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Abstract. Predictive healthcare, a field revolutionized by the availability of large medical
datasets and computational advancements, plays a pivotal role in enhancing patient care and
healthcare system performance. Despite its significance, the training and deployment of pre-
dictive healthcare models present substantial challenges. To address these, we introduce the
Predictive Healthcare Platform (PHeP), an open-source platform that simplifies the use of pre-
trained models. PHeP, developed under the TrustAlert project, offers an intuitive web-based
graphical interface, making advanced predictive healthcare accessible to users without exten-
sive computational skills or expensive computational resources. This paper presents the design
and functionality of PHeP, demonstrating its effectiveness in predictive healthcare tasks, such
as predicting re-hospitalization at three months using pre-trained BERT models.

1 Introduction
Predictive healthcare, i.e., the use of historical and/or real-time data to anticipate patients’

medical needs, is crucial to improve both patients’ quality of life and healthcare systems’
performances. It has become possible thanks to the availability of large datasets of medical
records, such as those collected in electronic health records (EHRs) and healthcare administrative
databases (HADs), and to the recent development in deep learning (DL) approaches. EHRs
and HADs track patients’ medical history by collecting longitudinal information on medical
diagnoses and procedures, as well as drug prescriptions. DL approaches are naturally able to
deal with these very large amounts of longitudinal data, also when presenting with irregular time
intervals between events [1]. These types of techniques have been successfully used to predict
the risk of hospitalization, the onset of new diseases, and the worsening of existing ones [1, 2, 3].

Performances of DL approaches can be further improved by combining them with natural
language processing (NLP) techniques, which add contextual information by generating a
compact representation of medical data (embedding). This line of research has been spurred by
the development of the Bidirectional Encoder Representations from Transformers (BERT) [4].
BERT allows pre-training deep bidirectional representations from unlabelled text, which can
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be then fine-tuned to solve a wide range of tasks, including predictive healthcare tasks [5, 6, 7],
without substantial architecture modifications.

Training BERT and its derived models, however, requires a very large amount of data, non-
trivial expertise in data munging and DL technologies, state-of-the-art and costly hardware, and
long processing time. For instance, training the large model (BERTLARGE) took 4 days on 16
Cloud TPUs (64 TPU chips total) [4] and training of Med-BERT [7] took a week on a single
Nvidia Tesla V100 GPU of 32GB graphics memory capacity.

To address this and enhance the adoption of DL approaches in healthcare, we have developed
a new open-source Predictive Healthcare Platform (PHeP). PHeP provides access to pre-trained
models through an intuitive web-based graphical interface, aiming to simplify their usage for
users without advanced computational skills. Here, we describe PHeP and demonstrate its
effectiveness creating an online service to predict re-hospitalization at three months using two
pre-trained BERT models.

2 Methods
This section outlines the main subcomponents of PHeP, details the hardware and software

stack supporting it, and describes the pre-trained models used in our case study.

2.1 PHeP in a nutshell
PHeP sports a modular architecture with four main subcomponents: Collaborative Working

Environment, Data Repository, Analysis Environment, and Prediction Environment (Figure 1A).
The Collaborative Working Environment (CWE, (https://www.trustalert.it) acts

as the front-end platform, and serves as a centralized hub, allowing users to interact with various
PHeP services, access resources, and engage with TrustAlert Project-related information [8].
Users can seamlessly navigate functionalities, collaborate with team members, access project
documentation, monitor progress, and stay updated on developments. It is implemented through
a WordPress multisite instance which allows for the creation of multiple sites within a single
WordPress installation. Notably, the WordPress multisite instance was intentionally deployed in
a separate virtual network from the other services to mitigate the potential impact of a security
breach within WordPress on critical services. All connections between the CWE and the other
primary services undergo a firewall service, thus effectively filtering malicious traffic.

