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Abstract 22 

 23 

Manual counting of platelets, in microscopy images, is greatly time-consuming. Our 24 

goal was to automatically segment and count platelets images using a deep learning approach, 25 

applying U-Net and Fully Convolutional Network (FCN) modelling. Data preprocessing was 26 

done by creating binary masks and utilizing supervised learning with ground-truth labels. Data 27 

augmentation was implemented, for improved model robustness and detection. The number of 28 

detected regions was then retrieved as a count. The study investigated the U-Net models 29 

performance with different datasets, indicating notable improvements in segmentation metrics 30 

as the dataset size increased, while FCN performance was only evaluated with the smaller 31 

dataset and abandoned due to poor results. U-Net surpassed FCN in both detection and counting 32 

measures in the smaller dataset Dice 0.90, accuracy of 0.96 (U-Net) vs Dice 0.60 and 0.81 33 

(FCN). When tested in a bigger dataset U-Net produced even better values (Dice 0.99, accuracy 34 

of 0.98). The U-Net model proves to be particularly effective as the dataset size increases, 35 

showcasing its versatility and accuracy in handling varying cell sizes and appearances. These 36 

data show potential areas for further improvement and the promising application of deep 37 

learning in automating cell segmentation for diverse life science research applications. 38 

 39 

Author Summary 40 

Deep Learning can be used with good results for automatic cells images segmentations, 41 

reducing the time applied by scientists to this task.  In our research platelets images were 42 

automatically segmented and counted using by applying U-Net and Fully Convolutional 43 

Network (FCN) modelling. Data preprocessing was done by creating binary masks and 44 

utilizing supervised learning with ground-truth labels, after data augmentation. U-Net 45 

surpassed FCN in both detection and counting measures in a smaller dataset. The U-Net model 46 
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proves to be particularly effective as the dataset size increases, showcasing its versatility and 47 

accuracy in handling varying cell sizes and appearances. Our study shows potential areas for 48 

further improvement and the promising application of deep learning in automating cell 49 

segmentation for diverse life science research applications. 50 

 51 

 52 

Introduction 53 

 54 

In recent years, cell segmentation has emerged as a critical component in numerous 55 

research fields, including bioinformatics, cell biology, and computational biology [1–3]. Deep 56 

convolutional neural networks (CNNs) have revolutionized visual recognition tasks, 57 

outperforming traditional methods across various domains [4]. By utilizing CNNs, deep 58 

learning algorithms have demonstrated the ability to accurately identify and count cells in 59 

biomedical images [5]. However, the conventional use of CNNs in classification tasks does not 60 

fully address the complexities of cell segmentation in microscopy images, where pixel-level 61 

localization is crucial [6]. 62 

Cell segmentation, the process of delineating cell boundaries in microscopy images, is 63 

a critical step for morphological analysis and downstream quantification of biological 64 

structures. Since 2015, a range of deep CNN architectures have achieved breakthrough results 65 

on standard cell segmentation benchmarks [7]. Early networks like U-Net by Ronneberger et 66 

al. [8] introduced a symmetric encoder-decoder structure to propagate multi-scale contextual 67 

information, which became highly influential. Other top designs utilized pre-trained 68 

classification backbones like Visual Geometry Group by Simonyan and Zisserman [9] or 69 

Residual Networks by He et al. [10], to effectively initialize deep models. More recent 70 

techniques further incorporated elements like atrous convolutions by Chen et al. [11] and 71 
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generative adversarial training [12] to capture both local details and global consistency. 72 

Powered by ever larger annotated datasets, these latest CNNs have surpassed human experts 73 

on nuclei segmentation and approaching expert inter-observer agreement on challenging cell 74 

contouring tasks [13,14]. 75 

However, substantial obstacles prevent the real-world adoption of deep learning 76 

segmentation tools. Cell images exhibit high appearance variability under different 77 

experimental conditions, with artifacts like missing cellular boundaries, that easily confuse the 78 

models [15]. Complexities such as cell-cell interactions, for example overlapping cells or cell-79 

background interactions, also pose difficulties [16]. Such data heterogeneity issues combined 80 

with label noise and inconsistencies during manual segmentation, poses several segmentation 81 

challenges [17,18]. Furthermore, while state-of-the-art results are reported on some curated test 82 

images, deep networks frequently fail to generalize across different imaging setups without 83 

extensive retraining [19].  84 

To overcome these limitations, recent works have proposed techniques to improve 85 

model robustness. Generative and reconstructive approaches to incorporate unlabelled data 86 

during training can enhance generalizability [20]. Assessment of remaining errors to guide 87 

annotation and data augmentation can mitigate dataset bias [21]. Through focused 88 

incorporation of these sophisticated regularization, adaptation, and interaction techniques, deep 89 

