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ABSTRACT 

Background:  Insulin resistance (IR) contributes significantly to the onset of metabolic disorders, 
such as type 2 diabetes mellitus and cardiovascular diseases. Identifying genetic markers associated 
with IR can offer insights into its mechanisms and potential therapeutic targets.

Objective: This study investigated the association between four single nucleotide polymorphisms 
(SNPs) and insulin resistance among 191 individuals in the Indian population.

Methods: A literature  review identified four  SNPs linked to  IR.  Participants  were divided into 
groups  based  on  insulin  resistance  and  sensitivity,  determined  by  the  Homeostasis  Model 
Assessment for Insulin Resistance (HOMA2-IR). DNA was extracted for genotyping using Illumina 
Infinium  Global  Screening  Array  (GSA)  V3.  Case-control  analysis  assessed  SNP-genotype 
associations with insulin resistance and other clinical parameters.

Results:  Among  191  participants,  57  were  insulin-resistant  and  134  were  insulin-sensitive. 
Significant  associations  (P  <  0.05)  were  found  between  selected  SNPs  and  IR.  SNP rs920590 
showed the strongest association, with the T allele associated with increased IR risk (odds ratio = 
4.01, 95% CI 1.55-10.34; p < 0.0014). Additionally, serum LDL cholesterol, serum triglycerides, 
HbA1c, Insulin fasting and fat mass show significant differences in cases and controls.

Conclusion: This study validates genetic markers linked to insulin resistance (IR) in the Indian 
population and elucidates their roles in IR pathogenesis. Understanding these markers can inform 
personalised therapeutic strategies for metabolic disorders.

KEYWORDSs: Insulin resistance, genetic markers, single nucleotide polymorphisms, case-control 
study, Indian population.

INTRODUCTION
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Diabetes  Mellitus  (DM)  has  a  rich  historical  record  dating  back  approximately  3000  years  to  
Egyptian  manuscripts1,  making  it  one  of  humanity's  oldest  known  diseases.  It  encompasses  a 
spectrum  of  metabolic  disorders  involving  lipid,  protein,  and  carbohydrate  metabolism  and  is 
characterised by persistent hyperglycemia2. In 2019, noncommunicable diseases (NCDs) accounted 
for 74% of global deaths, with diabetes alone contributing to 1.6 million fatalities 3,  4. This global 
burden  is  particularly  seen  in  developing  countries  like  India,  where  an  estimated  77  million 
individuals were affected by diabetes in 20194. Notably, individuals with Diabetes Mellitus face a 
significantly heightened risk of developing Metabolic Syndrome (Met S)5.

Traditionally, Body mass index (BMI) has been considered a key marker of metabolic syndrome. 
However, recent research suggests the involvement of additional factors 6,  7.  Higher BMI does not 
consistently  correlate  with  a  higher  frequency  of  metabolic  syndrome  among  Asian  patients 8, 
prompting  a  reevaluation  of  conventional  metrics.  Focusing  on  body  composition,  particularly 
muscle  and  fat  mass,  provides  a  more  nuanced  understanding  of  metabolic  health 9.  Previous 
epidemiological  research has explored the relationship between fat  mass and insulin resistance 10. 
Anthropometric measures such as waist circumference and waist-to-hip ratio have emerged as better 
predictors of obesity-associated type 2 diabetes risk than BMI alone 11,  12. However, the influence of 
body  fat  percentage  (BF%)  on  insulin  resistance  remains  underexplored,  especially  among 
individuals with normal BMI13, 14. Recent genetic research has identified correlations between specific 
genetic loci and metabolic traits, shedding light on the genetic underpinnings of metabolic health 
disparities15.  Building  upon  this  foundation,  our  study  aims  to  delve  into  the  potential  genetic 
influences on insulin resistance within the Indian population, particularly among individuals with 
normal BMI. Through a comprehensive literature survey, we have identified a set of genes and SNPs 
linked with insulin resistance (IR). We seek to validate these findings within our population and 
ascertain their relevance in the Indian context.

Given the emerging evidence suggesting genetic correlations with metabolic traits, our study seeks 
to  explore  the  potential  impact  of  genetic  polymorphisms  in  four  specific  genes  (INTS10, 
LINC01427–LINC00261,  SENP2,  and  SLC22A11)  on  insulin  resistance  among  individuals  with 
normal  BMI  in  the  Indian  population16.  By  investigating  the  association  between  these  genetic 
variants  and  insulin  resistance  risk,  we  aim  to  enhance  our  understanding  of  the  genetic 
underpinnings  of  metabolic  health  indicators.  Recent  genetic  research  has  shown  correlations 
between particular loci and percentage of body fat, suggesting protective effects against glycaemic 
and  lipid  outcomes17.  Lowered  total  adiposity  is  typically  associated  with  increased  genetic 
susceptibility to insulin resistance, indicating that poor fat storage may be detrimental to metabolism. 
We will concurrently examine four SNPs within these genes: rs920590 in  INTS10, rs7274134 in 
LINC01427 - LINC00261, rs6762208 in SENP2, and rs2078267 in SLC22A11.

