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Abstract

Studies estimate that India has about 65+ million diabetic patients with a substantial impending

increase, making it the international ‘diabetes capital’. Diabetes Mellitus is a metabolic disorder

which is signified by elevated blood sugar levels due to defects in insulin action, secretion or

both. Insulin resistance (IR) or insulin resistance-linked obesity is also known to be a causing

factor of Metabolic syndrome which is a combination of cardiovascular risk factors that include

raised fasting plasma glucose, central obesity, hypertension, raised triglycerides, and reduced

High-Density Lipoprotein (HDL) cholesterol. This study investigated the association between
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four single nucleotide polymorphisms (SNPs) in the selected genes - rs6801387 (CLDN16),

rs72872727 (GRID2), rs1414756 (NRG3), and rs8065294 (CACNG4) and (IR) among a normal

BMI Indian population. Through Chi-Square tests, we detected significant associations between

SNP genotypes and (IR). Allele frequency analysis revealed higher frequencies of allele G

(rs6801387) and T (rs72872727) among individuals with HOMA2-IR >2, while allele T

(rs8065294) indicated decreased risk, emphasizing the relevance of genetic factors in metabolic

disorders. The differences in clinical parameters such as fat mass, serum triglycerides and HbA1c

between the cases and controls highlights the multifactorial nature of the condition. Inheritance

model suggested the dominant inheritance for rs6801387 and rs72872727 and codominant

inheritance for rs1414756 and rs806529, offering insights into genetic associations with IR.

Despite the study's moderate sample size,these genetic biomarkers exhibit strong susceptibility to

the studied condition, showing the importance of exploring their functional significance and

underlying biological mechanisms in future research endeavours.

Keywords: CLDN16, GRID2, NRG3, CACNG4, Insulin Resistance, BMI, Diabetes Mellitus,

Metabolic syndrome, Single Nucleotide Polymorphism

INTRODUCTION

Diabetes is amongst the top 10 causes of death worldwide, checking off as the biggest worldwide

health catastrophe of this century. The WHO reports that in 2019, 74% of deaths were caused

due to noncommunicable diseases , out of which 1.6 million deaths were caused due to diabetes

[1]. Further it estimates that 592 million people will succumb to diabetes by 2035 [2]. The

burden of diabetes is increasing worldwide especially in emerging nations like India where 77
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million people were diagnosed with diabetes in 2019. It is estimated that this number would

reach 134 million by 2045, amongst which 57% of the affected population will never be

diagnosed [3]. One of the methods to combat this huge growing epidemic is focusing on early

diagnosis of Diabetes. This may help in managing and also preventing diabetes complications to

quite an extent [4]. It will also help relieve the healthcare and economic burden of diabetes care

which is high and rising worldwide [5].

Body Mass Index (BMI) is considered a key measure of metabolic syndrome, but recent studies

suggest it may not be the only criteria [6,7]. Instead, body composition, specifically muscle and

fat mass, offers a more refined understanding [6,8]. While overweight people are more likely to

meet metabolic syndrome criteria, it is suggested that higher BMI isn't necessarily linked to

metabolic syndrome.[9]. Although obesity is a recognized risk element for metabolic disorders,

not all obese individuals develop these conditions [10,11,12]. Estimates suggest that between

15% to 45% of obese people are metabolically healthy [13,14] while 6% to 30% of

normal-weight individuals exhibit cardiometabolic abnormalities typical of obesity [15,16, 17

18].This trend has been reported in Indian population as well. [17 18] The prevalence and

categorization of this unconventional drift varies widely due to the lack of standardized

definitions [19, 20 , 21]. Usually parameters like body fat percentage and waist circumference

are considered along with the WHO’s BMI cutoff [22]. This variability throws light on the

complexity of metabolic health and emphasizes the need for more defined and standardized

criteria and parameters other than BMI alone [19, 20].

A recent genetic study has established associations between specific loci and body fat

percentage, indicating its protective effects on glycaemic and lipid outcomes. Individuals with
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higher genetic susceptibility to IR tend to have lower overall adiposity, suggesting impaired fat

storage may harm metabolism [23].