CNNs may eventually fulfil their promise for practical automated cell segmentation [22,23]. 90 

Nowadays, both U-Net, as a particular type of FCN and FCN in general are known as 91 

CNN architectures to be employed in microscopy and biomedical image analysis, with U-Net 92 

being a particular type of FCN [24,25]. While FCN utilizes a classification network like 93 

ImageNet by Krizhevsky et al. [26], and U-Net was built on fully convolutional network (FCN) 94 

with hourglass topology [8,24]. Semantic segmentation framework is based on a bounding box-95 

based segmentation pipeline that extracts the foreground from a given region of interest. It 96 
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focused on image local patterns and extracted complex image information at various scales. It 97 

has proven to be successful in biomedical applications and has gained popularity in many 98 

research studies in cell detection [5,27] and cell segmentation [28,29]. 99 

The recent growing of deep learning applications for microscopic analysis is 100 

revolutionizing the process of classifying, counting and segmenting cells [30]. These tasks 101 

which traditionally were performed by humans and are very time consuming, have a high 102 

potential of success to be fully automated thought deep learning algorithms with good results 103 

[31]. Furthermore, manual segmentation also introduces a high degree of user subjectivity and 104 

variability which may have an impact on the experimental results obtained [31]. 105 

Therefore, this research aims to build an automated system for platelets segmentation 106 

and respective size determination, on microscopy images, by creating a mask that allows the 107 

platelets detection and counting. 108 

 109 

Results 110 

Model evaluation 111 

 112 

Experiments with the smaller dataset (293 images) where performed both with FCN 113 

and with U-Net, while only the two bigger datasets (1172 and 4688 images) were used with U-114 

Net. Experiments with FCN were abandoned after experiments with the smallest data set due 115 

to its inferior comparative performance. Different methodologies of threshold were used for 116 

the two types of networks. FCN used a method of segmentation by the Sobel operator, while 117 

U-Net used binarization of the image to create ground-truth masks for segmentation. 118 

 119 

FCN model evaluation 120 

 121 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.24312502doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.23.24312502
http://creativecommons.org/licenses/by/4.0/


Data pre-processing within the FCN model generated masks as segmented images from 122 

Sobel operator at a kernel or threshold value of 7, as shown in Fig 1. As it can be seen the Sobel 123 

operator tends to enhance the edges of the platelets [32]. 124 

 125 

 126 

 127 

 128 

                 A) B) 

 
 129 

Fig 1. Identification of Sobel Segmented Images within FCN model. Platelets (2x107/ml) 130 

were spread on fibrinogen for up to 45 minutes, before fixation, staining, and imaging using a 131 

Zeiss Axiovert Fluorescent microscope (oil x63 NA 1.4 objective). (A) Image is representative 132 

of control conditions. (B) Representative image segmented by enhanced Sobel operator. 133 

 134 

The FCN model was evaluated with the complete iteration of 10 epochs utilizing a 135 

processing time of 1206 seconds and resulted in an accuracy of 0.81, reaching an Area Under 136 

the Curve (AUC) of the Receiver Operating Characteristic (ROC) of 0.71. This and the loss 137 

function can be seen in Fig 2. For visually inspecting the cell segmentation and the model’s 138 

performance, the ground truth masks were compared with the masks predict-ed by the model. 139 

But the model failed to demonstrate or produce predicted cell counts as it resulted in MPE of 140 

55.44%. 141 

 142 
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A) B) C) 

 
 143 

Fig 2. Plots of FCN model evaluated on 293 images. (A) training and validation loss; (B) 144 

accuracy; and (C) AUC-ROC.  145 

 146 

U-Net model evaluation 147 

 148 

In the U-Net model instead of the Sobel operator, binary masks of the platelets images, 149 

named ground-truth masks were created preprocessing using a threshold of 25 for image 150 

binarization. An example of the ground truth mask, and of the image from which were created 151 

are shown in Fig 3. 152 

 153 

                 A) B) 

