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Abstract. Brain atrophy assessment in MRI, particularly of the hip-
pocampus, is commonly used to support diagnosis and monitoring of
dementia. Consequently, there is a demand for accurate automated hip-
pocampus quantification. Most existing segmentation methods have been
developed and validated on research datasets and, therefore, may not be
appropriate for clinical MR images and populations, leading to poten-
tial gaps between dementia research and clinical practice. In this study,
we investigated the performance of segmentation models trained on re-
search data that were style-transferred to resemble clinical scans. Our
results highlighted the importance of intensity normalisation methods in
MRI segmentation, and their relation to domain shift and style-transfer.
We found that whilst normalising intensity based on min and max val-
ues, commonly used in generative MR harmonisation methods, may cre-
ate a need for style transfer, Z-score normalisation effectively maintains
style consistency, and optimises performance. Moreover, we show for our
datasets spatial augmentations are more beneficial than style harmon-
isation. Thus, emphasising robust normalisation techniques and spatial
augmentation significantly improves MRI hippocampus segmentation.
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1 Introduction

Many neurodegenerative diseases cause volumetric atrophy in the region of the
hippocampus [1], including Alzheimer’s disease (AD). AD is clinically charac-
terised by a progressive decline in cognitive function with diagnosis and monitor-
ing of the disease commonly including the assessment of hippocampal atrophy
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in brain MRI scans [2]. Specifically, the volume of the hippocampus, is often
measured, either through manual or automated segmentation.

Manual segmentation requires large amounts of time and expert knowledge
and suffers from inter-rater variability. Therefore, there is a demand for accu-
rate automated hippocampus segmentation methods [3]. Among different types
of techniques, deep learning (DL) based methods show great promise for the
segmentation of the hippocampus, outperforming traditional atlas-based ap-
proaches [4], [5]. However, training CNNs generally requires the availability of
manual labels, limiting the applicability in clinical practice. Furthermore, due
to differences in image acquisitions and patient demographics, models trained
on research datasets are unlikely to generalise to clinical populations. Therefore,
there is a need to overcome this domain shift between the source (research) and
target (clinical) dataset, enabling the development of segmentation models for
clinical scans without requiring segmentation labels.

To address general domain shift, data augmentation is a commonly used tech-
nique for artificially enhancing the diversity of training data, to increase model
generalisability and robustness. Augmentation has been shown to improve down-
stream segmentation performance across brain imaging studies [6]. However,
augmentation requires the identification and modelling of differences between
domains, which is non-trivial in the presence of varying populations and scanner
technologies. Another related field of research is image-to-image (I2I) transla-
tion, which is an approach that aims to learn the mapping between different
visual domains, mostly based on generative models. For instance, Pix2pix [7]
utilises a conditional GAN to map between image domains, but relies on pixel-
to-pixel correspondence, limiting its applicability to MR images from different
sites. CycleGAN [8] overcomes the need for paired data using cycle consistency.

MR harmonisation approaches, e.g., [9] are based on I2I methods, aiming
to overcome the style-based domain shifts associated with differing acquisition
scanners while maintaining the underlying anatomy.

Therefore, in this study, we aim to investigate which techniques are effec-
tive for overcoming the domain shift between our source (research) dataset and
target (clinical) dataset for the task of MR hippocampus segmentation. Our
contributions are as follow:

– We demonstrate the use of a 2-stage pipeline for generating style-transferred
images that are subsequently used to train a hippocampus segmentation
model.

– We explore the impact on downstream hippocampus segmentation perfor-
mance of different preprocessing and augmentation approaches.

– We show that the use of appropriate normalisation (i.e. Z-score normalisa-
tion) and spatial augmentation (i.e. paired affine registration) can lead to
substantial improvements on downstream hippocampus segmentation per-
formance, even without a sophisticated style transfer pipeline.

The findings of this study may shed light on the importance of developing a ro-
bust preprocessing pipeline for MR hippocampus segmentation in future studies.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2024. ; https://doi.org/10.1101/2024.08.22.24312425doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24312425
http://creativecommons.org/licenses/by/4.0/


Is Your Style Transfer Doing Anything Useful? 3

2 Methods

To overcome the domain shift between the research and clinical data, we imple-
mented a 2-stage approach, formed of a style transfer (ST) network followed by
a segmentation network. A schematic of this pipeline is shown in Figure 1. We
assumed access to a source (research) dataset, Ds = {Xs,Ys}, and an unlabelled
target (clinical) dataset, Dt = {Xt}, to first train a style transfer model that
generates source images in the style of target images, X̃s = G(Xs,Xt), follow-
ing which we used the ST images to train a segmentation model f(X̃s,Ys), such
that the performance for Dt is maximised.