MATERIALS AND METHODS

1. Study Participants

The research enrolled 191 participants (90 men and 101  women) of Indian ethnicity residing in 
India,  aged  18-65  years,  between  January  2022  and  December  2023.  HOMA2-IR was  used  to 
categorise participants into cases and controls. Individuals with HOMA2-IR > 2 were classified as 
cases  (57  participants),  and  those  with  HOMA2-IR <  2  (134  participants)  were  categorised  as 
controls. The HOMA2-IR was calculated using the online tool provided by the Medical Science 
Division  of  The  University  of  Oxford18.  An electronic  registration  form was  used  to  gather  the 
demographic data of the participants, including their self-reported weight (kg) and height (cm). The 
formula for calculating body mass index (BMI) was weight (kg)/height (m^2) 19. For adult males, the 
formula for Body Fat Percentage (BFP) was 1.20 x BMI + 0.23 x Age - 16.2, for an adult female, the 
formulas for Body Fat Percentage (BFP) were 1.20 x BMI + 0.23 x Age - 5.420 20 and Fat Mass was 
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BFP x Weight x 0.012020. To ensure participant safety and ethical consideration, the study included 
only  individuals  free  from:  cancer  history,  cardiovascular  or  renal  failure,  mental  illnesses,  and 
pregnancy or lactation. Every participant gave written, informed consent in accordance with the 
guidelines in the 2008 updated Declaration of Helsinki 21. The study protocol received approval from 
the  Answer  Genomics  Ethical  Review  Committee.  Figure  1  provides  a  detailed  graphical 
representation of  the study's  structure and key components,  outlining the research methodology, 
participant selection, and analysis framework.

2. Laboratory Measurements

Following a 12-hour fast, participants' blood was drawn for analysis of important metabolic markers, 
including, high-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TG), 
fasting plasma glucose (FPG), and low-density lipoprotein cholesterol (LDL-C),. The assessments 
were conducted using Beckman DxC 700 AU for all markers except HbA1c, which was analyzed 
with Tosoh G-8, and fasting insulin levels measured by Beckman UniCel DxI 800, adhering to the  
protocols  provided  by  the  manufacturers.  The  healthy  reference  ranges  for  these  markers  were 
established as follows: FPG (70-100 mg/dl), TC (0-100 mg/dl), TG (0-150 mg/dl), HDL-C (40-60 
mg/dl),  and  LDL-C  (0-100  mg/dl).  To  determine  insulin  sensitivity,  the  Homeostasis  Model 
Assessment of Insulin Resistance (HOMA2-IR) was applied, calculated from fasting plasma glucose 
(in  mmol/l)  and  fasting  insulin  (in  mU/l)  using  the  formula:  fasting  glucose  times  fasting 
insulin/22.510. Participants with a HOMA2-IR score above 2 were categorized as insulin resistant, 
while those with scores below 2 were considered insulin sensitive. The clinical characteristics of the  
study subjects and the distribution of these groupings are detailed in Table 2.

3. Genotyping and Single-nucleotide polymorphism(SNP) selection

This study investigated potential genetic influences on insulin resistance by analyzing participants' 
DNA.  The  extraction  of  DNA  was  conducted  on  blood  specimens  utilizing  the  Qiagen  blood 
extraction kit, acclaimed for its capability to isolate genomic DNA of superior quality from blood 
samples. The process of genotyping SNPs was executed with the aid of the Illumina Infinium Global 
Screening Array (GSA) V3 platform, recognized for its extensive representation of genetic variance 
throughout the genome22. The Illumina iScan system was used for genotyping, while Genome Studio 
V2 software was used for interpreting the raw intensity data, quality control, and data export23.

The  study  focused  on  four  genes  (INTS10,  LINC01427  -  LINC00261,  SENP2 and  SLC22A11) 
involved in metabolism and potentially influencing insulin resistance, as indicated in Table 1. The 
selection of SNPs was based on a comprehensive literature review of scientific literature identifying 
genetic markers associated with metabolic traits.

4. Statistical analysis

The evaluation of statistical differences commenced by examining the variations in age, glucose, and 
lipid metrics such as LDL cholesterol, HDL cholesterol, total cholesterol, triglycerides, and HbA1c 
between  two groups.  Given  the  data's  non-parametric  characteristics,  the  Mann-Whitney  U test 
(utilising the Scipy library) was utilised for these analyses17. Gender distribution across the groups 
was evaluated using the Chi-square test, with detailed results presented in Table 2.