 
 154 

Fig 3. Identification of ground truth marks within U-Net model. Platelets (2x107/ml) were 155 

spread on fibrinogen for upto 45 minutes, before fixation, staining and imaging using a Zeiss 156 
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Axiovert Fluorescent microscope (oil x63 NA 1.4 objective). (A) Image is representative of 157 

control conditions. (B) Representative image with the corresponding ground-truth masks. 158 

 159 

The U-net model was pre-trained with generated masks and a complete iteration of 10 160 

epochs was monitored on both the training and validation datasets resulting in an accuracy of 161 

0.96. A lower MAE of 2.6% suggests that model's predictions are close to the true values, 162 

reflecting accuracy in pixel-wise predictions, as shown in Fig 4. 163 

 164 

A) B) C) D) 

 
 165 

Fig 4. Identification of platelet segmentation with U-Net model. Platelets (2x107/ml) were 166 

spread on fibrinogen for up to 45 minutes, before fixation, staining and imaging using a Zeiss 167 

Axiovert Fluorescent microscope (oil x63 NA 1.4 objective). (A) Image is representative of 168 

control conditions; (B) representative image with ground-truth masks; (C) predicted images 169 

from U-Net model; (D) corresponding heat maps. All images have a dimension of 256x256 170 

pixels. 171 

 172 

Lastly, the U-Net model was evaluated by rotating 1172 images into specified degrees 173 

of 90, 180, and 270, creating a combined dataset of 4688, and their corresponding masks were 174 
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generated at threshold of 25. The training accuracy reached 0.98 and the vali-dation loss 175 

continued to improve across epochs reaching an AUC of the ROC of 0.99, as shown in Fig 5. 176 

 177 

 178 

 179 

 180 

 181 

 182 

A) B) C) 

 
 183 

Fig 5. Plots of the U-Net model evaluated on 4688 images. (A) training and validation 184 

accuracy, (B) loss and (C) AUC-ROC. 185 

 186 

Cell counting by U-Net 187 

 188 

Following the training of the U-Net, the subsequent phase involved cell count drawn 189 

from a dataset encompassing 4688 images. The training employed a L2 loss function, 190 

incorporating aleatoric uncertainty for cell counts (Fig 6), and optimization was carried out 191 

using the Adam optimizer with a learning rate of 1E-4 and a batch size of 8 (Fig 8). The 192 

estimation of cell sizes in the predicted masks, as shown in Fig 7, for each segmented cell 193 
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(region) was calculated in terms of number of pixels it occupies at region (bounding box size) 194 

with a threshold of 50. 195 

 196 

 197 

 198 

 199 

 200 

 201 

A) B) C) D) 

 
 202 

Fig 6. Two examples of Sample of segmentation results of images from U-Net model cell 203 

counts of true and predicted masks. (A) Original input images, (B) ground truth masks, (C) 204 

predicted masks, and (D) corresponding overlay. All images have a dimension of 256x256 205 

pixels. 206 

 207 

 208 

 209 
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 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

A) B) C) D) 

 
 218 

Fig 7. Two examples of Sample of segmentation results of images from U-Net model with 219 

cell size in number of pixels. (A) Original input images, (B) ground truth masks, (C) predicted 220 

masks, and (D) corresponding overlay. All images have a dimension of 256x256 pixels. 221 

 222 

Cell segmentation and quantitative evaluation by U-Net 223 

 224 
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The outcomes derived from the evaluation of U-Net models on the three dataset groups 225 

indicated a very positive correlation between the size of the dataset and the positive results, 226 

achieving higher values for the bigger dataset, as it can be seen in Table 1. In the biggest dataset 227 

the maximum values are accuracy of 0.98, recall 0.98, precision of 0.99, IoU of 0.99 and Dice 228 

of 0.99. Additionally, a concurrent reduction in both dice loss and sparse categorical cross-229 

entropy loss was observed, as the employed loss functions exhibited a robust interdependence 230 

and displayed an inverse relationship with accuracy (Figs 5A and 5B). Following the specified 231 

