tumors developed septic shock and died. Alistipes species can
34	translocate from the gastrointestinal tract into the bloodstream, leading to severe infections.

Bacteremia Caused by Alistipes

36 Introduction

37	Alistipes is a rarely detected anaerobic bacterium in clinical samples. Initially described as a
38	bile-resistant, pigment-producing, Gram-negative bacillus (1, 2), Alistipes was classified as a new
39	genus in 2003 (3). The genus Alistipes includes 11 species, including Alistipes finegoldii (3),
40	Alistipes putredinis (3), and Alistipes onderdonkii (4). These species have been isolated from the
41	appendix tissue, feces, intra-abdominal fluid, and blood $(3,5-7)$. Although the role of Alistipes in
42	humans remains unclear, this bacterium may play a preventive or pathogenic role in various
43	diseases. Alistipes may help to prevent colitis or contribute to the pathogenesis of depression
44	(8,9).
45	Anaerobic bacteria, which are a part of the normal human flora, are also significant

pathogens in bacteremia and other infectious diseases. Anaerobic bacteremia is often associated
with abdominal, pelvic, skin, and soft tissue infections (10). *Alistipes* is associated with infections,
such as appendicitis (1, 2), and intra-abdominal infections (11). Three cases of *Alistipes*bacteremia, with patients experiencing colon cancer (12) or peritonitis (13), have been reported.
Owing to the limited number of reports, the clinical characteristics of *Alistipes* bacteremia remain
insufficiently described.

Bacteremia Caused by Alistipes

52	Inadequate treatment of anaerobic bacterial infections can lead to clinical failure. In
53	cases of anaerobic bacteremia, the mortality rate is higher in patients receiving ineffective
54	antimicrobial therapy than in those receiving appropriate antimicrobial therapy (14) . Therefore,
55	understanding the antimicrobial susceptibility of Alistipes species is crucial for implementing
56	effective treatments. Of the three Alistipes strains isolated from the blood, two of them have
57	shown low susceptibility to penicillin (PEN) and one to cefotetan (12, 13). Currently, the
58	antimicrobial susceptibility of Alistipes isolates from the blood is not well understood.
59	Therefore, this study aimed to investigate and describe the clinical characteristics of
60	Alistipes bacteremia in a tertiary care center in Japan. In addition, we evaluated the accuracy of
61	identification testing for Alistipes species and assessed the antimicrobial resistance of the isolates

62 Materials and Methods

63 Study Design and Data Collection

This was a retrospective cohort study of *Alistipes* bacteremia at Kameda Medical Center in Japan conducted between April 2016 and December 2023. We reviewed 31,875 patients who underwent blood cultures and identified *Alistipes* cases. For patients with multiple episodes, only the first

Bacteremia Caused by Alistipes

67	episode was included in this study. Patient data and microbiological testing results were collected
68	from medical records and a laboratory system. Patient data included age, sex (male or female),
69	infection type (community-acquired, healthcare-associated), comorbidities, symptoms, infection
70	sites, procedures, antimicrobial therapy, hospitalization days from blood collection, and outcomes.
71	Healthcare-associated infections were defined as cases with one of the following conditions:
72	onset after 48 h of hospitalization or patients receiving medical care, such as a nursing home,
73	dialysis, or outpatient chemotherapy. The Ethics Committee of Kameda Medical Center approved
74	this study (agreement no. 23-121). Written informed consent was not required because the data
75	used were anonymized.

76 Blood Culture and Identification Testing

77	Blood cultures were performed using BD Bactec TM FX Blood Culture System (Becton, Dickinson
78	and Company, https://www.bd.com). Blood samples were collected using Plus Aerobic and Lytic
79	Anaerobic Media for adult patients and Peds Plus Medium for pediatric patients (Becton,
80	Dickinson and Company). The blood cultures were incubated at 35 °C for 7 days. The number of
81	positive blood culture sets, time to positivity, and detected Alistipes were recorded. Alistipes
82	strains were stored at -80 °C for identification, whole genome sequencing, and antimicrobial
83	susceptibility testing. The preserved strains were cultured anaerobically using Brucella HK agar

Bacteremia Caused by Alistipes

medium (Kyokuto Pharmaceutical Industrial, <u>https://www.kyokutoseiyaku.co.jp</u>) at 35 °C for 2
days and were used for each test.

86	The strains were identified using matrix-assisted laser desorption/ionization
87	time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS was performed using the
88	MALDI Biotyper system, which included the microflex LT/SH and flexControl version 3.4
89	(Bruker Daltonics GmbH, https://www.bruker.com). Alistipes colonies that developed on the
90	Brucella HK agar medium were selected and applied to the test plate. Mass spectra were analyzed
91	using the MALDI Biotyper Library, which recorded the highest score for the predicted species.
92	Identification results were accepted at the species level for scores of ≥ 2.0 . In cases where an
93	identification result could not be obtained using the standard cell smear method, the strains were
94	retested using the formic acid on-plate or formic acid extraction method.