The aim of this study was to investigate the potential genetic influence of polymorphisms in four

particular genes in light of previous findings.- CLDN16, GRID2, NRG3, and CACNG4 on IR in

an Indian population. We have analyze four SNPs within these genes (rs6801387 in CLDN16

rs72872727 in GRID2 rs1414756 in NRG3 rs8065294 in CACNG4) to assess their association

with IR risk in Indian population group.

MATERIALS AND METHODS

1. Study Participants

The research enrolled 191 participants (90 men and 101 women) of Indian ethnicity residing in

India, aged 18-65 years, between January 2022 and December 2023. The Homeostasis Model

Assessment Insulin Resistance (HOMA2-IR) was used to categorize participants into cases and

controls. Individuals with HOMA2-IR > 2 were classified as cases (57 participants), and those

with HOMA2-IR < 2 (134 participants) were categorized as controls. The HOMA2-IR was

calculated using the online tool provided by the Medical Science Division of The University of

Oxford [24]. Participants' demographics were collected through an electronic registration

questionnaire, including self-reported height (cm), and weight (kg). Body mass index (BMI) was

calculated as weight (kg)/height (m^2) [25], Body Fat Percentage (BFP) for adult male was

calculated as 1.20 x BMI + 0.23 x Age - 16.2, Body Fat Percentage (BFP) for adult female was

calculated as 1.20 x BMI + 0.23 x Age - 5.4 [26] , and Fat Mass was calculated as BFP x Weight

x 0.01 [26]. To ensure participant safety and ethical consideration, the study included only

individuals free from: cancer history, cardiovascular or renal failure, mental illnesses, and
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pregnancy or lactation. All participants provided written informed consent following the

principles outlined in the revised Declaration of Helsinki (2008) [27]. The study protocol was

approved from the Answer Genomics Ethical Review Committee.

2. Laboratory Measurements

Following a 12-hour fast, blood samples were obtained from participants to assess various

metabolic markers, such as fasting plasma glucose (FPG), total cholesterol (TC), triglycerides

(TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol

(LDL-C), and glycated haemoglobin (HbA1c). The assessments were conducted using Beckman

DxC 700 AU for all markers except HbA1c, which was analyzed with Tosoh G-8, and fasting

insulin levels measured by Beckman UniCel DxI 800, adhering to the protocols provided by the

manufacturers. The reference ranges for these markers were established as follows: FPG (70-100

mg/dl), TC (0-100 mg/dl), TG (0-150 mg/dl), HDL-C (40-60 mg/dl), and LDL-C (0-100 mg/dl).

To determine insulin sensitivity, the Homeostasis Model Assessment of Insulin Resistance

(HOMA2-IR) was applied, calculated from fasting plasma glucose (in mmol/l) and fasting

insulin (in mU/l) using the formula: fasting glucose x fasting insulin (22.5). Participants with a

HOMA2-IR score above 2 were categorized as insulin resistant, while those with scores below 2

were considered insulin sensitive. The clinical characteristics of the study subjects and the

distribution of these groupings are detailed in Table 2.

3. Genotyping and Single-nucleotide polymorphism(SNP) selection
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This study investigated potential genetic influences on IR by analyzing participants' DNA. The

extraction of DNA was conducted on blood specimens utilizing the Qiagen blood extraction kit,

acclaimed for its capability to isolate genomic DNA of superior quality from blood samples. The

process of genotyping (SNPs) was executed with the aid of the Illumina Infinium Global

Screening Array (GSA) V3 platform, recognized for its extensive representation of genetic

variance throughout the genome [28]. The Illumina iScan system was used for genotyping, while

Genome Studio V2 software was used for interpreting the raw intensity data, quality control, and

data export [29].

The study focused on four genes (CLDN16, GRID2, NRG3, and CACNG4) involved in

metabolism and potentially influencing insulin resistance, as indicated in Table 1. The selection

of SNPs was based on a comprehensive scientific literature identifying genetic variants

influencing metabolic traits.

Overview of the four single-nucleotide variations (SNVs)

The evaluation of statistical differences commenced by examining the variations in age, glucose,

and lipid metrics such as total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, and

HbA1c between two groups. Given the data's non-parametric characteristics, the Mann-Whitney

U test (utilizing the Scipy library) was utilized for these analyses [30]. Gender distribution across

the groups was evaluated using the Chi-square test, with detailed results presented in Table 2.