criteria, the most favourable U-Net configuration [33] involved five encoding and decoding 232 

blocks. This assessment also extended to the examination of the number of filters in the initial 233 

encoding block, revealing a doubling of filters with each subsequent block and a corresponding 234 

halving with each decoding block. The optimum number of filters, within the investigated 235 

parameters, was identified as 64 in the first encoding block. This U-Net has been used for other 236 

types of segmentation tasks [33] but was revealed more successful in the application to platelets 237 

segmentation than another U-Net model initially tested, and which is more commonly used in 238 

cell segmentation [8]. 239 

Table 1 elucidates the performance outcomes, throughout several metrics, of cell 240 

segmentation derived from the evaluation of the test set for each model. The evaluation was 241 

conducted across distinct datasets characterized by varying numbers of images, with the U-Net 242 

model serving as the segmentation architecture. 243 

 244 

Table 1. Cell segmentation performance results computed for each model. 245 

Model 

Dataset 

(number 

of 

images) 

Dice IoU Precision Recall Accuracy 
Training 

Time (s) 

U-Net 

293 0.90 0.82 0.85 0.95 0.96 1766 

1172 0.98 0.97 0.99 0.97 0.97 6417 

4688 0.99* 0.99* 0.99* 0.99* 0.98* 6354 

FCN 293 0.60 0.42 0.92 0.44 0.81 1206 
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* Best scores 246 

 247 

Across the dataset comprising 293 images, the U-Net model achieved a Dice coefficient 248 

of 0.90, indicating a substantial agreement between the predicted and ground-truth 249 

segmentation masks. The IoU, measuring the overlap between the predicted and true 250 

segmentations, was 0.82. The precision, reflecting the positive predictive value, was observed 251 

to be 0.85, while recall, gauging the model's ability to capture all positive instances, exhibited 252 

a value of 0.95. The overall accuracy, encompassing both true positive and true negative 253 

predictions, was 0.96. It is worth noting that using the optimum threshold of 0.25 assures huge 254 

cut-offs and enforces only detections with high confidence, as this was the only value in which 255 

all the platelets were correctly included in the binarization of the im-aging. A too low threshold 256 

would increase the areas beyond the platelets area, while a too high one would confuse darker 257 

platelets as background. Although desirable, this behaviour increases false negatives, as fewer 258 

platelets are spotted resulting in accuracy down-fall, with the impact of false negatives being 259 

twice as large as it is in Dice of 0.90, explaining the disparity between these two metrics. The 260 

single significant exception is accuracy, which U-Net architectures excels at. This is most likely 261 

owing to an "over-detection" tendency. Nonetheless, the FCN counterparts outperform this 262 

tendency by significantly im-proving accuracy and precision reported at 0.81 and 0.92, 263 

respectively.  264 

As the dataset size increases to 1172 and 4688 images, the U-Net model demonstrated 265 

notable improvements in performance metrics. The Dice coefficient increased to 0.98 and 0.99 266 

respectively, indicating enhanced segmentation agreement, while IoU rises to 0.97 and 0.99, 267 

depicting increased overlap between predicted and true segmentation. The consistently high 268 

values across various evaluation metrics sustained the U-Net model's effectiveness in handling 269 

datasets with varying cell sizes and appearances, as reported in Table 1. The model exhibited 270 
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further refinement in segmentation due to a series of deconvolutional layers that reconstructed 271 

the output image from the extracted features as the training data increased. In contrast, FCN 272 

models do not have analogous shortcut paths to retain and fuse low-level information through 273 

the network architecture. IoU of 0.42 proves that as sequential encoder-decoder flows, FCN 274 

faces more challenges restoring spatial de-tails from compressed latent bottles when built on 275 

smaller datasets, as it was seen from the results of the comparison of both models in the 293 276 

images set where both were tested. For this smaller dataset, U-Net model’s MAP of 0.99 277 

denoted exceptional precision across the dataset, suggesting a minimal number of false 278 

positives and high relevance in the predicted outcomes. MAE of 0.002 and MPE of -0.050 279 

indicated a close alignment between the model's prediction with a negative sign showing a 280 

slight underestimation on average. For the FCN Model, the results suggest that it performs 281 

reasonably well in terms of precision, with MAP scores around 0.8365. However, there is room 282 