95 Polymerase Chain Reaction (PCR) and Whole Genome Analysis

The identification results were validated by 16S rRNA gene and whole genome analyses of the
preserved strains. Non-preserved strains were excluded from this analysis. Genomic DNA was
extracted from the strains using magLEAD and Consumable Kits (Precision System Science;
<u>https://www.pss.co.jp</u>). GeneAtlas Type G (Astec, <u>https://www.astec-corp.co.jp</u>) was used as the

100	thermal cycler and Premix Taq Hot Start Version (Takara Bio, <u>https://www.takara-bio.com</u>) for
101	the PCR reagent. Using previously reported primers for the 16S rRNA gene (15, 16), PCR was
102	performed according to the literature (17). PCR conditions and primers used are listed in Table
103	S1. Sequencing was performed using FASMAC (https://fasmac.co.jp), and the resulting
104	sequences were analyzed using EzBioCloud (18) for species identification. Additionally, 16S
105	rRNA gene reanalysis was performed on three A. finegoldii strains (3302398, 4401054, and
106	Granada) from previous bacteremia cases (12, 13). The sequence data for 3302398 (accession no.
107	AY547271), 4401054 (AY643082), and Granada (OM900033) were obtained from GenBank and
108	analyzed using the same methods as the strains collected in this study.
109	Fragment libraries for the whole genome analysis were prepared using Illumina DNA
109 110	Fragment libraries for the whole genome analysis were prepared using Illumina DNA Prep Tagmentation (M) Beads (Illumina, <u>https://www.illumina.com</u>). Sequencing was performed
109 110 111	Fragment libraries for the whole genome analysis were prepared using Illumina DNA Prep Tagmentation (M) Beads (Illumina, <u>https://www.illumina.com</u>). Sequencing was performed using the MiSeq Reagent Micro Kit (Illumina) to generate paired-end reads. De novo assembly
109 110 111 112	Fragment libraries for the whole genome analysis were prepared using Illumina DNA Prep Tagmentation (M) Beads (Illumina, <u>https://www.illumina.com</u>). Sequencing was performed using the MiSeq Reagent Micro Kit (Illumina) to generate paired-end reads. De novo assembly was conducted using the CLC Genomics Workbench version 22.0.2 (Qiagen,
 109 110 111 112 113 	Fragment libraries for the whole genome analysis were prepared using Illumina DNA Prep Tagmentation (M) Beads (Illumina, <u>https://www.illumina.com</u>). Sequencing was performed using the MiSeq Reagent Micro Kit (Illumina) to generate paired-end reads. De novo assembly was conducted using the CLC Genomics Workbench version 22.0.2 (Qiagen, <u>https://www.qiagen.com</u>). CheckM (<i>19</i>) was used as a quality check for the genome, and samples
 109 110 111 112 113 114 	Fragment libraries for the whole genome analysis were prepared using Illumina DNA Prep Tagmentation (M) Beads (Illumina, <u>https://www.illumina.com</u>). Sequencing was performed using the MiSeq Reagent Micro Kit (Illumina) to generate paired-end reads. De novo assembly was conducted using the CLC Genomics Workbench version 22.0.2 (Qiagen, <u>https://www.qiagen.com</u>). CheckM (<i>19</i>) was used as a quality check for the genome, and samples with a contamination rate of ≥ 5% were excluded from subsequent analysis. The average
 109 110 111 112 113 114 115 	Fragment libraries for the whole genome analysis were prepared using Illumina DNA Prep Tagmentation (M) Beads (Illumina, <u>https://www.illumina.com</u>). Sequencing was performed using the MiSeq Reagent Micro Kit (Illumina) to generate paired-end reads. De novo assembly was conducted using the CLC Genomics Workbench version 22.0.2 (Qiagen, <u>https://www.qiagen.com</u>). CheckM (<i>19</i>) was used as a quality check for the genome, and samples with a contamination rate of ≥ 5% were excluded from subsequent analysis. The average nucleotide identity (ANI) was performed using DFAST (<i>20</i>), identifying bacterial species with a

117	performed using the Genome–Genome Distance Calculator 3.0 (<u>https://ggdc.dsmz.de</u>) (21). The
118	threshold for defining subspecies was set at 79% DDH of the previously reported criteria for
119	subspecies classification (22). The presence of antimicrobial resistance genes was analyzed using
120	the Comprehensive Antibiotic Resistance Database (23).
121	Antimicrobial Susceptibility Testing
122	The antimicrobial susceptibility of the preserved strains was evaluated using the broth
123	microdilution method with Brucella Broth and Dry Plates (Eiken Chemical,
124	https://www.eiken.co.jp). The inoculum was prepared according to the manufacturer's
125	instructions and transferred to a microplate at a final volume of approximately 1×10^5
126	colony-forming unit per well. After inoculation, the microplate was incubated anaerobically at
127	35–37 °C for 46–48 h. Minimum inhibitory concentrations (MICs) were determined after
128	confirming bacterial growth in the control wells. The Dry Plate included the following
129	antibiotics: PEN, ampicillin-sulbactam (SAM), amoxicillin-clavulanic acid (AMC),
130	piperacillin-tazobactam (TZP), ceftriaxone (CRO), cefoxitin (FOX), imipenem (IPM),
131	clindamycin (CLI), minocycline (MINO), moxifloxacin (MXF), and metronidazole (MTZ). After
132	determining the MICs, the concentrations required to inhibit 50% and 90% of the strains (MIC ₅₀
133	and MIC ₉₀) were calculated.

Bacteremia Caused by Alistipes

134 Statistical Analyses

135	The characteristics of Alistipes cases were summarized using EZR version 1.54 (24). Continuous
136	variables are reported as medians and interquartile ranges (IQRs), and categorical variables are
137	reported as actual numbers. The proportion of patients with Alistipes bacteremia among all
138	patients who underwent blood culture was calculated using 95% confidence intervals. Time to
139	positivity was reported as the median and IQR, excluding the results from blood culture sets with
140	multiple pathogens.