The Data Repository is a centralized location providing a secure and structured environment,
for storing, organizing, and managing data produced in the project, according to FAIR principles,
including all pre-trained models developed for predictive purposes. It is implemented through
Harvard Dataverse [9], a leading open-source data repository platform designed to facilitate the
sharing, preservation, and discovery of research data. The repository offers persistent identifiers
and version control features, ensuring the integrity and traceability of data over time. This
facilitates the reuse and validation of data by other researchers, and supports reproducibility
in scientific research. The Data Repository can interact with the other subcomponents through
specifically developed REST APIs.

The Analysis Environment provides TrustAlert researchers with access to two powerful
and versatile data analysis environments, i.e., R and Python. The R environment is based
on RStudio Server, which offers a robust and user-friendly interface for R programming and
statistical analysis. The Python environment is hosted on JupyterHub, providing an interactive
platform for Python coding, data visualization, and machine learning tasks. Thus, the Analysis
Environment offers the necessary tools and resources for tasks such as preprocessing data,
conducting exploratory data analysis, and building predictive models.

The Prediction Environment is the cornerstone of PHeP, embodying its cutting-edge Health-
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care Predictive System (HPS). Through a seamlessly integrated web interface and an encrypted
communication channel, this environment grants users intuitive access to a suite of advanced and
secure predictive analytics tools. It can be easily instantiated with various pre-trained models,
and customized to address different predictive healthcare tasks, such as the risk of short-term
hospitalization (already implemented), the onset of new diseases, and the risk of non-urgent A&E
accesses. Within the Prediction Environment, we developed a specialized web interface tailored
for executing predictions via Python scripts. Harnessing the power of Next.js, a robust React
framework renowned for its ability to construct high-quality web applications with server-side
rendering and static generation, we streamlined the development process and expedited deploy-
ment, resulting in an intuitive and responsive platform. By using Next.js, we optimized code
management and bolstered code reusability. The framework lazy loading strategy and automatic
code-splitting efficiently render pages, loading only necessary content to enhance performance
by fetching precisely what is required.

2.2 Hardware and software stack supporting PHeP
The hardware infrastructure hosting PHeP relies on the open-access High-Performance

Computing for Artificial Intelligence (HPC4AI) data center (https://hpc4ai.unito.it),
situated at the University of Turin. HPC4AI introduces an innovative HPC-cloud convergence
architecture (Figure 1B), reshaping the traditional utilization of cloud and HPC systems to
bolster AI applications. In this model, the cloud provides a modern interface for HPC, and
HPC acts as an accelerator for the cloud. The HPC4AI cloud system is implemented using the
open-source OpenStack cloud technology [10], and leverages different resources, including over
2400 physical cores, 60 TB RAM, 120 GPUs (NVidia T4/V100/A40), 25 Gb/s networking, and 4
storage classes with distinct characteristics. The use of OpenStack facilitates the implementation
of a robust Deployment-as-a-Service (DaaS) feature, allowing the modeling of user-defined
platforms (IaaS and PaaS) in a portable manner. Moreover, it automates their deployment on a
virtualized infrastructure. The HPC subsystem is managed through SLURM software [11] and
comprises 72 nodes with Intel architecture (68 nodes with 32 cores, 128GB RAM, OPA 100Gb/s
and 4 node with 40 cores, 1 TB RAM, T4+V100 GPUs, IB 56Gb/s) and 4 nodes with Arm
architecture (Ampere Altra 80 cores, 512GB RAM, 2xA100 GPUs, 2xBF2 DPUs, IB 100Gb/s).
Additionally, there are 2 HPC storage systems utilizing BeeGFS [12] and LUSTRE [13], both in
an all-flash configuration.

Figure 1A show an overview of the hardware and software stack supporting PHeP. Above
the hardware layer, hosted within the HPC4AI data centre, lies the virtualization layer, powered
by the OpenStack project, and which encompasses two Virtual Machines, collectively offering
20 Virtual Cores, 140GB RAM, and 1.4TB of storage. At the top is the application layer,
which includes three of the integrated subcomponents (black boxes) described in the previous
subsection, along with its corresponding microservices (orange boxes). The connections between
these components are visually depicted by arrows, illustrating their interdependencies. This
layered architecture ensures robust and scalable performance. The hardware provides a solid
foundation, while virtualization efficiently facilitates resource management.