Table 1 : Overview of the four single-nucleotide variations (SNVs)
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Gene Chromosome RSID Major/Minor Alleles

CLDN16 3:190112906 rs6801387 G/A

GRID2 4:94159851 rs72872727 G/T

NRG3 10:84049204 rs1414756 C/T

CACNG4 14:64980302 rs8065294 T/A

CLDN16- claudin 16; GRID2- glutamate ionotropic receptor delta type subunit 2;

NRG3-neuregulin 3; CACNG4-calcium voltage-gated channel auxiliary subunit gamma 4

4. Statistical analysis

Utilizing PLINK software [31] for quality control, the study filtered genotype data by removing

samples with low genotyping rates, excluding SNPs with significant missing data, and

eliminating rare variants for their minimal statistical power. Heterozygosity checks were also

conducted to ensure accurate genotype distribution. Subsequently, a study was carried out using

SNPstats software to ascertain the correlation between certain SNPs and IR. The analysis yielded

odds ratios (ORs) together with their 95% confidence intervals (CIs). Table 3 summarizes the

results, which show significant SNP markers under different genetic inheritance models.

In the control group, Hardy-Weinberg equilibrium was maintained with a significance level set at

0.05. The assessment of risk was conducted through the calculation of odds ratios (OR) along

with their 95% confidence intervals (95% CI). The study also evaluated the linkage

disequilibrium (LD) between the SNPs, with the LD coefficient D being determined via the use
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of Snpstats software [32]. Additionally, power analyses were conducted based on power and

sample size calculations [33].Each SNP underwent a Bonferroni adjustment to account for the

possibility of a type I error brought on by multiple tests.

RESULTS

Subject characteristics

In this study, all 191 participants were genotyped, with their clinical features and lipid

metabolism indicators detailed in Table 2. The investigation revealed no meaningful statistical

disparities in age or gender between the case and control groups, nor among males and females

within those groups (p>0.05). Yet, notable distinctions were observed in BMI (0.01), Fat Mass

(0.007), HbA1c (0.01), Glucose Fasting (0.001), and Serum Triglycerides (0.02), with the

exceptions of BFP, Total Cholesterol, and Serum HDL Cholesterol when comparing cases to

controls.

Table 2 Characteristics of clinical significance and metabolic indicators related to glucose

and lipid levels in participants of the current research.

Parameter Cases Median

(Q1-Q3)

Controls Median

(Q1-Q3)

U Statistic P Value

Ageb 30.0 (27.0-37.0) 31.0 (27.0-38.0) 3758.5 0.86

Gender 30.14,26.85 70.85,63.14 0.667

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.22.24312447doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312447
http://creativecommons.org/licenses/by-nc/4.0/


BMIa 23.05 (21.89-24.09) 22.235 (20.84-23.61) 4656.5 0.01

BFPa 26.11 (19.47-29.01) 23.02 (17.9-27.52) 4409.5 0.09

Fat Massa 15.85 (13.59-17.79) 13.62(11.78-16.04) 4761.5 0.007

HbA1ca 5.4 (5.3-5.5) 5.3 (5.1-5.5) 4695.5 0.01

Insulin Fastinga 11.02 (9.67-13.88) 5.31(3.9-6.92) 7143 1.96E-21

Glucose Fastinga 92.6 (86.9-96.2) 87.05 (82.42-92.27) 4937.5 0.001

Total Cholesterola 186.0 (166.0-227.0) 185.0 (161.25-211.0) 4146 0.35

Serum LDL

Cholesterol 46.5 (42.9-52.5) 49.5 (44.03-54.68) 3383.0 2.128e-01

Serum Triglyceridesa 102.0 (85.0-127.0) 88.0 (70.0-126.0) 4631 0.02

Serum HDL

Cholesterola 46.5 (42.9-52.5) 49.5 (44.025-54.67) 3383 0.21

ªMann-Whitney test;

bχ2 test. The age, BMI, fat mass, Hba1c, total cholesterol, triglycerides, HDL, LDL, glucose

fasting, and insulin fasting data are shown as the median (Q1-Q3). Gender data are displayed as

n. A difference that was deemed statistically significant was defined as P<0.05. Body Mass

Index (BMI), Body Fat Percentage (BFP), Low-density lipoprotein (LDL) and high-density

lipoprotein (HDL).