141 **Results**

142 Patient Characteristics and Clinical Courses

143	Thirteen Alistipes bacteremia were identified over a 7-year period. This number represented
144	0.04% of the patients with blood cultures, and all cases were single episodes. The characteristics
145	of the patients with Alistipes bacteremia are shown in Table 1. The median patient age was 72
146	(IQR, 65–85) years, and 10 patients were aged > 65 years. Seven patients were female, and nine
147	patients had comorbid conditions, with a Charlson score ≥ 1 . Six patients had solid tumors, and
148	one had a hematological malignancy. The most common clinical symptom was abdominal pain
149	(nine patients), followed by fever (six patients). Of the 13 patients, 11 presented with

Bacteremia Caused by Alistipes

150	gastrointestinal symptoms, including abdominal pain, vomiting, diarrhea, and/or abdominal
151	distention. The median time to positivity was 81 (IQR, 71–106) h, and Alistipes strains from three
152	cases were detected in blood cultures that tested positive ≥ 120 h after the start of incubation.
153	Four patients had two sets of positive blood cultures.
154	The clinical presentations, treatments, and outcomes of Alistipes bacteremia are
155	summarized in Table 2. Eleven of thirteen patients were diagnosed with gastrointestinal tract
156	disease, with infection sites in these areas. The remaining two patients had Alistipes bacteremia
157	with unknown infection sites (cases 7 and 12). The patient in case 7 developed a fever during
158	treatment for a catheter-related bloodstream infection caused by Staphylococcus aureus, and
159	Alistipes indistinctus was detected in a blood culture collected at the time of fever. The patient in
160	case 12 had a history of a cerebral infarction and cholecystectomy. The patient presented with
161	chills, fever, and vomiting, and blood cultures were positive for A. putredinis. All patients were
162	clinically diagnosed with true bacteremia and received antimicrobial therapy. The duration of the
163	antimicrobial therapy ranged from 13 to 36 days. The most commonly prescribed antimicrobials
164	were β -lactam/ β -lactamase inhibitors (BLBLIs), with nine patients receiving SAM and six
165	patients receiving TZP. Six patients were positive for multiple pathogens, including Escherichia
166	coli, Klebsiella pneumoniae, Bacteroides species, and others.

Bacteremia Caused by Alistipes

167 Clinical Outcomes

168	Of the 13 patients, 11 achieved clinical resolution following antimicrobial therapy, whereas the
169	remaining 2 (cases 1 and 8) had a fatal outcome. The patient in fatal case 1 was a woman in her
170	80s with rectal cancer and liver metastases, who was admitted to the hospital for abdominal pain.
171	Upon arrival at the hospital, the patient experienced septic shock. The patient received
172	intravenous fluids, blood cultures were obtained, and TAZ and VCM were administered. Her
173	condition briefly stabilized following the infusion, but subsequently deteriorated with the
174	development of acidosis, hyperkalemia, and elevated lactic acid levels. The patient was
175	diagnosed with colonic perforation and obstruction. The decision was made to transfer the patient
176	to a hospital near her home for palliative care and to discontinue aggressive treatment. However,
177	her condition deteriorated, and she died within the day of the transfer. After the patient died, A.
178	finegoldii was detected in the blood culture obtained during an episode of septic shock.
179	The patient in fatal case 8 was a man in his 70s who was hospitalized for a
180	comprehensive evaluation of adenocarcinoma of unknown primary origin. The patient was
181	administered fluconazole for oral candidiasis. During hospitalization, the patient developed septic
182	shock and was administered intravenous fluids. Blood cultures were obtained, and TAZ was
183	administered. Although the patient initially stabilized, he later developed fecal emesis, likely due

Bacteremia Caused by Alistipes

184	to intestinal	obstruction.	One day	⁷ after the or	nset, the p	patient eve	entually di	ed of ser	otic shock.

185 Blood cultures obtained during a septic shock episode revealed the presence of *A. onderdonkii*.

186 Microbiological Characteristics

187 The microbiological characteristics of the *Alistipes* cases and strains are presented in Table 3.

- 188 Alistipes strains formed small colonies on the Brucella HK agar medium (Fig. 1). MALDI-TOF
- 189 MS identified 13 strains with species-level accuracy, including A. *finegoldii* (n = 4), A.

onderdonkii (n = 4), A. putredinis (n = 3), and A. indistinctus (n = 2). Of the 13 strains, 16S

- rRNA and whole genome analyses were performed on 10 preserved strains (KML 24001–24010).
- 192 16S rRNA gene analysis showed that 10 of the preserved strains were 99.8–100% similar to the
- species identified by MALDI-TOF MS (Table S2).
- The draft genomes of nine strains (KML 24001-24009) had contamination rates of < 1% and were used for further analysis (Table S3). One remaining strain (KML 24010) had a contamination rate of > 5% and was excluded from further analysis. The genome sizes of *A*. *finegoldii*, *A. onderdonkii*, *A. putredinis*, and *A. indistinctus* were 3.6 Mb, 3.3–3.6 Mb, 2.5–2.8 Mb, and 2.8–2.9 Mb, respectively (Table S4). The ANI results of KML 24001-24009 were in agreement with the results of MALDI-TOF MS, with an ANI of 99.8–100% (Table S5). DDH

200	analysis for <i>A. onderdonkii</i> revealed that KML 24001 and KML 24005 showed DDH > 80% only
201	for <i>A. onderdonkii</i> subsp. <i>vulgaris</i> , and KML 24008 showed DDH > 80% only for <i>A. onderdonkii</i>
202	subsp. onderdonkii. The subspecies of each strain were identified (Table S6).
203	Strains with $> 5\%$ contamination were pure-cultured, and the two types of colonies
204	grown were re-identified by MALDI-TOF MS. One strain (KML 24010) was identified as
205	A. finegoldii by MALDI-TOF MS, and this strain showed 99.8% similarity to A. finegoldii by
206	16S rRNA gene analysis. Another strain (KML 24011) was not identified by MALDI-TOF MS
207	and showed 99.7% similarity to A. ihumii AP11 (JX101692). The 16S rRNA gene sequence and
208	draft genome data were deposited in GenBank via the DNA DataBank of Japan, and the
209	accession numbers are given in Tables S2 and S4.
210	Reanalysis of the three A. finegoldii strains (3302398, 4401054, and Granada) isolated in
211	previous reports yielded the following results: strain 3302398 showed 100% similarity to
212	A. dispar 5CPEGH6 (accession no. AP019736), and strain 4401054 showed 99.0–100%
213	similarity to A. onderdonkii subsp. onderdonkii DSM 19147 (ARFY01000017). Strain Granada
214	showed 97.6% similarity with A. finegoldii DSM 17242 (CP003274); however, the species could
215	not be confirmed.