Utilising PLINK software24 for quality control, the study filtered genotype data by removing samples 
with  low genotyping  rates,  excluding  SNPs  with  significant  missing  data,  and  eliminating  rare 
variants for their minimal statistical power. Heterozygosity checks were also conducted to ensure 
accurate genotype distribution. Subsequently, a study was carried out using SNPstats software 25 to 
ascertain  the  correlation  between  the  described  four  SNPs  and  insulin  resistance.  The  analysis 
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yielded odds ratios (ORs) together with their 95% confidence intervals (CIs). Table 3 summarises 
the results, which show significant SNP markers under different genetic inheritance models.

In the control group, Hardy-Weinberg equilibrium was maintained with a significance level set at 
0.05. The assessment of risk was conducted through the calculation of odds ratios (OR) along with 
their 95% confidence intervals (95% CI). The study also evaluated the linkage disequilibrium (LD) 
between the SNPs, with the LD coefficient D being determined via the use of Snpstats software 25. 
Additionally, power analyses were conducted based on power and sample size calculations 26. Each 
SNP underwent a Bonferroni adjustment was carried out for each SNP to rule out the possibility of a 
type I error brought on by multiple tests.

RESULTS

Subject characteristics

In this study, all 191 participants were genotyped, with their clinical features and lipid metabolism 
indicators detailed in Table 2. The investigation revealed no meaningful statistical disparities in age 
or gender between the case and control groups, nor among males and females within those groups 
(p>0.05). Yet, notable distinctions were observed in BMI (0.01), Fat Mass (0.007), HBA1C (0.01),  
Glucose  Fasting  (0.001),  and  Serum  Triglycerides  (0.02),  with  the  exceptions  of  BFP,  Total 
Cholesterol, and Serum HDL Cholesterol when comparing cases to controls.

Association of the 4 SNPs with IR

In this study, the relationship between IR and four SNPs in the Indian population's normal weight 
individuals  was  examined.  To  ensure  the  study  had  sufficient  statistical  power,  a  sample  size 
calculation was performed. This calculation aimed to detect significant associations, considering a 
significance level (alpha) of 0.05.

The frequency of genotypes for all  four SNPs among both cases and controls was evaluated to 
examine their compliance with Hardy-Weinberg equilibrium (HWE) through a Fisher exact test. 
None of the SNPs demonstrated a significant deviation from HWE (p > 0.05).suggesting the absence 
of genotyping errors and population stratification, the results are mentioned in Table 3.

We performed chi-square tests to evaluate the association between genotypes and allele frequencies 
of each SNP with phenotype (IR). After Bonferroni correction for multiple testing (p < 0.0125), all  
four SNPs displayed significant associations with IR:

Chi-squared analyses  were  performed to  investigate  the  relationship  between the  genotypic  and 
allelic variations of four SNPs (rs920590, rs7274134, rs6762208, and rs2078267) within two groups 
distinguished by their HOMA2 IR levels (>2 and <2).The obtained p-values indicate significant 
associations between SNP genotypes and insulin resistance status.The allelic frequency difference 
between the cases and control were also found to be significant (p< 0.05)

●      For rs920590 (INTS10), individuals carrying the T/T genotype had an elevated risk of IR 
compared to  those  with  C/C-C/T genotypes  [Odds  Ratio  (OR) =  4.01;  95% Confidence 
Interval (CI): 1.55-10.34; p < 0.0014] under the recessive model.

●      rs7274134 (LINC01427 - LINC00261), individuals carrying the C/T-T/T genotypes had an 
elevated risk of IR [Odds Ratio (OR) = 2.60, 95% CI: 1.37-4.96, p < 0.0032] according to the 
dominant model.
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●      rs6762208 (SENP2), individuals carrying the A/C-C/C genotypes were associated with an 
increased risk of IR [Odds Ratio (OR) = 3.11, 95% CI: 1.55-6.24, p < 0.0013] under the 
dominant model.

●      rs2078267 (SLC22A11), individuals carrying the T/T genotype showed a higher risk of IR 
[Odds Ratio (OR) = 3.72, 95% CI: 1.22-11.28, p < 0.0091] under the recessive model.

MODEL OF INHERITANCE ANALYSIS

In order to comprehend the connection between genotype and insulin resistance (IR) risk in the 
Indian population, genetic inheritance patterns for the chosen SNPs were analyzed. Tables 4 through 
7  outline  the  various  inheritance  models  examined,  including  codominant,  dominant,  recessive, 
overdominant,  and log-additive models,  for  SNPs rs920590 (INTS10),  rs7274134 (LINC01427 - 
LINC00261), rs6762208 (SENP2), and rs2078267 (SLC22A11).