Association of the 4 SNPs with IR
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This study explored the relationship between four SNPs and insulin resistance in a

normal-weight Indian population. We conducted a sample size calculation to ensure sufficient

statistical power (power > 80%) to identify an effect size (OR) of greater than 1 for each SNP,

considering a significance level of alpha = 0.05.

The frequency of genotypes for all four SNPs among both cases and controls was evaluated to

examine their compliance with Hardy-Weinberg equilibrium (HWE) through a Fisher exact test.

None of the SNPs demonstrated a significant deviation from HWE (p > 0.05), suggesting

absence of genotyping errors and population stratification; the results are mentioned in Table 3.

We performed chi-square tests to evaluate the association between genotypes and allele

frequencies of each SNP with phenotype (IR). After Bonferroni correction for multiple testing (p

< 0.0125), all four SNPs displayed significant associations with IR:

The analyses were carried out between the genotypic and allelic variations of four SNPs

(rs6801387, rs72872727, rs1414756, and rs8065294) within two groups distinguished by their

HOMA2 IR levels (>2 and <2).The obtained p-values indicate significant associations between

SNP genotypes and IR status.

● rs6801387 (CLDN16), the presence of the G allele was linked to a higher likelihood of

insulin resistance (IR) (Odds Ratio (OR) = 9.18; 95% Confidence Interval (CI):

2.11-39.94; p < 0.001) when evaluated using the dominant model.

● rs72872727 (GRID2), carrying the T allele was found to elevate the risk of IR (OR =

11.14, 95% CI: 2.42-51.26, p < 0.0001) according to the dominant model.
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● rs1414756 (NRG3), the T allele was identified as increasing the risk of IR (for C/T: OR =

2.38; 95% CI: 1.18-4.79; p = 0.0009; for T/T: OR = 12.2, 95% CI: 1.55-95.82, p =

0.0009).

● rs8065294 (CACNG4) demonstrated that the C allele significantly raises the risk of IR

under the codominant model (for T/C: OR = 1.88; 95% CI: 0.94-3.74, p = 0.0006; for

C/C: OR = 7.05, 95% CI: 2.23-22.23, p = 0.0006).

Table 3: Comparison of the genotypic and allelic variations across four SNPs (rs6801387,

rs72872727, rs1414756, rs8065294) between Cases and Controls

SNP Group A1 A2 χ²

χ²

P-Valu

e A1A1 A1A2 A2A2

P-Valu

e

HWE

P-Valu

e

rs6801387 cases

G

112

(0.98)

A

2

(0.02) 12.67

0.0003

7

G/G

55

(0.96)

G/A

2

(0.04)

A/A

0

(0) 0.0005 1

control

s

G

231

(0.86)

A

37

(0.14)

G/G

99

(0.74)

G/A

33

(0.25)

A/A

2

(0.01) 1

rs7287272 cases G T 12.18 0.0004 G/G G/A A/A 0.0002 1
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7 112

(0.98)

2

(0.02)

8 55

(0.96)

2

(0.04)

0

(0)

control

s

G

232

(0.87)

T

36

(0.13)

G/G

102

(0.76)

G/A

26

(0.21)

A/A

4

(0.03) 0.26

rs1414756 cases

C

96

(0.84)

T

18

(0.16) 13.41

0.0002

5

CC

40

(0.7)

C/T

16

(0.28)

TT

1

(0.02) 0.0009 1

control

s

C

176

(0.66)

T

92

(0.34)

CC

60

(0.45)

C/T

56

(0.42)

TT

18

(0.13) 0.44

rs8065294 cases

T

81

(0.71)

C

33

(0.29) 14.41

0.0001

5

CC

4

(0.07)

T/C

25

(0.44)

TT

28

(0.49) 0.0006 0.75

control

s

T

134

(0.5)

C

134

(0.5)

CC

37

(0.28)

T/C

60

(0.45)

TT

37

(0.28) 0.23

Note: In the chi-square association analysis of cases and controls, the four SNPs (rs6801387,

rs72872727, rs1414756, rs8065294) exhibited statistically significant associations with the trait after

Bonferroni correction, with their respective p-values falling below the adjusted threshold of 0.0125.
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MODEL OF INHERITANCE ANALYSIS

Tables 4 through 7 provide specifics on the genetic inheritance patterns (codominant, dominant,

recessive, overdominant, and log-additive models) for these SNPs. Finding the lowest Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) values was necessary to

determine which model was best for each SNP.[32].