Bacteremia Caused by Alistipes

216 Antimicrobial Susceptibility and Resistance Genes

217	Antimicrobial susceptibility data were available for <i>Alistipes</i> 10 strains (Table 4). Low MIC ₉₀
218	values were observed for SAM (MIC ₉₀ , 2 μ g/mL), AMC (2 μ g/mL), TZP (\leq 4 μ g/mL), IPM
219	(1 μ g/mL), CLI (1 μ g/mL), and MTZ (0.5 μ g/mL). For CLI, only one <i>A. putredinis</i> strain showed
220	an MIC of 2 μ g/mL, and this strain possessed the <i>erm</i> (G) gene. The antibiotics with high MIC ₉₀
221	values were PEN (MIC ₉₀ , > 1 μ g/mL), CRO (> 32 μ g/mL), FOX (32 μ g/mL), MINO (8 μ g/mL),
222	and MXF (> 4 μ g/mL). MICs were particularly high for PEN and MINO, with MIC ₅₀ values of
223	$>1~\mu\text{g/mL}$ and 4 $\mu\text{g/mL},$ respectively. Seven strains with MICs $\geq4~\mu\text{g/mL}$ for MINO harbored
224	the <i>adeF</i> and <i>tet</i> (Q) genes. Two strains exhibited MICs of 32 μ g/mL for FOX, and these strains
225	were all A. <i>indistinctus</i> . Three strains showed MICs \ge 4 µg/mL for MXF, all of which were
226	A. onderdonkii.

227 **Discussion**

In this study, we identified 13 cases of *Alistipes* bacteremia at a single institution in Japan. Three main characteristics were observed in patients with *Alistipes* bacteremia. First, most patients were elderly or had comorbid conditions, with 7 of the 13 patients having either solid tumors or hematological malignancies. Second, general cases were associated with gastrointestinal diseases,

Bacteremia Caused by Alistipes

232	and all patients were treated for true bacteremia. Third, some Alistipes strains had high MICs
233	against β -lactams, tetracyclines, and quinolones, indicating the presence of antibiotic-resistant
234	genes.
235	Anaerobic bacteria can cause infections in almost any part of the body, including severe
236	bloodstream infections (25). In our study, 13 cases of bacteremia were caused by A. finegoldii,
237	A. putredinis, A. onderdonkii subsp. onderdonkii, A. onderdonkii subsp. vulgaris, A. indistinctus,
238	and A. ihumii. There have only been three A. finegoldii cases of Alistipes bacteremia reported to
239	date (12, 13), and Tyrrel et al. reported one of these strains (strain 4401054) to be A. onderdonkii
240	(7). Our data support the report by Tyrrel et al., who showed that another strain (strain 3302398)
241	was A. dispar. Slow growth and difficulty in identification probably contribute to the
242	underestimation of Alistipes bacteremia. Compared with other bacteria, such as E. coli and
243	Bacteroides species, Alistipes grows more slowly and forms significantly small colonies.
244	Additionally, Alistipes is difficult to identify to by biochemical characteristics. However, the
245	advent of MALDI-TOF MS has improved the ability to accurately identify anaerobes, including
246	lesser known pathogens (25, 26). Our study showed that MALDI-TOF MS could dentify Alistipes
247	strains with high accuracy, in agreement with 16S rRNA gene analysis and whole genome
248	sequencing. Although Alistipes bacteremia has not been recognized until recently, the number of

Bacteremia Caused by Alistipes

cases is expected to increase in the future.

250	Alistipes species have been isolated from feces (3, 6, 27), and A. putredinis is commonly
251	found in the gut microbiota (28). In previous cases of Alistipes bacteremia, two patients had colon
252	cancer (12), and the other had intestinal perforation and peritonitis (13). Similarly, in our study,
253	most patients (11/13) had underlying gastrointestinal symptoms. These findings suggest that
254	Alistipes translocates from the gastrointestinal tract into the bloodstream. In our cohort, all
255	patients were treated with antibiotics for true bacteremia, and 11 recovered. Two patients who
256	died were aged \geq 70 years, had solid tumors, and developed sepsis. These patients had
257	monomicrobial bacteremia caused by Alistipes and were treated with antibiotics to which the
258	isolates were susceptible. The fatal outcomes were likely due to the complications of sepsis and
259	the effects of underlying malignancies.
260	Alistipes strains showed different antimicrobial susceptibilities depending on the species
261	and strain. All the strains showed low MIC values for BLBLIs, IPM, and MNZ. Consistent with
262	our findings, previously reported strains were also susceptible to SAM (7), TZP (13), and MNZ
263	(3, 7, 13). In our cohort, 12 patients were treated with BLBLIs and 10 recovered. In previously
264	reported cases of Alistipes bacteremia, three patients were successfully treated with combinations
265	of AMC and ciprofloxacin, AMC and amikacin, or TZP and MTZ (12, 13). BLBLIs and MNZ

266	are commonly used for anaerobic infections (29) and can be an option for the treatment of
267	Alistipes bacteremia.