2.3 Proof-of-concept: BERT for predicting short-term re-hospitalisation
The dataset was created from an anonymized real data set, in which the information were

reshuffled and recombined conditioning on both age class and sex. The real data used in
this study were collected by one of the local health services in the Piedmont region of Italy
(ASL-CN2). The ASL-CN2 Ethics Committee and the Data Protection Officer authorized
this study (Presa d’atto n. 4-2023). The simulated dataset can be downloaded from http:
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Figure 1: (A) Overview of the hardware and software stack supporting PHeP. Black boxes represent PHeP
sub-components, orange boxes represent micro-services for each sub-component, and arrows illustrate their inter-
dependencies. (B) The open-access High-Performance Computing for Artificial Intelligence (HPC4AI) architecture.
(C) The PHeP user interface for our case study

//trustalert.hpc4ai.unito.it:3000/.
To exploit the multi-head self-attention and positional encoding of transformer-based architec-

tures of BERT, we chronologically sorted the hospitalisation events (sentences), each including a
variable number of importance-sorted diagnoses (words) to define a patient’s medical history
(document).

We divided our dataset in training, including 80% of the data, and testing set. We then pre-
trained BERT both on the Masked Language Modelling (MLM) and Next Sentence Prediction
(NSP) tasks originally proposed [14] (BertForPreTraining implementation; 8 epoch). The MLM
task randomly masks a portion of the input sentences, and then learns to predict it based on
the surrounding context, effectively capturing the relationships between same-hospitalisation
diagnoses. The NSP tasks extract random pairs of sentences and classify whether these are con-
secutive (i.e., follows each other chronologically), thus learning temporal connections between
hospitalisation events and their associated diagnoses. We generated two pre-trained models by
training a raw version of a model architecture only on our HAD data (baseline) and by further
pre-training the bert-base-uncased version trained on the English language database again using
our HAD data (English-HAD)

BERT’s ability to create meaningful embeddings is usually evaluated with downstream tasks
such as question answering, entity recognition, and text summarisation. Here, we predicted
whether a patient will be re-hospitalised within three months given their medical history (Bert-
ForSequenceClassification implementation; 1 epoch). In details, for each patient with at least
two hospitalisations, we removed the last hospitalisation from the dataset, using it to label the
patient’s medical history as ‘1’ if it happens within three months from the previous one, or ‘0’
otherwise. To increase the number of available sentences, out of every patient’s clinical history,
we generated nh − 1 labelled sequences (where nh is the number of hospitalisation events).

Due to the proof-of-concept nature of this study, we did not performed any hyper-parameters
tuning, and the values selected from a literature review for both pre-training and fine-tuning are
shown on the PHeP website.
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Table 1: BERT running time. The table shows the time spent, per epoch to, pre-train (PT) and fine-tune (FT) using
different GPUs and input dataset sizes (the number of hospitalisation events N is reported).

N=12K N=120K N=1.2M

PT FT PT FT PT FT
T4 15min 39sec 13min 05sec 2h 43min 2h 20min 28h 30min 23h 45min
P100 9min 45sec 8min 26sec 1h 53min 1h 24min 19h 05min 14h 00min
A100 4min 43sec 3min 35sec 45min 31sec 40min 12sec 7h 48min 6h 03min
H100 1min 30sec 1min 20sec 15min 30sec 14min 00sec 2h 49min 2h 10min

3 Results
To validate the capabilities of the PHeP system, we conducted a comprehensive series of

tests and experiments. The initial experiment aimed to demonstrate how PHeP can efficiently
exploit the hardware resources available through the HPC-cloud convergence infrastructure,
highlighting its ability to scale. In detail, we utilized simulated data of varying sample sizes
(N=12K, 120K, and 1.2M hospitalization events) and tested the PHeP using a range of different
GPUs (i.e., NVIDIA Tesla T4 16GB, NVIDIA P100 16GB, NVIDIA A100 40GB, and NVIDIA
GraceHopper Superchip GH200 with H100 100GB).