The determination of the optimal inheritance model for each SNP was based on identifying the 
model  with  the  lowest  Akaike  Information  Criterion  (AIC)  and Bayesian  Information  Criterion 
(BIC) values. For rs7274134 in LINC01427 - LINC00261 and rs6762208 in SENP2, the dominant 
model  exhibited the lowest  AIC,  indicating its  suitability  for  describing the inheritance pattern.  
Specifically, the risk genotype for IR associated with rs7274134 was (C/T-T/T), with a significant 
association (P=0.0032, OR=2.60; 95% CI: 1.37-4.96). Similarly, the risk genotype for IR linked to 
rs6762208 was (A/C-C/C), showing a strong correlation (P=0.0013, OR=3.11; 95% CI: 1.55-6.24).

Conversely, for rs920590 in INTS10 and rs2078267 in SLC22A11, the recessive model demonstrated 
the lowest AIC. In the case of rs920590, the risk genotype (T/T) was identified against the C/C-C/T 
genotypes for IR, with significant results (P=0.0014; OR=4.01; 95% CI: 1.55-10.34). Similarly, for 
rs2078267, the T/T genotype was marked as a risk factor compared to the C/C-C/T genotypes, with  
statistical significance (P=0.0091; OR=3.72; 95% CI: 1.22-11.28).

These  findings  support  the  role  of  these  genetic  markers  in  predisposing  individuals  to  insulin 
resistance. Understanding the underlying mechanisms associated with these genetic variants could 
provide valuable insights into the development of personalised treatment approaches for metabolic 
disorders in the Indian population.

DISCUSSION

This study investigated the association between specific genetic markers and insulin resistance (IR) 
among individuals with normal BMI in the Indian population, validating the role of SNPs (rs920590 in 
INTS10, rs7274134 in LINC01427 - LINC00261, rs6762208 in SENP2, and rs2078267 in SLC22A11) in 
predisposing  individuals  to  IR.  These  findings  underscore  the  importance  of  genetic  factors  in 
metabolic dysregulation, validating previous research linking these genetic variants to metabolic traits.

INTS10

Protein  coding gene  INTS10  (Integrator  Complex Subunit  10)  is  a  part  of  the  Integrator  (INT) 
complex, which is a complex engaged in the transcription pathway leading to gene expression27. In a 
diabetic retinopathy study done on mice, it was found  that the transcription of INTS10 in the inner 
retinal cells of diabetes induced mice was upregulated early, suggesting  that  INST10 contributes to 
diabetic retina due to high insulin resistance28. In another GWAS study carried out on the African 
population, a polymorphism was reported to be associated with BMI that lies between INTS10 and 
LPL genes, which the study suggests is a BMI loci29. LPL gene has Lipoprotein lipase activity that is 
crucial in amassing the triglycerides from the blood and storing them in the adipocytes, which is  
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seen more in women than in men30. Serum LPL mass is linked to metabolic syndrome, coronary heart 
disease, and ultimately insulin sensitivity, according to a study by Onat et al.31.

LINC01427 - LINC00261

With  more  than  200  nucleotides,  long  non-coding  RNAs  (lncRNAs)  are  a  type  of  significant 
regulatory RNAs that are involved in a variety of cellular functions in both healthy and pathological 
conditions.32,  33.  They affect translation processes, RNA splicing, stability, chromatin structure and 
function, and gene transcription. Additionally, they play a role in the formation and regulation of 
organelles  and  nuclear  condensates34.  LncRNAs  are  classified  by  their  genomic  locations. 
LINC01427 and  LINC00261 are long intergenic ncRNAs (lincRNAs), which are located between 
protein-coding genes35.

It has been demonstrated that lncRNA dysregulation occurs in both animal and human pancreatic 
islets.  Numerous long noncoding RNAs (lncRNAs) are connected to the development of insulin 
resistance  (IR)  and  are  engaged  in  multiple  stages  of  the  insulin  manufacturing  process 36,  37. 
Dysregulated levels  of  certain lncRNAs in peripheral  blood were positively connected with IR, 
impaired glucose management, inflammation, and transcriptional markers of senescence in a study 
comparing  type  2  diabetes  (T2D)  patients  with  healthy  controls.  Even  after  controlling  for 
confounding variables, there was a substantial correlation established between this dysregulation and 
type 2 diabetes38. A study by Junpei et al. revealed that a dysregulated lncRNA expression profile is 
associated with beta cell dysfunction in humans39. Beta cell dysfunction leads to impaired insulin 
secretion, while diminished responsiveness of target tissues to normally secreted insulin leads to 
insulin  resistance.  The  failure  of  beta  cell  function  exacerbates  insulin  resistance,  thereby 
accelerating the progression of type 2 diabetes40, 33.