268	Conversely, several Alistipes strains were resistant to PEN, CRO, MINO, MXF, and
269	FOX. Low susceptibility to MXF and FOX was observed only in A. onderdonkii and
270	A. indistinctus. Moreover, our data revealed the presence of antibiotic-resistant genes, such as
271	adeF, tet(Q), cfxA3, cfxA4, and erm(G). Consistent with our findings, previous reports have
272	indicated resistance to PEN (11–13), tetracyclines (3), and MXF (11) in Alistipes strains.
273	Although breakpoints for Alistipes have not been established by the Clinical and Laboratory
274	Standards Institute (30), it may be prudent to avoid using antibiotics that have been observed to
275	have low susceptibility for the treatment of Alistipes bacteremia.
276	The limitations of this study are its single-center design and the limited number of cases.
276 277	The limitations of this study are its single-center design and the limited number of cases. As this was a single-center study, the generalizability of patient and strain characteristics is
276 277 278	The limitations of this study are its single-center design and the limited number of cases. As this was a single-center study, the generalizability of patient and strain characteristics is limited. The limited number of cases for each strain prevented statistical comparisons of patient
276 277 278 279	The limitations of this study are its single-center design and the limited number of cases. As this was a single-center study, the generalizability of patient and strain characteristics is limited. The limited number of cases for each strain prevented statistical comparisons of patient backgrounds and antimicrobial susceptibilities between the species. Therefore, future studies
 276 277 278 279 280 	The limitations of this study are its single-center design and the limited number of cases. As this was a single-center study, the generalizability of patient and strain characteristics is limited. The limited number of cases for each strain prevented statistical comparisons of patient backgrounds and antimicrobial susceptibilities between the species. Therefore, future studies should include a wider range of regions and institutions. Moreover, some strains were not
 276 277 278 279 280 281 	The limitations of this study are its single-center design and the limited number of cases. As this was a single-center study, the generalizability of patient and strain characteristics is limited. The limited number of cases for each strain prevented statistical comparisons of patient backgrounds and antimicrobial susceptibilities between the species. Therefore, future studies should include a wider range of regions and institutions. Moreover, some strains were not preserved, which limited the validation of the identification tests and antimicrobial susceptibility

Bacteremia Caused by Alistipes

283	and genotypic antimicrobial susceptibilities were observed, and not all resistance mechanisms
284	could be elucidated. Our study highlights the need for further evaluation, including mutational
285	analysis and efflux pump assessment, to fully understand the resistance mechanisms.
286	In conclusion, 13 cases of Alistipes bacteremia were observed over a 7-year period at a
287	tertiary care center in Japan. Most patients were elderly and had comorbid conditions involving
288	solid tumors or hematological malignancies. The most common symptoms were gastrointestinal,
289	and two of the patients died of sepsis. MALDI-TOF MS will facilitate the identification of
290	Alistipes strains, and reports of Alistipes bacteremia are predicted to increase.

291 About the Author

292 Naoki Watanabe is a clinical laboratory scientist specializing in infectious disease at Kameda

293 Medical Center in Kamogawa, Japan. His primary interests include infectious diseases,

²⁹⁴ microbiological testing, and antimicrobial stewardship.

295 Acknowledgment

We thank the clinical laboratory scientist at Kameda Medical Center for their assistance withmicrobiological testing.

Bacteremia Caused by Alistipes

298 **Conflict of interest**

299 The authors declare that there are no conflicts of interest.

Bacteremia Caused by Alistipes

301 **REFERENCES**

302	1.	Rautio M, Lönnroth M, Saxén H, Nikku R, Väisänen ML, Finegold SM, et al. Characteristics
303		of an unusual anaerobic pigmented gram-negative rod isolated from normal and inflamed
304		appendices. Clin Infect Dis. 1997 Sep;25 Suppl 2:S107-10. http://dx.doi.org/10.1086/516210
305	2.	Rautio M, Saxén H, Siitonen A, Nikku R, Jousimies-Somer H. Bacteriology of
306		histopathologically defined appendicitis in children. Pediatr Infect Dis J. 2000
307		Nov;19(11):1078-83. http://dx.doi.org/10.1097/00006454-200011000-00010
308	3.	Rautio M, Eerola E, Väisänen-Tunkelrott ML, Molitoris D, Lawson P, Collins MD, et al.
309		Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes
310		gen. nov., as Alistipes putredinis comb. nov., and description of A. finegoldii sp. nov., from
311		human sources. Syst Appl Microbiol. 2003 Jun;26(2):182-8.
312		http://dx.doi.org/10.1078/072320203322346029
313	4.	Song Y, Könönen E, Rautio M, Liu C, Bryk A, Eerola E, et al. Alistipes onderdonkii sp. nov.
314		and Alistipes shahii sp. nov., of human origin. Int J Syst Evol Microbiol. 2006 Aug;56(Pt
315		8):1985–90. http://dx.doi.org/10.1099/ijs.0.64318-0
316	5.	Simmon KE, Mirrett S, Reller LB, Petti CA. Genotypic diversity of anaerobic isolates from
317		bloodstream infections. J Clin Microbiol. 2008 May;46(5):1596-601.
318		http://dx.doi.org/10.1128/JCM.02469-07
319	6.	Nagai F, Morotomi M, Watanabe Y, Sakon H, Tanaka R. A. indistinctus sp. nov. and
320		Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated
321		from faeces. Int J Syst Evol Microbiol. 2010 Jun;60(Pt 6):1296-302.
322		http://dx.doi.org/10.1099/ijs.0.014571-0
323	7.	Tyrrell KL, Warren YA, Citron DM, Goldstein EJC. Re-assessment of phenotypic