for improvement in reducing the absolute and percentage errors in pixel-wise predictions, as 283 

indicated by the MAE and MPE values of 0.1828 and 0.5544 respectively. 284 

 285 

Discussion 286 

 287 

Deep Learning use for imaging classification, segmentation and counting has some 288 

advantages over this work being done by humans. First convolutional neural networks are more 289 

consistent than humans, as they will (1) classify images identically each time, (2) do not 290 

introduce differences in the procedure (3), are a great time saver [33]. Given all the 291 

improvement possibilities for imaging classification, segmentation and counting, it is of crucial 292 

importance to find suitable methods to support or replace humans in these tasks where it is 293 

possible [34,35].  294 
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From our research we are led to believe that the U-Net model could be very promising 295 

to aide in effective analysis of platelets microscopic images. This U-Net [33] model uses the 296 

notion of deconvolution by [4,33] analysis and synthesis. The analytical path follows CNNs 297 

structure as shown in Fig 8 and the expansion step of the synthesis path consisted of an up-298 

sampling layer followed by a deconvolution layer. It is found that the most essential aspect of 299 

U-Net is the ability to create shortcut connections between layers of equal resolution in the 300 

analysis path and the expansion path. These connections supply the deconvolution layers with 301 

critical high-resolution features [36,37]. 302 

The studies undertaken in this research stand on the implementation of two specific 303 

design choices which were found to significantly enhance the performance of the model. 304 

Firstly, the incorporation of ground truth masks, and second the application of a U-Net model. 305 

The incorporation of ground truth masks penalizes errors occurring on cell boundaries and in 306 

densely populated regions, proving to be instrumental in promoting precise segmentation, 307 

particularly in scenarios involving closely situated objects [38,39]. Similarly to what was 308 

reported in the bibliography [40,41] in our comparative analysis the U-Net model stands out as 309 

the most effective network outperforming the FCN (Table 1) across all performance metrics 310 

apart from the precision and training time, when both U-Net and FCN were applied to the 311 

smallest dataset. Given this difference in performance, only U-Net was applied to the bigger 312 

datasets with excellent results, in all metrics, and without much computational time added. It 313 

is important to note that as the dataset in-creased four-fold in complexity the processing times 314 

of the U-Net model remained similar (at 6417 and 6354 sec respectively). This a very 315 

advantageous characteristic when searching for a model to train [42].  316 

This success seems to be due to the combination of (1) ground truth masks and (2) U-317 

Net architecture which demonstrated high accuracy in cell count predictions and adheres to the 318 

conservative counting requirement that underscores that precise cell counts are a result of 319 
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accurate object detection rather than a mere balancing effect between false positives and false 320 

negatives [43].  321 

In our work instead of applying a standard U-Net five-layer convolutional module 322 

already in use for cell segmentation [8], a four-layer module was used to meet the segmentation 323 

task and avoid excessive parameters [33].  324 

Here an encoder with a succession of convolution and max pooling layers characterized 325 

the network, with a mirrored sequence of transposed convolutions in the decoding layer. The 326 

U-Net model learns the crucial features of the images after encoding, and to segment the image 327 

needs to decode them. Each convolutional block in the decoder has the same settings as those 328 

in the encoder. After each convolutional block, the image is up-sampled twice using bilinear 329 

interpolation to make it larger. Then, a skip connection links it to the corresponding feature 330 

map in the encoder. It utilizes a 1x1 convolutional layer after last set of decoder blocks to 331 

construct the final segmented image and for the conversion of RGB to grayscale. 332 

The layer of convolution network in the FCN model is a three-dimensional data array, 333 

with each layer representing an image with height x width x depth pixels and colour channels 334 

[24]. The image is the initial layer, with receptive fields representing the image's positions. 335 

Convolution, pooling, and activation functions operate on local input regions and are based on 336 

translation invariance. The inclusion of bounding boxes around regions facilitated the 337 

quantitative assessment of segmentation accuracy (Fig 6).   338 

Additionally, when considering uncertainty predictions, over 80% of ground-truth 339 

counts were found to fall within the model's predicted 95% confidence interval across our 750-340 

image test (examples showed in Fig 6). This visualization is invaluable for understanding the 341 

segmentation performance, assessing the accuracy of cell delineation, and providing insights 342 

into potential areas for improvement. The inclusion of cell sizes and not only of the cells 343 
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counting, enhances the interpretability of the segmentation results by providing quantitative 344 

information about the segmented platelets within the predicted masks (Fig 7).  345 