Research on mice has revealed that a specific long non-coding RNA (lncRNA), called lncSHGL, 
suppresses gluconeogenesis and lipogenesis in the liver39.  When lncSHGL is restored in mice, it 
improves  hyperglycemia,  insulin  resistance,  and  fat  accumulation  in  obese  diabetic  mice. 
Conversely, inhibiting lncSHGL in the liver leads to increased fasting blood sugar and fat buildup in 
normal  mice.  These  results  imply  that  long  non-coding  RNAs  regulate  inflammation  and  the 
synthesis of fat, which are critical factors in the initiation and development of insulin resistance and 
glucose regulation41.

SENP2  

SENP2 belongs to the family of proteolytic enzymes SUMO-specific proteases (SENPs) that reverse 
the effects of sumoylation, which is a post-translational modification that controls the activity and 
viability of proteins42.  Koo YD et al., investigated the role of SENPs in energy metabolism. It was 
found that when a specific muscle cell line was treated with saturated fatty acids ,  it  led to the  
increase of  SENP2 expression, thereby activating the fatty acid oxidation. Overexpression of SENP2 
in skeletal muscle increased high-fat diet-induced obesity and IR, suggesting a potential therapeutic 
target  for  IR-linked metabolic  disorders42.  The study carried out  by Chung SS et  al  reveals  that 
SENP2 is crucial in adipogenesis regulation. Its expression increases upon adipocyte differentiation 
and  is  dependent  on  protein  kinase  A activation43.  Knockdown of  SENP2 in  mice  leads  to  the 
reduction of adipogenesis, PPARgamma, and C/EBPalpha mRNA levels. Sumoylation of C/EBPbeta 
reverses  this  effect.  Overexpression  of  C/EBPbeta  overcomes  knockdown's  inhibitory  effect  on 
adipogenesis43.  Krapf  SA  et  al.,  studied  how  (SENP2)  can  influence  fatty  acid  and  glucose 
metabolism in primary adipocytes. The researchers found that silencing of SENP2 reduced glucose 
uptake ,oxidation and lipogenesis , while increasing lipid oxidation.This suggests that SENP2 plays a 
crucial control on energy metabolism in primary human adipocytes44.
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SLC22A11

Studies suggest that elevated uric acid levels can lead to metabolic syndrome and insulin resistance,  
with fructose raising uric acid levels45. The protein-coding gene SLC22A11, involved in transporting 
and excreting uric acid, is linked to nephrolithiasis, uric acid, and gout. Its genes OAT4 and URAT1 
encode  renal  urate  transporters,  significantly  affecting  Serum  Urate46.  Insulin  regulates  cellular 
processes  through various signaling pathways,  with serum- and glucocorticoid-inducible  kinases 
(sgk) acting as mediators47. Sgk increases transport activity and OAT4 expression by overcoming 
Nedd4–2  inhibitory  effects48.  Through  the  action  of  ubiquitin  ligase  Nedd4–2,  insulin  increases 
OAT4 expression and transport activity. Nedd4–2 specific siRNA is used to knock down Nedd4–2, 
weakening regulation. Because insulin competes with sgk2 rather than working through sgk2 to 
regulate OAT4, the effects of insulin and sgk2 are cumulative47. IGF-1, a liver hormone, is crucial for 
metabolism, growth, and development. It increases  OAT4 transport activity and SUMOylation in 
kidney-derived cells, but PKB-specific inhibitors block its regulation49.

The  investigation  of  optimal  inheritance  models  reveals  varying  modes  of  genetic  inheritance 
contributing to IR susceptibility. While the recessive model is suitable for rs920590 and rs2078267, 
the  dominant  model  is  favoured  for  rs7274134  and  rs6762208.  These  findings  highlight  the 
complexity of genetic factors influencing IR and the need to consider diverse genetic inheritance 
patterns in understanding the genetic architecture of metabolic disorders.

This study also emphasizes the significance of clinical parameters in understanding IR development.  
Serum LDL cholesterol, serum triglycerides, and fat mass exhibit significant associations with IR, 
indicative of the multifaceted nature of metabolic dysfunction. Combining genomic and clinical data  
highlights  the  interaction between hereditary  and environmental  factors  in  metabolic  health  and 
offers a thorough framework for understanding the pathophysiology of IR50.

The validation of genetic markers associated with IR offers insights for personalized therapeutic  
strategies. By understanding the genetic determinants underlying IR, clinicians can tailor treatment 
approaches  to  individual  genetic  profiles,  enhancing  the  management  of  metabolic  disorders. 
Identification  of  novel  genetic  targets  opens  avenues  for  targeted  intervention  and  prevention 
strategies, paving the way for precision medicine in metabolic health.