324		identifications of Bacteroides putredinis to Alistipes species using molecular methods.
325		Anaerobe. 2011 Jun;17(3):130-4. http://dx.doi.org/10.1016/j.anaerobe.2011.04.002
326	8.	Dziarski R, Park SY, Kashyap DR, Dowd SE, Gupta D. Pglyrp-Regulated Gut Microflora
327		Prevotella falsenii, ParaBacteroides distasonis and Bacteroides eggerthii Enhance and A.
328		finegoldii Attenuates Colitis in Mice. PLoS One. 2016 Jan 4;11(1):e0146162.
329		http://dx.doi.org/10.1371/journal.pone.0146162
330	9.	Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, et al.
331		Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil.
332		2014 Aug;26(8):1155-62. http://dx.doi.org/10.1111/nmo.12378
333	10.	Lassmann B, Gustafson DR, Wood CM, Rosenblatt JE. Reemergence of anaerobic
334		bacteremia. Clin Infect Dis. 2007 Apr 1;44(7):895–900. http://dx.doi.org/10.1086/512197
335	11.	Cobo F, Foronda C, Pérez-Carrasco V, Martin-Hita L, García-Salcedo JA, Navarro-Marí JM.
336		First description of abdominal infection due to Alistipes onderdonkii. Anaerobe. 2020
337		Dec;66:102283. http://dx.doi.org/10.1016/j.anaerobe.2020.102283
338	12.	Fenner L, Roux V, Ananian P, Raoult D. A. finegoldii in blood cultures from colon cancer
339		patients. Emerg Infect Dis. 2007 Aug;13(8):1260-2.
340		http://dx.doi.org/10.3201/eid1308.060662
341	13.	Cobo F, Franco-Acosta A, Lara-Oya A, Pérez-Carrasco V. Bacteremia caused by A.
342		<i>finegoldii</i> in a patient with peritonitis. Enferm Infecc Microbiol Clin. 2023 Feb;41(2):131–2.
343		http://dx.doi.org/10.1016/j.eimce.2022.11.002
344	14.	Salonen JH, Eerola E, Meurman O. Clinical significance and outcome of anaerobic
345		bacteremia. Clin Infect Dis. 1998 Jun;26(6):1413-7. http://dx.doi.org/10.1086/516355
346	15.	Lane DJ. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. 1991;
347		https://cir.nii.ac.jp/crid/1570009750603612672

Bacteremia Caused by Alistipes

348	16.	Jaric M, Segal J, Silva-Herzog E, Schneper L, Mathee K, Narasimhan G. Better primer
349		design for metagenomics applications by increasing taxonomic distinguishability. BMC Proc.
350		2013 Dec 20;7(Suppl 7):S4. http://dx.doi.org/10.1186/1753-6561-7-S7-S4
351	17.	Watanabe N, Watari T, Otsuka Y, Hosokawa N, Yamagata K, Fujioka M. Clinical and
352		microbiological characteristics of Ruminococcus gnavus bacteremia and intra-abdominal
353		infection. Anaerobe. 2024 Jan 9;102818. http://dx.doi.org/10.1016/j.anaerobe.2024.102818
354	18.	Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a
355		taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies.
356		Int J Syst Evol Microbiol. 2017 May;67(5):1613-7. http://dx.doi.org/10.1099/ijsem.0.001755
357	19.	Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the
358		quality of microbial genomes recovered from isolates, single cells, and metagenomes.
359		Genome Res. 2015 Jul;25(7):1043-55. http://dx.doi.org/10.1101/gr.186072.114
360	20.	Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation
361		pipeline for faster genome publication. Bioinformatics. 2018 Mar 15;34(6):1037–9.
362		http://dx.doi.org/10.1093/bioinformatics/btx713
363	21.	Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database
364		tandem for fast and reliable genome-based classification and nomenclature of prokaryotes.
365		Nucleic Acids Res. 2022 Jan 7;50(D1):D801-7. http://dx.doi.org/10.1093/nar/gkab902
366	22.	Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, et al.
367		Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of <i>Escherichia</i>
368		<i>coli</i> , and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci.
369		2014 Dec 8;9:2. http://dx.doi.org/10.1186/1944-3277-9-2
370	23.	Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, et al. CARD

2023: expanded curation, support for machine learning, and resistome prediction at the

- 372 Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023 Jan
- 373 6;51(D1):D690–9. http://dx.doi.org/10.1093/nar/gkac920
- 24. Kanda Y. Investigation of the freely available easy-to-use software "EZR" for medical
- statistics. Bone Marrow Transplant. 2013 Mar;48(3):452–8.
- 376 http://dx.doi.org/10.1038/bmt.2012.244
- 25. Nagy E, Boyanova L, Justesen US, ESCMID Study Group of Anaerobic Infections. How to
- isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine
- laboratories. Clin Microbiol Infect. 2018 Nov;24(11):1139–48.
- 380 http://dx.doi.org/10.1016/j.cmi.2018.02.008
- 26. Justesen Ulrik Stenz, Holm Anette, Knudsen Elisa, Andersen Line Bisgaard, Jensen Thøger
- 382 Gorm, Kemp Michael, et al. Species Identification of Clinical Isolates of Anaerobic Bacteria:
- a Comparison of Two Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass
- 384 Spectrometry Systems. J Clin Microbiol. 2020 Dec 21;49(12):4314–8.
- 385 https://doi.org/10.1128/jcm.05788-11
- 27. Sakamoto M, Ikeyama N, Ogata Y, Suda W, Iino T, Hattori M, et al. *Alistipes* communis sp.
- nov., *A. dispar* sp. nov. and *Alistipes onderdonkii* subsp. vulgaris subsp. nov., isolated from
- human faeces, and creation of *Alistipes onderdonkii* subsp. *onderdonkii* subsp. nov. Int J Syst
- 389 Evol Microbiol. 2020 Jan;70(1):473–80. http://dx.doi.org/10.1099/ijsem.0.003778
- 28. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial
- 391 gene catalogue established by metagenomic sequencing. Nature. 2010 Mar
- 392 4;464(7285):59–65. http://dx.doi.org/10.1038/nature08821
- 393 29. Brook I, Wexler HM, Goldstein EJC. Antianaerobic antimicrobials: spectrum and
- susceptibility testing. Clin Microbiol Rev. 2013 Jul;26(3):526–46.
- 395 http://dx.doi.org/10.1128/CMR.00086-12