Table 1 shows the performance in terms of execution time for pre-training and fine-tuning, in-
dicating that the PHeP system successfully leveraged the available GPU resources, demonstrating
faster pre-training and fine-tuning times with more advanced GPUs.

The second experiment allowed us to test the Prediction Environment, a central component
of PHeP. We pre-trained and stored two BERT models within the TrustAlert Data Repository
to predict patients’ re-hospitalization at three months. The models were trained on a simulated
cohort of 680 elderly patients (aged >65 years) with 12,161 unevenly spaced hospitalizations
over 14 months. The dataset included a balanced number of female (N=6,039, 49.7%) and male
(N=6,122, 50.3%) patients, with a median age of 78 years old (interquartile range (IQR): 73-83).
The number of hospitalizations per patient ranged from 1 to 189 (median: 13, IQR: 8-20). Each
hospitalization was accompanied by at most six diagnoses (median: 3, IQR: 1-4), encompassing
850 unique ICD-9 codes, with frequencies ranging from 1 to 1,260 (median: 18, IQR: 11-36).
The most frequent diagnoses and recorded via ICD-9 codes were connected with cardio-metabolic
(e.g., atrial fibrillation, benign essential hypertension, diabetes mellitus) and respiratory (e.g.,
acute respiratory failure, obstructive chronic bronchitis with (acute) exacerbation) diseases, in
line with an ageing population. In 70% of the medical histories, the next hospitalization event
happened within three months.

We observed an accuracy of 70,6% and 86.8%, for the baseline and the English-HAD models,
respectively, probably due to the limited amount of data available to train the baseline model
from a blank state, while the English-HAD benefitted from the pre-set weights.

These pre-trained models can be used throughout an intuitive and reactive web interface (Fig-
ure 1C, http://trustalert.hpc4ai.unito.it:3000/), where users should only
upload a CSV file containing the patients’ hospitalization history. The results of the computation
is a text file whose first column contains the patient ID, as provided in the input file, and the sec-
ond column contains the prediction label, i.e., ‘1’ if the patient is expected to be re-hospitalised
within three months, ‘0’ otherwise. In this way, the prediction tasks can be performed in minutes
by non-experts without requiring any technical knowledge, software installation or parameter
tuning, making predictive healthcare accessible to healthcare providers which often lack these
capabilities. Notably, input files are not stored on our servers, thus respecting GDPR privacy
regulations.
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4 Conclusion
In this paper, we introduce the Predictive Healthcare Platform (PHeP), an innovative open-

source platform developed under the TrustAlert project. PHeP is designed to simplify the use of
pre-trained models in predictive healthcare, providing an intuitive web-based graphical interface.
This makes it accessible to users without extensive computational skills or resources.

Specifically, in the reported case study, PHeP has demonstrated its efficiency and adaptability
in handling large-scale hospitalization events. Our experiments, conducted with varying data
sizes and different GPUs such as T4, P100, A100, and H100, have shown robust performance.
The platform houses pre-trained BERT models that predict patients’ re-hospitalization at three
months. These models, trained on a simulated cohort of elderly patients, achieved an accuracy
of 70.6% and 86.8% respectively, validating the effectiveness of PHeP in predictive healthcare
tasks. The platform’s user-friendly interface allows non-experts to perform these tasks in minutes,
making predictive healthcare more accessible to healthcare providers. Looking ahead, future
enhancements to PHeP will focus on expanding its range of capabilities, allowing, for instance,
the prediction of the onset of new diseases and of the risk of non-urgent A&E accesses. We will
also ensure that models are transparent and explainable, further improving its user-friendliness
and accessibility. This positions PHeP as a valuable tool in the ongoing revolution of predictive
healthcare.
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