The optimal inheritance model for rs6801387 in CLDN16 and rs72872727 in GRID2, was

identified as dominant. For rs6801387, the risk genotype for IR was found to be (G/A-A/A) as

opposed to the G/G genotype, with a significant association (P=0.0001, OR=9.18; 95% CI:

2.11-39.94) documented in Table 4. In the case of rs72872727, the risk genotype (G/T-T/T) was

determined in contrast to the G/G genotype, showing a strong correlation (P<0.0001, OR=11.14;

95% CI:2.42-51.26) as shown in Table 5. For both rs1414756 in NRG3 and rs8065294 in

CACNG4, the codominant model was the most fitting. Regarding rs1414756, the risk genotypes

(C/T and T/T) were identified against the C/C genotype for IR, with results (P=0.0009; OR=

2.38; 95% CI:1.18-4.79) and (P=0.0009; OR=12.20; 95% CI:1.55-95.82) presented in Table 6.

For rs8065294, the (T/C) and (C/C) genotypes were marked as risk factors in comparison to the

T/T genotype, with statistical significance (p= 0.0006; OR=1.88; 95% CI:0.94-3.74) and (p=

0.0006; OR=7.05; 95% CI:2.23-22.23) noted in Table 7.

These findings support the established role of these parameters in IR. It can be inferred that the

development of IR in the normal-weight Indian population can be due to a combination of

reported clinical factors and genetic abnormalities in certain genes including CLDN16, GRID2,
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NRG3, and CACNG4. To assess the underlying mechanisms and investigate possible treatment

targets, more functional research is required.

Table 4 Different models of inheritance analysis of the SNP rs6801387 (CLDN16) between the

Cases and Controls

rs6801387 association with response status (n=191, adjusted by gender+age.cat)

Model Genotype status=Ca status=Co OR (95% CI) P-value AIC BIC

Codominant

G/G 55 (96.5%) 99 (73.9%) 1

0.0005 231 260.3

G/A 2 (3.5%) 33 (24.6%)

8.63

(1.98-37.62)

A/A 0 (0%) 2 (1.5%) NA (0.00-NA)

Dominant

G/G 55 (96.5%) 99 (73.9%) 1

G/A-A/A 2 (3.5%) 35 (26.1%)

9.18

(2.11-39.94) 0.0001 229.2 255.3

Recessive G/G-G/A 57 (100%) 132 (98.5%) 1 0.24 242.9 268.9

A/A 0 (0%) 2 (1.5%) NA (0.00-NA)

Overdomina

nt G/G-A/A 55 (96.5%) 101 (75.4%) 1 0.0002 230.7 256.8

G/A 2 (3.5%) 33 (24.6%) 8.42
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(1.93-36.72)

Log-additive --- --- ---

8.76

(2.03-37.74) 0.0001 229 255

Table 5 Analysis of various genetic inheritance patterns for SNP rs72872727 (GRID2) among case

and control groups.

rs72872727 association with response status (n=191, adjusted by gender+age.cat)

Model Genotype status=Ca status=Co OR (95% CI) P-value AIC BIC

G/G 55 (96.50%) 102 (76.10%) 1

Codominant G/T 2 (3.50%) 28 (20.90%)

9.54

(2.08-43.74) 0.0002 228.7 258

T/T 0 (0%) 4 (3%) NA (0.00-NA)

Dominant G/G 55 (96.50%) 102 (76.10%) 1 <0.0001 227.3 253.4

G/T-T/T 2 (3.50%) 32 (23.90%)

11.14

(2.42-51.26)

Recessive G/G-G/T 57 (100%) 130 (97%) 1 0.065 240.9 266.9

T/T 0 (0%) 4 (3%) NA (0.00-NA)

Overdominant G/G-T/T 55 (96.50%) 106 (79.10%) 1 0.0003 231.1 257.1

G/T 2 (3.50%) 28 (20.90%) 8.67
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(1.94-38.81)