2.1 Style Transfer: Style-Encoding GAN

We utilised the Style-Encoding GAN (SE-GAN) [9] for our style transfer net-
work. Similarly to StarGANv2 [10], it is formed of a single generator (G), dis-
criminator (D), mapping network (M) and a style encoder (E). During training,
SE-GAN trains G to generate diverse images corresponding to a single image
slice x ∈ X using a style code c, provided by either M or E. Consequently, the
generator G translates an input image, x, into an output image, x̃ = G(x, c),
that is reflective of the style of c. To validate the successful injection of c into
the output image x̃, E is used to extract the style code from images. The style
code is a 1 × 64 vector, allowing E to produce diverse style codes from differ-
ent images. Moreover, the discriminator D learns to classify images as real or
fake, as produced by G(x, c). In our experiments, G is used to synthesise output
images x̃s based on source images xs that are reflecting the style c extracted
from various reference images in Xt. Finally, 3D volumes can be reconstructed
by stacking the 2D slices. The network is trained using the loss introduced in
[10], formed of an adversarial loss LGAN , cycle consistency loss Lcyc, style re-
construction loss Lsty and diversification loss Ldiv, weighted by λcyc, λsty and
λdiv respectively, resulting in the following objective function:

L(G,M,E,D) = LGAN + λcycLcyc + λstyLsty − λdivLdiv (1)

2.2 Segmentation: U-Net

The second stage of the framework is the training of the segmentation network,
f , for which we used a 3D U-Net [11]. The network is trained with a Dice loss,
Ldice, using the style transformed source data such that:

Lseg(X̃s,Ys) = Ldice(f(X̃s),Ys). (2)

2.3 Investigating Preprocessing

Registration: To mitigate content shift, defined as variations in anatomical
alignment between brain scans, we investigated the impact of registration on
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Fig. 1: A schematic of the proposed 2-stage pipeline.

both style transfer and downstream segmentation performance. To this end,
we conducted registration, using both 6 (rigid-body) and 12 (affine) degrees of
freedom (DOF) and compared two main approaches. (1) MNI-Reg: A spatial
harmonisation approach, where both source and target images are registered to
a standard space, (2) Paired-Reg: A spatial augmentation approach, where ev-
ery source image is registered to every target image.
Normalisation: In most ST models intensity normalisation is performed dur-
ing training, through linear scaling of the range of intensities from [Min, Max]
to a pre-defined range such as [0,1], which we call Min-Max normalisation. This
approach, however, is often unsuitable for MRI images as they can have varying
intensity distributions from different acquisitions, leading to inconsistent normal-
isation results. Additionally, intensity outliers common in MRI data can skew
normalisation. We investigated the performance of Min-Max normalisation and
explored the impact of applying Z-score normalisation on a per-subject basis.

3 Experimental Setup

3.1 Datasets

Research Dataset: The HarP dataset [12] was used as the labelled research
dataset, consisting of 135 T1-weighted MRI volumes (cognitively normal controls,
MCI and AD patients) from a range of scanners, and corresponding hippocampus
masks [13]. All MRIs were registered to MNI-space.
Clinical Dataset: We used a dataset from the Oxford Brain Health Clinic
(OBHC) [14] as our clinical dataset, representing the unlabelled target domain. It
includes 29 patients referred to a memory clinic, who agreed to the use of data for
research. The lack of strict inclusion criteria typical of a dementia research study,
makes this dataset representative of real-world memory clinic patients. The scans
were collected using a 3T Siemens scanner. Hippocampi were manually annotated
by a clinician. BHC labels were used only for model evaluation, not for training.

Figure 2 compares the hippocampal volumes between the research (HarP)
and clinical (BHC) populations. It can be seen that generally the research popu-
lation have larger hippocampal volumes than the clinical group. This difference
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can probably be attributed to dementia research typically recruiting patients
that tend to be younger and have less hippocampal atrophy [15].

3.2 Preprocessing

For anonymisation, the BHC scans were brain extracted and thus we performed
brain extraction on the HarP dataset. N4 bias field correction was used to cor-
rect for low-frequency intensity non-uniformity. Images were split into left and
right hemispheres for training. Data registration followed Section 2.3.