The absence of foreground masks for out-of-focus images in the dataset hinders 346 

counting performance, suggesting the potential for enhancement through the inclusion of such 347 

masks. However, challenges may persist [16,44,45], particularly in cases of overlapping cells 348 

(platelets) [46,47], a difficulty even confounding human experts. To address this, a plausible 349 

strategy involves incorporating the original image as supplementary input to the counting 350 

network. Additionally, another approach could entail utilizing randomly cropped image patches 351 

and robustly estimating counts by averaging density across multiple patches, akin to the 352 

methodology proposed by Oñoro-Rubio and López-Sastre [48].  353 

Notably, similarly to other works the strategic enhancements we introduced in 354 

comparison to the original U-Net architecture, specifically the integration of a learned 355 

transformation and the inclusion of a residual block with 3 × 3 filters, seem to significantly 356 

contribute to the model's superior performance [49,50]. Lastly, it becomes evident that even 357 

instances of misidentification possess a certain degree of subjectivity, residing within the 358 

nuanced boundaries of interpretability for borderline cases (examples showed in Fig 6).  359 

Finally, it was shown how aleatoric losses can be used to estimate uncertainty in cell 360 

counting for failure cases where ground-truth is outside of some acceptable tolerance [51]. Our 361 

work is limited by the requirement of annotated datasets, in which the bias of the labelling can 362 

be introduced.  363 

Similarly to the U-Net model, FCN's architecture consists of multiple convolutional 364 

layers to collect features from input data, and pooling layers minimize the spatial dimensions 365 

of the data to capture the most significant information. But given our results when comparing 366 

it with the U-Net model it was shown not to be the most optimum model.  367 
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In summary, the proposed approach, with the U-Net and ground truth masks, has 368 

demonstrated its robustness to be applied for automating prevalent operations across various 369 

life science research applications. Consequently, this strategy holds the potential to yield 370 

significant advantages in terms of expediting studies and mitigating operator bias, both within 371 

individual experiments and across diverse experimental contexts. 372 

 373 

Material and Methods 374 

 375 

This study proposed the implementation of the U-Net and FCN models for accurately 376 

segment platelets, in microscopy images. Platelets are dense and adherent cells, causing extra 377 

difficulties in the segmentation task [52,53]. In Fig 8 is depicted the overall procedure devised 378 

using U-Net for segmenting, counting, and calculating the area of the platelets, as this was the 379 

best performing system. All the procedures begun with the pre-processing of original 380 

microscope cell images, and preparation of the databases by augmentation of the original 381 

datasets. The preprocessing of the images was done primarily by adjusting image size of the 382 

images, followed by segmentation procedures. After detecting the platelets, the final counting 383 

is obtained as the number of connected pixels in the post-processed output.  The study design 384 

decisions, such as the chosen threshold, were all aimed at reducing false negatives and 385 

promoting accurate segmentation, and images quality highly influences the training of the 386 

network, and the segmentation results possible to be achieved by it. 387 

 388 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.23.24312502doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.23.24312502
http://creativecommons.org/licenses/by/4.0/


 389 

Fig 8. Diagram of the methodology approach for segmenting platelets in biomedical 390 

images using the U-Net. Adapted from [54]. 391 

 392 

Dataset  393 

 394 

The suggested framework was assessed using a dataset gathered by the Centre for 395 

Biomedicine, Hull York Medical School, University of Hull, UK [55]. The original database 396 

includes 293 microscopy images that have been carefully classified by skilled experts. These 397 

datasets showed platelets clustered together with low-contrast cell borders. Cell size and 398 

appearance varied between datasets. The first dataset consisted in 293 microscopy cell images 399 

of human blood platelets after different treatments: with Zinc, Milrinone, and Mil-rinone + 400 

Zinc (in a total of 299, excluding five duplicates and one blank image). From the ethical 401 

perspective, no image annotation tool was used as the dataset does not contain an-notations or 402 

labelling. To increase the dataset size, were created two datasets with 1172 and 4688 cell 403 

images by data augmentation (splitting and rotating the original images). The original dataset 404 
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of 293 images was an 8-bit 3-channel jpeg of 2752x2208 pixels each (Fig 9). The dataset of 405 