Bacteremia Caused by Alistipes

- 396 30. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial
- 397 Susceptibility Testing, 34th Edition. [cited 2024 July 1]. https://em100.edaptivedocs.net

Bacteremia Caused by Alistipes

399	Table 1. Patient background of Alistipes bacteremia in a tertiary care center in Japan, 2016–2023

Characteristics	All (n = 13)	Alive (n = 11)	Death (n = 2)		
Age, median years (IQR)	72 (65–85)	70 (59–85)	80 (78–83)		
≥ 65 years, no. (%)	10 (76.9)	8 (72.7)	2 (100.0)		
Sex, F, no. (%)	7 (53.8)	6 (54.5)	1 (50.0)		
Site of acquisition, no. (%)					
Community	7 (53.8)	7 (63.6)	0 (0.0)		
Healthcare-associated	6 (46.2)	4 (36.4)	2 (100.0)		
Charlson score, no. (%)					
0	4 (30.8)	4 (36.4)	0 (0.0)		
1–2	4 (30.8)	3 (27.3)	1 (50.0)		
3–4	2 (15.4)	2 (18.2)	0 (0.0)		
≥ 5	3 (23.1)	2 (18.2)	1 (50.0)		
Comorbid conditions, no. (%)					
Solid tumor	6 (46.2)	4 (36.4)	2 (100.0)		
Hematological malignancies	1 (7.7)	1 (9.1)	0 (0.0)		
Leukopenia	2 (15.4)	2 (18.2)	0 (0.0)		
Chemotherapy	3 (23.1)	3 (27.3)	0 (0.0)		
Immunosuppressive therapy	0 (0.0)	0 (0.0)	0 (0.0)		
Intravascular device, no. (%)	3 (23.1)	2 (18.2)	1 (50.0)		
Symptoms, no. (%)					
Abdominal pain	9 (69.2)	8 (72.7)	1 (50.0)		
Diarrhea	1 (7.7)	1 (9.1)	0 (0.0)		
Sepsis or septic shock	3 (23.1)	1 (9.1)	2 (100.0)		
Fever	6 (46.2)	6 (54.5)	0 (0.0)		
Vomiting	3 (23.1)	3 (27.3)	0 (0.0)		
Time to positivity, h (IQR)	81 (71–106)	76 (68–103)	94 (88–99)		

Bacteremia Caused by Alistipes

Case ID	Age/sex	Comorbid conditions	Clinical presentation	Clinical diagnosis	Therapy [†]	Outcome
1	80s/F	Hypertension, diabetes mellitus, lipid disorder, cerebral infarction history, rectal cancer	Abdominal pain, septic shock	Colon perforation, colonic obstruction	TZP and VCM (1 day)	Death (1 day)
2*	50s / M	None	Abdominal pain	Acute appendicitis	SAM (3 days), AMC (11 days), appendicectomy	Alive, discharged (6 days)
3	50s / F	Ovarian cancer, febrile neutropenia	Abdominal pain, fever	Perforated colon	SAM (24 days), TZP (12 days)	Alive, discharged (50 days)
4	90s/F	Alzheimer's type dementia, Hypertension, epilepsy, chronic constipation	Abdominal pain, vomiting, diarrhea, fever	Acute appendicitis, secondary peritonitis, paralytic ileus, aspiration pneumonia	SAM (23 days), AMC (5 days)	Alive, discharged (22 days)
5.	60s / F	Diabetes mellitus, colon cancer	Abdominal pain, septic shock	Generalized peritonitis, intestinal perforation, Nonocclusive mesenteric ischemia, ovarian necrosis	TZP (2 days), CMZ (17 days), colectomy, small bowel resection , bilateral salpingo-oophorectomy	Alive, transferrec (114 days)
6	70s/M	Febrile neutropenia, previous hepatitis B virus infection, hypertension, diabetes mellitus, benign prostatic hyperplasia, acute myeloid leukemia	Fever, abdominal pain	Colonic diverticulitis	Cefepime and MTZ (10 days), SAM and MTZ (3 days)	Alive, dischargeo (228 days)
7	30s / M	Epilepsy, under treatment for CRBSI with Staphylococcus aureus	Fever	Bacteremia of unknown origin	Cefazolin (5 days), SAM (12 days)	Alive, transferred (41 days)
8	70s / M	Oral candida, adenocarcinoma (primary site unknown)	Septic shock, ascites, abdominal	Bowel obstruction	TZP (1 day) TZP and fluconazole (1 day)	Death (1 day)

401 **Table 2.** Patient characteristics and clinical course of *Alistipes* bacteremia in a tertiary care center in Japan, 2016–2023

Bacteremia Caused by Alistipes

			distension			
9,	60s / F	Rectal cancer	Abdominal pain, vomiting	Colon perforation, peritonitis	TZP (1 day), SAM (14 days), Hartmann's procedure	Alive, discharged (28 days)
10	90s/F	Hypertension, dyslipidemia, osteoporosis, postoperative Mallory–Weiss syndrome, suspected aspiration pneumonia	Fever, tachycardia	Bowel obstruction	Cefotiam (4 days), SAM (15 days), intestinal resection	Alive, discharged (44 days)
11 [°]	80s/F	Osteoporosis, dyslipidemia	Abdominal pain	Perforated appendicitis, peritonitis, intra-abdominal abscess	SAM (11 days), SAM and MTZ (8 days), appendicectomy	Alive, discharged (19 days)
12	70s / M	Cerebral infarction history, cholecystectomy history	Chills, fever, vomiting	Bacteremia of unknown origin	CPFX and MTZ (3 days), CRO and MTZ (10 days)	Alive (outpatient)
13 [*]	80s / M	Hypertension, cholecystectomy history, rectal cancer	Abdominal pain	Colorectal perforation	SAM (10 days), TZP (12 days) Hartmann's procedure	Alive, discharged (53 days)