Log-additive ‒‒‒ ‒‒‒ ‒‒‒

9.94

(2.24-44.17) <0.0001 226.8 252.8

Table 6 Different models of inheritance analysis of the SNP rs1414756 (NRG3) between the

Cases and Controls

rs1414756 association with response status (n=191, adjusted by gender+age.cat)

Model Genotype status=Ca status=Co OR (95%CI) P-value AIC BIC

C/C 40 (70.2%) 60 (44.8%) 1

Codominant C/T 16 (28.1%) 56 (41.8%)

2.38

(1.18-4.79) 0.0009 232.3 261.6

T/T 1 (1.8%) 18 (13.4%)

12.20

(1.55-95.82)

C/C 40 (70.2%) 60 (44.8%) 1 233.8 259.8

Dominant C/T-T/T 17 (29.8%) 74 (55.2%)

2.96

(1.50-5.82) 0.0012

C/C-C/T 56 (98.2%) 116 (86.6%) 1 0.0052 236.5 262.5

Recessive T/T 1 (1.8%) 18 (13.4%)

8.65

(1.12-66.72) 236.5 262.5
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C/C-T/T 41 (71.9%) 78 (58.2%) 1

Overdominant C/T 16 (28.1%) 56 (41.8%)

1.85

(0.93-3.66) 0.073 241.1 267.1

Log-additive ‒‒‒ ‒‒‒ ‒‒‒

2.72

(1.53-4.86) 0.0002 230.7 256.8

Table 7 Different inheritance models analysis of the SNP rs8065294 (CACNG4) between the

Cases and Controls

rs8065294 association with response status (n=191, adjusted by gender+age.cat)

Model Genotype status=Ca status=Co OR (95% CI) P-value AIC BIC

T/T 28 (49.1%) 37 (27.6%) 1

Codominant T/C 25 (43.9%) 60 (44.8%)

1.88

(0.94-3.74) 0.0006 231.6

260.

9

C/C 4 (7%) 37 (27.6%)

7.05

(2.23-22.23)

Dominant T/T 28 (49.1%) 37 (27.6%) 1

T/C-C/C 29 (50.9%) 97 (72.4%) 2.62 0.0038 232.9 261.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 23, 2024. ; https://doi.org/10.1101/2024.08.22.24312447doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312447
http://creativecommons.org/licenses/by-nc/4.0/


DISCUSSION

Claudin-16 (CLDN16) is distinctly expressed in the tight junctions of renal epithelial cells within

Henle’s loop's thick ascending limb, playing a pivotal role in divalent cation reabsorption. More

than 20 mutations in the CLDN16 have been discovered in individuals with familial

hypomagnesemia characterized by abnormal renal excretion of Mg2+ and Ca2+. Prospective

research on both genders has linked a higher intake of magnesium with a decreased risk of type 2

diabetes (T2D) [34] and metabolic disorders [35,36]. It was found that genetic polymorphisms

associated with magnesium transport significantly elevate the risk of T2D in those with lower

magnesium consumption, supporting the idea that Mg2+ transport alterations could hinder

insulin response, thereby increasing T2D susceptibility [37, 38]. Chan et al identified a

correlation between low magnesium intake and cellular Mg2+ imbalances with KATP channel

(1.36-5.03) 9

Recessive T/T-T/C 53 (93%) 97 (72.4%) 1

C/C 4 (7%) 37 (27.6%)

5.03

(1.69-14.96) 0.0007 232.9

258.

9

Overdominant T/T-C/C 32 (56.1%) 74 (55.2%) 1

T/C 25 (43.9%) 60 (44.8%)

1.08

(0.57-2.03) 0.820 244.2

270.

3

Log-additive ‒‒‒

2.37

(1.47-3.82) 0.0002 230.5

256.

5
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mutations in influencing T2D risk [37]. Our findings demonstrate a link between the allele and

genotypes of rs6801387 in the CLDN16 and IR, with the A allele of rs6801387 identified as a

significant risk factor for developing IR (P<0.001, OR=9.18; 95% CI: 2.11-39.94).