While this study provides significant insights into IR's genetic underpinnings, further investigations 
are  warranted  to  unravel  the  intricate  interplay  between  genetic  and  environmental  factors 
contributing to metabolic dysfunction. Longitudinal studies incorporating larger cohorts and diverse 
populations are needed to validate and extend these findings.  Functional studies are required to 
understand the molecular mechanisms underlying the observed associations and can provide deeper 
insights  into  IR's  pathogenesis.  Integrating  multi-omics  approaches  offers  a  comprehensive 
understanding  of  the  complex  interactions  driving  metabolic  health  and  disease,  facilitating  the 
development  of  targeted  therapeutic  interventions  and  precision  medicine  strategies  aimed  at 
mitigating the burden of metabolic disorders.

Conclusion

Based  on  the  comprehensive  investigation  conducted  in  this  study,  several  key  findings  have 
emerged,  shedding  light  on  the  genetic  underpinnings  of  Insulin  Resistance  (IR)  in  the  Indian 
population. Through the identification of the specific SNPs and their associations with IR risk from 
the  literature,  this  research  validated  the  SNPs  role  and  their  complex  role  in  the  underlying  
mechanisms of  metabolic  disorders.  The analysis  revealed significant  associations  between four 
selected SNPs (rs920590 in INTS10, rs7274134 in LINC01427 - LINC00261, rs6762208 in SENP2, 
and rs2078267 in  SLC22A11) and IR status. Notably, the T allele for rs920590, rs7274134, and 
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rs2078267, as well as the C allele for rs6762208, have been associated with an elevated risk of IR in 
the Indian population.

Furthermore,  the determination of optimal inheritance models for each SNP provided additional 
insights into their genetic inheritance patterns. For instance, the recessive model was identified as  
the  most  suitable  for  rs920590  and  rs2078267,  while  the  dominant  model  was  favoured  for 
rs7274134 and rs6762208. These findings suggest varying modes of genetic inheritance contributing 
to  IR  susceptibility,  highlighting  the  complexity  of  genetic  factors  involved  in  metabolic 
dysregulation. The study also highlighted how important it is to consider genetic and clinical factors  
in  determining the  etiology of  IR and related metabolic  disorders.  Factors  such as  serum LDL 
cholesterol, serum triglycerides, and fat mass exhibited significant associations with IR, emphasising 
the multifaceted nature of metabolic dysfunction. This study validates the role of specific genetic 
markers in predisposing individuals to IR in the Indian population, offering valuable insights into the 
pathogenesis of metabolic disorders.  By elucidating the genetic determinants underlying IR, this 
research lays the foundation for personalised therapeutic strategies tailored to individual genetic 
profiles,  ultimately  advancing  the  management  and  treatment  of  metabolic  disorders  in  clinical 
practice. Further investigations are needed to unravel the intricate interplay between genetic and 
environmental factors contributing to IR and explore novel avenues for targeted intervention and 
prevention strategies.
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Table 1: Overview of the four single-nucleotide polymorphisms

Descriptions for the 4 single-nucleotide polymorphisms

Gene Chromosome RSID Risk Allele Major/Minor Alleles

INTS10 8:19793650 rs920590 T C/T

LINC01427 - LINC00261 20:22447646 rs7274134 T C/T

SENP2 3:185613377 rs6762208 C A/C

SLC22A11 11:64566642 rs2078267 T T/C

INTS10 -Integrator Complex Subunit 1,  LINC01427 - LINC00261 - Long non-coding RNA Genes 
SENP2 - SUMO Specific Peptidase 2, SLC22A11- Solute Carrier Family 22 Member 11

Table 2:  Clinical Profiles and Glucose and Lipid Metabolism Parameters of Participants in 
the Current Study

Table 2 Clinical Profiles and Glucose and Lipid Metabolism Parameters of Participants in the 
Current Study

Parameter Cases Median (Q1-Q3) Controls  Median  (Q1-
Q3)

U Statistic P Value

Ageb 30.0 (27.0-37.0) 31.0 (27.0-38.0) 3758.5 0.86

Gender 30.14136,26.85864 70.85864,63.14136 0.667

Body Mass Indexa 23.05 (21.89-24.09) 22.235 (20.84-23.61) 4656.5 0.01

Body Fat Percentagea 26.11 (19.47-29.01) 23.02 (17.9-27.52) 4409.5 0.09

Fat Massa 15.85 (13.59-17.79) 13.62(11.78-16.04) 4761.5 0.007

HBA1Ca 5.4 (5.3-5.5) 5.3 (5.1-5.5) 4695.5 0.01

Insulin Fastinga 11.02 (9.67-13.88) 5.31(3.9-6.92) 7143 1.96E-21

Glucose Fastinga 92.6 (86.9-96.2) 87.05 (82.42-92.27) 4937.5 0.001

Total Cholesterola 186.0 (166.0-227.0) 185.0 (161.25-211.0) 4146 0.35

Serum  LDL 
Cholestrola 46.5 (42.9-52.5) 49.5 (44.03-54.68) 3383.0 2.128e-01
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Table 2 Clinical Profiles and Glucose and Lipid Metabolism Parameters of Participants in the 
Current Study