1172 images were created by splitting 293 images into 4 quadrants resulting in 3-channel 1376 406 

x 1104 pixels each. Applying rotating methods, the dataset was increased from 1172 to 4688. 407 

 408 

                 A) B) 

 
 409 

Fig 9. A and B). Two different samples of microscopy cell images from the original dataset. 410 

Images with 2752x2208 pixels. 411 

 412 

Data preprocessing  413 

 414 

Firstly, the dataset of 293 images was inspected and duplicates were removed to create 415 

this new cleaned database. Following, contrast was enhanced using Contrast Limited Adaptive 416 

Histogram Equalization (CLAHE) with clip limit of 3, which is a contrast enhancement 417 

technique that prevents over-amplification of noise. The data augmentation technique 418 

introduced new patterns into the training dataset, which made the training procedure more 419 

resistant to over-fitting, and was applied with randomized rigid geometric changes, scaling, 420 

and colour values (grey), where each training sample was rescaled, and then randomly spun 421 

before flipping it. A standard split of 80-20 train/test was used for all the final models, with the 422 

different tested datasets.  423 
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For both FCN and U-Net models masks were created for the segmentation but the 424 

procedure to create these masks was different. For the FCN model, masks were created as 425 

segmented images from Sobel operator at kernel value of 3, 5, 7 and 9 as appropriate. A larger 426 

kernel size increases sensitivity to broader edges but might reduce localization accuracy for 427 

finer details. The function in the sobel operator calculates the gradient magnitude by taking the 428 

square root of the sum of squared horizontal and vertical Sobel responses (sobel_x and sobel_y 429 

respectively) providing a combined measure of edge strength in both directions. 430 

For visually inspecting the cell segmentation performed by the FCN Model and the 431 

model’s performance, the ground truth masks were compared with the masks predicted by the 432 

model. For cell counting from the segmented images, multiple threshold values of 0.10, 0.15, 433 

0.25, and 0.5 were tested for minimum area or region of interest for creating bounding boxes. 434 

For the U-Net model ground-truth masks were created by binarization of the images. 435 

This binarization happened from the threshold value which allowed all the cells to be binarized. 436 

As well here several binarization threshold values were tested, namely 0.05, 0.15, 0.25, 0.30 437 

and 0.50. 0.25 was considered the optimum threshold value for creating the ground truth masks 438 

as all the platelets would be binarized in a close area.  439 

In the training phase, a supervised learning framework used the ground-truth la-belled 440 

images, as samples of desirable outputs that the model should learn to generate. In the case of 441 

image segmentation, such targets take the form of binary images (masks), with white (0) and 442 

black (1) pixels, representing the objects to segment and the background, respectively (Figure 443 

1). To the cleaned images was then applied a second threshold using automatic histogram 444 

shape-based algorithms. Region properties were calculated, and bounding boxes were drawn 445 

around regions with an area exceeding the specified second threshold applied of 0.5 to match 446 

the true mask and to eliminate the smaller particles or noise. 447 

 448 
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Model architecture and training  449 

 450 

FCN architecture consists of an encoder-decoder structure. The encoder extracts 451 

features from the input images through convolutional and pooling layers, while the decoder up-452 

samples these features to generate pixel-wise predictions. Skip connections were incorporated 453 

to preserve spatial information during upsampling. 454 

The FCN architecture chosen comprised 2 layers of 4 convolutional blocks with 64 and 455 

128 filters in both the encoder and decoder section, with 2 max-pooling layers in the encoder, 456 

2 Up-sampling layers and 2 concatenation layers (one for each decoding block), and one final 457 

convolutional layer with a sigmoid activation function. The model was compiled using the 458 

Adam optimizer and binary cross-entropy loss function and the model was trained on the 459 

smaller dataset. A validation split of 20% was used to monitor the model's performance during 460 

training.  461 

The model was evaluated on training and validation datasets with the complete iteration of 10 462 

epochs but abandoned due to less successful results than the U-Net model ap-plied. The U-Net 463 

model used in our study [33], started with a defined input layer, accommodating image size of 464 