The human GRID2 gene encodes a glutamate ionotropic receptor which is majorly expressed in

the brain's cerebellar Purkinje cells [39].The GRID2 is located in a functional area that controls

dietary consumption and energy balance.[40] In a murine research, the GRID2 knockout mice’s

gut microbiota showed great disruption in the neuroactive ligand-receptor activity. The GRID2

could affect the levels of certain gut bacteria. The gut microbiome and interactions with brain

and gut are set during pregnancy and early life, and can be affected by various factors like

metabolism, diet, stress, and medications throughout life [41]. Any disruption in this BGM

(Brain- gut- microbiome ) system can lead to more pleasure-driven eating habits, cravings, and

overeating leading to obesity [42,43]. The GRID2 has been found within the locus affecting body

weight in mice, and its connection to obesity in humans, particularly when combined with

tobacco usage, as found in a family-oriented study [44]. Our present findings suggest a link

between specific alleles and genotypes of rs72872727 in the GRID2 and IR. The T allele of

rs72872727 has been identified as a significant risk factor for IR, with statistical significance

(P<0.0001) and an odds ratio of 11.14 (95% confidence interval: 2.42-51.26).

Neuregulin-3 (NRG3) has been identified as a novel protein that shares structural features with

other neuregulins, especially neuregulin-1 (NRG1). NRG1 and related neuregulins play key roles

in the growth and cell differentiation. The action of NRG1 is mediated through the activation of

the ErbB2, ErbB3, and ErbB4 receptor tyrosine kinases [45,46].Metabolic impacts of NRG,

specifically regarding ErbB4 in skeletal muscle, have revealed that ErbB4 levels are higher in

skeletal muscle compared to liver, indicating potential metabolic implications.[46-50] Recent
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studies suggest that ErbB4 polymorphisms are linked to metabolic complications indicating a

major role of Nrg4/ErbB4 signaling in its development [51-55]. Few studies have revealed a

significant correlation between serum ErbB2 levels and IR [56-59]. Our study's results point to a

relationship between IR and the genotypic and allelic profiles of the NRG3's rs1414756.

Particularly, it has been determined that the T allele of rs1414756 poses a risk for IR (p=0.0009,

OR=12.2; CI:1.55-95.82).

Yang et al. have found that the secretion of insulin stimulated by glucose involves voltage-gated

Ca2+ (CaV) channels, specifically highlighting the essential role of the gamma-4 subunit

(CaVγ4) in maintaining the differentiated state of beta-cells. Various CaV channels, including

alpha1, beta, alpha2delta, and gamma subunits are expressed in beta-cells [60]. Wu R et al. 's

work with a murine model identifies CACNG4 as vital for maintaining normal glucose

homeostasis, highlighting CaVγ4 as a potential target for prediabetes treatment by amending

impaired metabolic conditions [61]. Additionally, Luan C's research underscores the importance

of CaVγ4 in sustaining the functionality and differentiated state of beta-cells, suggesting that

treatments targeting CaVγ4 could aid in restoring beta-cell functionality in diabetic conditions

[62]. Our results also show a connection between the allelic and genotypic variations of

rs8065294 within the CACNG4 and IR, highlighting the C allele of rs8065294 as a notable risk

factor for the onset of IR (p=0.0006, OR=7.05; CI:2.23-22.23).

CONCLUSION:

In our current study, we carried out association studies on SNPs of four genes (CLDN16, GRID2,

NRG3, and CACNG4) and IR among the normal BMI Indian population. We selected these

SNPs , as they have some literature presence involving IR . Our study revealed that the

individuals carrying the allele G for rs6801387, allele T for rs72872727 and rs1414756 and
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allele C for rs8065294 are at higher risk for developing IR. Also, The SNP rs72872727 in

GRID2 (p<0.0001;OR=11.14; 95% CI(2.42-51.26) has the greatest significance, beyond the

genetic factors, certain clinical parameters such as Fat Mass, Serum Triglycerides, Hba1c have

shown significant differences between cases and controls, suggesting a multifactorial etiological

of the condition under study.

Although these genetic indicators demonstrate a significant predisposition towards the conditions

under investigation, it's crucial to consider the constraints of this study, such as the relatively

small sample size that could affect its statistical robustness, underscoring the necessity for

additional verification across broader and more varied cohorts.The future research could explore

the functional significance of these SNPs and its potential mechanisms underlying the response

trait.
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