3.3 Implementation Details

For training the ST network, 132 HarP images were used as the source images,
and 20 randomly selected BHC images were used as the references, using a
learning rate of 10−4 and the Adam optimiser. For Equation 1, we set λcyc = 10,
λsty = 1 and λdiv = 1, as suggested by [9]. Moreover, 100 HarP images were
used for training and then the trained ST network was used to generate a style-
transferred image for each HarP image (N=32) in the style of each BHC image
(N=20) resulting in 640 style-transferred images, which were used to train the
segmentation model.

The chosen U-Net architecture network had four downsampling and upsam-
pling layers, whereby each layer was formed of a convolutional layer, a ReLU
activation function and a batch normalisation layer. The depth, defined as the
number of convolutions, doubled between each layer, starting with 4. The U-Nets
were trained using a learning rate of 10−3, and the Adam optimiser. The training
was conducted using 3-fold cross-validation and tested on 9 BHC patients (18
hippocampi) that were not used during the training or validation. Training was
conducted using an Nvidia A10 GPU. The ST and segmentation networks re-
quired an average training time of 35 hours and 12 hours, respectively. However,
once training was complete, the segmentation model’s testing, or inference, took
only a few seconds per scan, making it suitable for clinical applications.

Table 1: DSC for segmentation methods on HarP (Source) and OBHC (Target).
N is the number of test hippocampi (i.e., 2× number of patients). * UDA test
sizes were smaller due to training on a sample of unlabelled OBHC.

Method HarP (N=64) OBHC (N=58)

FreeSurfer 0.701 ± 0.049 0.625 ± 0.217

SynthSeg 0.801 ± 0.045 0.732 ± 0.070

FIRST 0.810 ± 0.031 0.758 ± 0.116

Hippodeep 0.829 ± 0.031 0.752 ± 0.062

U-Net 0.854 ± 0.048 0.670 ± 0.171

Basic Aug 0.860 ± 0.041 0.783 ± 0.051

MRI Aug 0.854 ± 0.040 0.764 ± 0.055

UDA* 0.863 ± 0.041 0.742 ± 0.078
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4 Results & Discussion

4.1 Domain Shift

First, to establish the domain shift between the datasets, we tested publicly
available out-of-the-box (OOB) tools: FSL FIRST [16], FreeSurfer [17], Synth-
Seg [5], Hippodeep [18], as well as U-Net based approaches: a U-Net trained solely
on HarP, basic augmentation (affine transforms, flips, noise, intensity changes),
MRI-specific augmentation (motion, bias field). We also compared with adversar-
ial unsupervised domain adaptation, approach shown potent for tackling domain
shift in medical imaging [19], and specifically the model developed in [20] (UDA).

Table 1 shows the dice score (DSC) values for the different approaches. The
OOB models all performed better on our research population compared to our
clinical population, achieving maximum DSC of 0.829 and 0.758, respectively.
In particular, FreeSurfer and FIRST had instances of complete failure for the
OBHC data (DSC = 0). For most patients, UDA was comparable to the aug-
mentation methods, however, when examining the worst-case scenarios, UDA
led to particularly low dice scores for certain individuals. Data augmentation,
thus, proved to be the most effective approach for performance enhancement.
These findings demonstrate the limitations of existing methods and highlight the
potential value of exploring more sophisticated data augmentation approaches.

4.2 Registration

We then explored the effect of the choice of registration approach. Figure 2 shows
the effect of registration on the hippocampal volumes: as rigid registration only
involves translation and rotation for brain alignment, there is no change between
the original HarP volumes and those registered to OBHC. However, affine reg-
istration performs global scaling, resulting in a slight increase in volume of the
registered HarP hippocampi. Although the OBHC registration targets have dis-
tinctly smaller hippocampal volumes, they have, on average, larger whole-brain
volumes, leading to larger hippocampi in the registered HARP images.

Fig. 2: Volume against age plots for HarP and OBHC: left hippocampus volumes
for Paired-Reg 6 DOF (left), 12 DOF (middle), and whole brain volumes (right).
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4.3 Style Transfer vs Normalisation