256x256 pixels with 3-color channel. For deeper feature extraction in encoder portion, a series 465 

of convolutional layers with 64, 128, and 256 filters of size 3x3 interspersed with rectified 466 

linear unit (ReLU) activations and max-pooling operations progressively reducing spatial 467 

dimensions, followed by a middle bottleneck layer of 512 filters to capture contextual 468 

information and a decoder segment with similar layers as encoder segment, which 469 

progressively up samples feature maps and concatenates them with feature maps from the 470 

corresponding encoder layers, enhancing localization precision.  471 
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Each of these convolutional blocks in the encoder, employed edge filling for each 472 

convolutional layer to maintain the feature map and the ReLU function, and is expressed in 473 

equation 1. 474 

 475 

𝑅𝑒𝐿𝑈 = {
𝑥          𝑖𝑓 𝑥 ≥ 0
0          𝑖𝑓 𝑥 < 0

 (1) 

 476 

The final layer employed a sigmoid activation, followed by Adaptive Moment 477 

Estimation (Adam) optimizer with learning rate of 1E-4, and binary cross-entropy loss which 478 

quantifies the dissimilarity between predicted and ground-truth segmentation maps. 479 

 480 

 481 

 482 

Fig 10. U-Net applied architecture. Adapted from [33]. 483 

 484 

In this scenario, image segmentation required unannotated data with ground-truth labels 485 

resulting in an unsupervised or weakly supervised image segmentation approach, and the 486 
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construction of a loss function capable of assessing the quality of segments or clusters of pixels 487 

is the key difficulty. The model was compiled with binary cross-entropy as the loss function. 488 

In our study the U-Net model (Fig 10) was trained and tested on 234 and 59 cell images 489 

and ground-truth masks, respectively. 490 

 491 

Metrics for model performance evaluation  492 

 493 

Intersection over Union (IoU) or the Jaccard Index (J), is a widely used metric in se-494 

mantic segmentation, where A and B represent the true and predicted segmentation maps, 495 

respectively (Equation 1), and Dice (Equation 2). 496 

 497 

𝐼𝑜𝑈 = 𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (2) 

 498 

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 ∗
|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 (3) 

 499 

To calculate the overall detection of platelets (True Positive (TP)), it is assumed that 500 

the system properly detected more than 50% of the pixels. Precision (Equation 4), recall 501 

(Equation 5) and accuracy (Equation 6), were used for reporting the accuracy of image 502 

segmentation techniques. For pixel-wise comparison between the expected and the achieved 503 

were used the Mean Absolute Error (MAE) (Equation 7), Mean Percentage Error (MPE) 504 

(Equation 8) and Mean Average Precision (MAP) (Equation 9) were calculated. 505 

 506 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 507 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 
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 508 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 509 

𝑀𝐴𝐸 = (1 𝑁⁄ ) ∗ ∑|𝑦𝑖 − 𝑥𝑖| (7) 

 510 

Where 𝑁 is the number of samples, and |𝑦𝑖 − 𝑥𝑖| the error in absolute values. 511 

 512 

𝑀𝑃𝐸 =
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)

𝑁

𝑖=1
 (8) 

 513 

Where 𝑁 is the number of samples, 𝑦𝑖̂ is the forecasting value, and 𝑦𝑖 is actual load 514 

value. 515 

 516 

𝑀𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 (9) 

 517 

Where 𝑛 is equal to the number of classes and 𝐴𝑃𝑘 the average precision of the class 𝑘. 518 

 519 

Software and hardware  520 

 521 

The experiments were conducted on a system running Windows 11 Home 23H2. Data 522 

preprocessing was performed using Python 3.11.3 with scikit-learn (1.2.2) library. The deep 523 

learning models were implemented with TensorFlow (v2.15) and Keras (v2.15) libraries. Code 524 

development was carried out using Jupyter Notebook (v6.5.4). 525 

Experiments were conducted on a system equipped with an Intel Core i5-12400 CPU 526 

(6 cores, 12 threads) clocked at 2.50 GHz. Deep learning experiments were accelerated using 527 
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Intel® UHD Graphics 730 memory. The system was equipped with 24 GB of DDR4 RAM. 528 

Data storage and retrieval were facilitated by a 500 GB NVMe SSD. 529 

 530 
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