402

403 AMP, ampicillin; CMZ, cefmetazole; CPFX, ciprofloxacin; transferred, transferred to another hospital.

404 In cases marked with an asterisk, multiple pathogens were detected as follows: 2, A. onderdonkii, Bacteroides uniformis, E. coli, and

405 Pseudomonas nitroreducens; 5, A. putredinis and E. coli; 9, A. putredinis and Flavonifractor plautii; 10, A. indistinctus and

406 K. pneumoniae; 11, A. onderdonkii and Bacteroides salyersiae; and 13, A. finegoldii and A. ihumii.

⁴07 [†]Most patients received multiple antibiotics; the two used for the longest duration are shown.

Bacteremia Caused by Alistipes

408 **Table 3.** Identification results of MALDI-TOF MS, 16S rRNA analysis and whole genome analysis for the strains isolated from patients

409 with Alistipes bacteremia

Case		MALDI-TOF	MS	16S rRNA a	nalysis	Whole genome analysis		
no.	Strain name	Proposed species	Score	Identified species	Similarity (%)	Identified species	ANI (%)	
1	NA	A. finegoldii	2.0	NA	NA	NA	NA	
2	NA	A. onderdonkii	2.1	NA NA		NA	NA	
3	NA	A. finegoldii	2.1	NA NA		NA	NA	
4	KML 24001	A. onderdonkii	2.3	A. onderdonkii 99.9		A. onderdonkii	98.3	
5	KML 24002	A. putredinis	2.1	A. putredinis 100		A. putredinis	99.9	
6	KML 24003	A. finegoldii	2.0	A. finegoldii	99.9	A. finegoldii	99.1	
7	KML 24004	A. indistinctus	2.0	A. indistinctus	100	A. indistinctus	99.1	
8	KML 24005	A. onderdonkii	2.1	A. onderdonkii	100	A. onderdonkii	99.6	
9	KML 24006	A. putredinis	2.1	A. putredinis	100	A. putredinis	99.7	
10	KML 24007	A. indistinctus	2.2	A. indistinctus	100	A. indistinctus	99.2	
11	KML 24008	A. onderdonkii	2.0	A. onderdonkii	100	A. onderdonkii	98.8	
12	KML 24009	A. putredinis	2.1	A. putredinis	99.9	A. putredinis	98.9	
13	KML 24010	A. finegoldii	2.3	A. finegoldii	99.8	NA	NA	
13	KML 24011	No identification	NA	A. ihumii	99.7	NA	NA	

410

411 NA, not available.

412

Bacteremia Caused by Alistipes

414 Table 4. Minimum inhibitory concentration values (µg/mL) against antibiotics and antimicrobial

Strain name	PEN	SAM	AMC	TZP	CRO	FOX	IPM	CLI	MINO	MXF	MTZ	Resistant genes
Af, KML 24003	0.06	≤0.5	≤ 0.25	≤4	≤ 1	≤1	1	1	4 [*]	0.5	≤ 0.5	adeF, tet(Q)
Af, KML 24010	0.06	≤ 0.5	≤ 0.25	≤4	4	4	0.5	1	2	0.5	≤ 0.5	Not test
Ao, KML 24001	>1	1	0.5	≤4	8	4	1	≤ 0.12	4	> 4	≤ 0.5	adeF, tet(Q)
Ao, KML 24005	0.5	≤ 0.5	≤ 0.25	≤4	2	2	2	≤ 0.12	8 [*]	> 4	≤ 0.5	adeF, tet(Q)
Ao, KML 24008	> 1	2	1	≤4	> 32	8	1	0.5	8*	> 4	≤0.5	adeF, tet(Q)
Ap, KML 24002	> 1	≤0.5	0.5	≤4	> 32	≤1	≤ 0.25	2*	4*	≤ 0.25	≤ 0.5	adeF, tet(Q), erm(G)
Ap, KML 24006	> 1	1	2	≤4	> 32	4*	1	≤ 0.12	8*	1	≤ 0.5	adeF, tet(Q), cfxA4
Ap, KML 24009	≤ 0.03	≤0.5	≤ 0.25	≤4	≤ 1	≤1	0.5	≤ 0.12	8 [*]	1	≤ 0.5	adeF, tet(Q)
Ain, KML 24004	> 1	8	8	≤4	> 32	32*	1	≤ 0.12	≤ 0.25	1	≤ 0.5	cfxA3
Ain, KML 24007	> 1	2	1	≤4	32	32	1	≤ 0.12	≤ 0.25	1	≤ 0.5	Not detected
Total, MIC₅₀	> 1	≤0.5	0.5	≤4	8	4	1	≤ 0.12	4	1	≤ 0.5	
Total, MIC ₉₀	> 1	2	2	≤4	> 32	32	1	1	8	> 4	≤ 0.5	

415

416 Af, A. finegoldii; Ao, A. onderdonkii; Ap, A. putredinis; Ain, A. indistinctus.

Bacteremia Caused by Alistipes

- Fig 1. Small colonies of *Alistipes finegoldii* grown on agar medium in anaerobic culture for 48 h^{*}
- 419
- ^{*}Figure 1 shows *A. finegoldii* (arrow mark) and *Escherichia coli* ATCC 25922 colonies grown on
- 421 Brucella HK agar medium after 2 days of anaerobic culture.