Parameter Cases Median (Q1-Q3) Controls  Median  (Q1-
Q3)

U Statistic P Value

Ageb 30.0 (27.0-37.0) 31.0 (27.0-38.0) 3758.5 0.86

Gender 30.14136,26.85864 70.85864,63.14136 0.667

Body Mass Indexa 23.05 (21.89-24.09) 22.235 (20.84-23.61) 4656.5 0.01

Body Fat Percentagea 26.11 (19.47-29.01) 23.02 (17.9-27.52) 4409.5 0.09

Fat Massa 15.85 (13.59-17.79) 13.62(11.78-16.04) 4761.5 0.007

HBA1Ca 5.4 (5.3-5.5) 5.3 (5.1-5.5) 4695.5 0.01

Insulin Fastinga 11.02 (9.67-13.88) 5.31(3.9-6.92) 7143 1.96E-21

Glucose Fastinga 92.6 (86.9-96.2) 87.05 (82.42-92.27) 4937.5 0.001

Serum Triglyceridesa 102.0 (85.0-127.0) 88.0 (70.0-126.0) 4631 0.02

Serum  HDL 
Cholesterola 46.5 (42.9-52.5) 49.5 (44.025-54.67) 3383 0.21

ªMann-Whitney  test;  bχ2  test.  Data  are  presented  as  the  median  (Q1-Q3)  for  age,  BMI,  Fat 
Mass,Hba1c, total cholesterol, triglycerides, HDL, LDL, Glucose fasting, Insulin Fasting. Data are 
presented as n for gender. P<0.05 was considered to indicate a statistically significant difference.

Table 3: Comparison of allelic and genotypic distribution of four SNPs (rs920590, rs7274134, 
rs6762208 and rs2078267) between the two groups HOMA2 IR >2 and HOMA2 IR <2

Table 3: Comparison of Allelic and Genotypic Distribution of Four SNPs (rs920590,rs7274134, 
rs6762208 and rs2078267) between Cases and Controls

SNP Group A1 A2 χ² χ² P-Value A1A1 A1A2 A2A2
P-
Value

HWE
P-
Value

rs920590 cases

T
47
(0.41)

C
67
(0.59) 5.001 0.02533

T/T
7
(0.12)

T/C
33
(0.58)

C/C
17
(0.3) 0.0014 0.18

controls

T
144
(0.54)

C
124
(0.46)

T/T
43
(0.32)

T/C
58
(0.43)

C/C
33
(0.25) 0.16

rs7274134 cases

C
88
(0.77)

T
26
(0.23) 12.18 0.0004839

C/C
35
(0.61)

C/T
18
(0.32)

T/T
4
(0.07) 0.0032 0.45

controls

C
165
(0.62)

T
103
(0.38)

C/C
51
(0.38)

C/T
63 
(0.47)

T/T
20
(0.15) 1

rs6762208 cases

A
70
(0.61)

C
44
(0.39) 5.332 0.02093

A/A
25
(0.44)

A/C
20
(0.35)

C/C
12
(0.21) 0.0013 0.053

controls A
130

C
138

A/A
30

A/C
70

C/C
34

0.73
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(0.49) (0.51) (0.22) (0.52) (0.25)

rs2078267 cases

C
81
(0.71)

T
33
(0.29) 6.57 0.01037

CC
28 
(0.49)

C/T
25
(0.44)

TT
4
(0.07) 0.0091 0.75

controls

C
153
(0.57)

T
115 
(0.43)

CC
47
(0.35)

C/T
59
(0.44)

TT
28
(0.21) 0.29

Note: In the chi-square association analysis of cases and controls, the four SNPs (rs920590, 
rs7274134, rs6762208 and rs2078267) exhibited statistically significant associations with the 
trait  after  Bonferroni  correction,  with  their  respective  p-values  falling  below the  adjusted 
threshold of0.0125.