Table 2 shows the segmentation performance for models trained on Z-score and
Min-Max normalised data, and tested on the 9 unseen OBHC patients (18 hip-
pocampi), for a range of evaluation metrics, namely the Dice score (DSC), Haus-
dorff distance (HD), and Relative Absolute Volume Difference (RAVD). As a
supervised benchmark, we trained directly on the OBHC dataset (20 labelled pa-
tients), which achieved an average DSC of 0.744. By comparison, simply training
on the Min-Max normalised HarP dataset achieved a mean DSC of 0.616, clearly
indicating presence of a domain shift. The results of training with the U-Net on
the HarP dataset with the different registration schemes, normalisation schemes
and the use of ST can then be seen. MNI-Reg-6 ST led to a 4% increase in perfor-
mance, with a DSC of 0.651. Z-score normalisation outperformed Min-Max nor-
malisation across the experiments. Without Z-score normalisation, a noticeable
style shift exists, which can be slightly mitigated by training on style-transferred
images (MNI-Reg-6 ST). However, implementing Z-score normalisation effec-
tively reduces this style shift, increasing performance to levels similar to a model
trained on target data, while the benefits offered by style transfer are reduced.
Following this, the impact of mitigating content shift using affine registration was
evaluated, specifically employing the paired registration approach (Table 2). A
significant increase in segmentation performance is observed through augmenting
the data with paired registration (Paired-Reg-12), achieving an average DSC of
0.780 without ST and 0.787 with. Standard augmentations further improved the
performance, achieving the highest DSC of 0.797 (Paired-Reg-12 ST + Aug). The
source, reference and style-transferred images, generated by ST networks trained
on affine paired registered images (Paired-Reg-12 ST) using both normalisation
approaches, have been visualised in Figure 3. The figures reveal that Min-Max
normalisation tends to highlight the style transfer effect more visibly than Z-score
normalisation. This difference arises because Min-Max normalisation is sensitive
to extreme values in MRI data, which can distort the results. In contrast, Z-
score normalisation is more robust to such outliers. Thus, the differences between

Table 2: Segmentation results using different normalisation and registrations. N
is the number of train hippocampi (i.e. 2× number of patients)
Train Data Train N Norm Min DSC ↑ Avg DSC ↑ 95 % HD ↓ RAVD↓

OBHC 40 Z-score 0.617 0.744±0.016 3.865±1.357 18.388±1.694

HarP 64 Min-Max 0.480 0.616±0.037 5.264±0.970 97.972±9.456

MNI-Reg-6 ST 1,280 Min-Max 0.521 0.651±0.015 4.036±0.06 83.033±2.037

HarP 64 Z-score 0.674 0.746±0.009 6.013±1.297 26.326±1.856

MNI-Reg-6 ST 1,280 Z-score 0.688 0.757±0.008 5.072±1.391 20.736±1.906

Paired-Reg-12 1,280 Z-score 0.703 0.780±0.005 3.452±0.237 20.009±0.913

Paired-Reg-12 ST 1,280 Z-score 0.672 0.787±0.004 3.169±0.250 23.794±4.033

Paired-Reg-12 ST

+ Aug
1,280 Z-score 0.719 0.797±0.003 3.133±0.143 27.509±3.724
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(a) Min-Max Normalisation (b) Z-score Normalisation

Fig. 3: Generated ST images for a given source (first column) and reference (first
row), using a) Min-Max and b) Z-score normalisation.

Fig. 4: Manual and predicted segmentation masks for the OBHC test data.

the figures likely reflect variations in intensity ranges rather than style transfer
performance. This difference is further demonstrated by the intensity distribu-
tions plotted in the Supplementary Material. Figure 4 provides a qualitative
comparison between the manual segmentations and the best performing model
predictions (Paired-Reg-12 ST with augmentations) on the OBHC test data.

5 Conclusion

In conclusion, we implemented a 2-stage pipeline consisting of a ST and a seg-
mentation network. Our experimental findings underscored the significance of
normalisation methods in MRI augmentation and segmentation tasks. While ex-
periments with Min-Max normalisation may suggest a style shift and the poten-
tial benefits of style transfer, this interpretation may be misleading and is a result
of inappropriate normalisation. Our findings indicate that Z-score normalisation
negates the necessity for style transfer by effectively maintaining style consis-
tency in MRI data, thereby optimising segmentation performance directly. More-
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over, for the task of hippocampus segmentation, our results demonstrate that
mitigating the content shift using a spatial augmentation approach (i.e. Paired-
Reg 12 DOF) can be far more beneficial than a spatial harmonisation approach,
such as aligning all images to MNI. The improved performance may be attributed
to the spatial diversity introduced by the augmentation, which enhances seg-
mentation robustness. Thus, prioritising robust normalisation techniques and
appropriate spatial augmentation can lead to substantial improvements in the
generalisability of MRI segmentation. Future studies may, thus, benefit from con-
sidering spatial augmentation, akin to those currently employed in style transfer,
to achieve further improvements in hippocampus segmentation performance.
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