Table 4 Inheritance models analysis of the SNP rs920590  (INTS10) between the Cases and 
Controls

rs920590 association with response status (n=191, adjusted by gender+age.cat

Model Genotype Cases Controls
OR  (95% 
CI) P-value AIC BIC

Codominant

C/C 17 (29.8%) 33 (24.6%) 1.00

0.0057 236 265.2

C/T 33 (57.9%) 58 (43.3%)
0.87  (0.42-
1.82)

T/T 7 (12.3%) 43 (32.1%)
3.68  (1.28-
10.59)

Dominant

C/C 17 (29.8%) 33 (24.6%) 1.00

C/T-T/T 40 (70.2%) 101 (75.4%)
1.29  (0.64-
2.60) 0.47 243.8 269.8

Recessive C/C-C/T 50 (87.7%) 91 (67.9%) 1.00

T/T 7 (12.3%) 43 (32.1%)
4.01  (1.55-
10.34) 0.0014 234.1 260.1

Overdominant C/C-T/T 24 (42.1%) 76 (56.7%) 1.00

C/T 33 (57.9%) 58 (43.3%)
0.52  (0.27-
1.00) 0.049 240.4 266.4

Log-additive --- --- ---
1.68  (1.06-
2.65) 0.024 239.2 265.2

Note: After Bonferroni correction significant P-value threshold for multiple comparisons is less than 
0.0125; AIC: OR: Odds Ratio; CI: confidence interval; Akaike information criterion; BIC: Bayesian 
information criterion;

Table 5 Inheritance models analysis of the SNP rs7274134 (LINC01427 - LINC00261) between 
the Cases and Controls

rs7274134 association with response status (n=191, adjusted by gender+age.cat)
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Model Genotype Cases Controls OR (95% CI) P-value AIC BIC

C/C 35 (61.4%) 51 (38.1%) 1.00

Codominant C/T 18 (31.6%) 63 (47%) 2.43 (1.22-4.83) 0.011 237.3 266.6

T/T 4 (7%) 20 (14.9%)
3.40  (1.03-
11.24)

Dominant C/C 35 (61.4%) 51 (38.1%) 1.00

C/T-T/T 22 (38.6%) 83 (61.9%) 2.60 (1.37-4.96) 0.0032 235.6 261.6

Recessive C/C-C/T 53 (93%) 114 (85.1%) 1.00

T/T 4 (7%) 20 (14.9%) 2.35 (0.73-7.56) 0.13 241.9 268

Overdominant C/C-T/T 39 (68.4%) 71 (53%) 1.00

C/T 18 (31.6%) 63 (47%) 2.00 (1.03-3.91) 0.038 240
266

Log-additive ‒‒‒ ‒‒‒ ‒‒‒ 2.08 (1.25-3.48) 0.0034 235.7 261.8

Table 6 Inheritance models analysis of the SNP rs6762208 (SENP2) between the Cases and 
Controls

rs6762208 association with response status (n=191, adjusted by gender+age.cat)

Model Genotype Cases Controls OR (95% CI) P-value AIC BIC

A/A 25 (43.9%) 30 (22.4%) 1.00

Codominant A/C 20 (35.1%) 70 (52.2%) 3.29 (1.55-7.00) 0.0054 235.9 265.1

C/C 12 (21.1%) 34 (25.4%) 2.80 (1.16-6.77)

Dominant A/A 25 (43.9%) 30 (22.4%) 1.00

A/C-C/C 32 (56.1%) 104 (77.6%) 3.11 (1.55-6.24) 0.0013 234 260

Recessive A/A-A/C 45 (79%) 100 (74.6%) 1.00

C/C 12 (21.1%) 34 (25.4%) 1.35 (0.63-2.90) 0.43 243.7 269.7

Overdominant A/A-C/C 37 (64.9%) 64 (47.8%) 1.00

A/C 20 (35.1%) 70 (52.2%) 2.08 (1.08-3.97) 0.025 239.3 265.3

Log-additive ‒‒‒ ‒‒‒ ‒‒‒ 1.79 (1.13-2.84) 0.012 237.9 264

Table 7 Inheritance models analysis of the SNP rs2078267 (SLC22A11) between the Cases and 
Controls

rs2078267 association with response status (n=191, adjusted by gender+age.cat)

Model Genotype Cases Controls OR (95% CI) P-value AIC BIC

C/C 28 (49.1%) 47 (35.1%) 1.00
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Codominant C/T 25 (43.9%) 59 (44%) 1.38 (0.70-2.72) 0.022 238.6 267.9

T/T 4 (7%) 28 (20.9%) 4.36 (1.37-13.92)

Dominant C/C 28 (49.1%) 47 (35.1%) 1.00

C/T-T/T 29 (50.9%) 87 (64.9%) 1.80 (0.94-3.41) 0.074 241.1 267.1

Recessive C/C-C/T 53 (93%) 106 (79.1%) 1.00

T/T 4 (7%) 28 (20.9%) 3.72 (1.22-11.28) 0.0091 237.5 263.5

Overdominant C/C-T/T 32 (56.1%) 75 (56%) 1.00

C/T 25 (43.9%) 59 (44%) 0.97 (0.51-1.84) 0.93 244.3 270.3

Log-additive ‒‒‒ ‒‒‒ ‒‒‒ 1.81 (1.13-2.90) 0.011 237.9 263.9

Figure 1: Study Flowchart
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