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Abstract 47 

Background: Mendelian Randomization (MR) is a widely used tool to infer causal 48 

relationships. Yet, little research has been conducted on the elucidation of environment specific 49 

causal effects, despite mounting evidence for the relevance of causal effect modifying 50 

environmental variables. 51 

Methods: To investigate potential modifications of causal effects, we extended two-stage-52 

least-squares MR to investigate interaction effects (2SLS-I). We first tested 2SLS-I in a wide 53 

range of realistic simulation settings including quadratic and environment-dependent causal 54 

effects. Next, we applied 2SLS-I to investigate how environmental variables such as age, 55 

socioeconomic deprivation, and smoking modulate causal effects between a range of 56 

epidemiologically relevant exposure (such as systolic blood pressure, education, and body fat 57 

percentage) - outcome (e.g. forced expiratory volume (FEV1), CRP, and LDL cholesterol) pairs 58 

(in up to 337’392 individuals of the UK biobank). 59 

Results: In simulations, 2SLS-I yielded unbiased interaction estimates, even in presence of non-60 

linear causal effects. Applied to real data, 2SLS-I allowed for the detection of 182 interactions 61 

(P<0.001), with age, socioeconomic deprivation, and smoking being identified as important 62 

modifiers of many clinically relevant causal effects. For example, the positive causal effect of 63 

Triglycerides on systolic blood pressure was significantly attenuated in the elderly whilst the 64 

positive causal effect of Gamma-glutamyl transferase on CRP was intensified in smokers. 65 

Conclusion: We present 2SLS-I, a method to simultaneously investigate environment-specific 66 

and non-linear causal effects. Our results highlight the importance of environmental variables in 67 

modifying well-established causal effects. 68 

Keywords: [Mendelian Randomization, environmental modification of causal effects, age, SES] 69 
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Introduction 70 

Causal Effects and the role of Mendelian Randomization 71 

The distinction between associations and causal relationships is a central challenge in 72 

epidemiology, as understanding causal effects – in contrast to mere associations - allows for the 73 

design of effective interventions. 74 

To characterize causal effects, randomized controlled trials (RCTs) are considered as the 75 

gold standard. In RCTs, individuals are allocated to a treatment or a placebo arm by chance. 76 

Therefore, observed differences between the groups result solely due to the treatment. Yet, RCTs 77 

are time consuming, resource-intensive, and at times impossible to conduct due to ethical 78 

considerations (Lawlor et al., 2008).  79 

To address these shortcomings, Mendelian Randomization (MR) was developed. MR is a 80 

causal inference method that uses genetic variants as instrumental variables (IVs) to investigate 81 

the causal effect of an exposure on an outcome. As genetic variants are inherited randomly at 82 

birth, Mendelian Randomization is considered a natural genetic counterpart to randomized 83 

controlled trials. Like RCTs, MR is less prone to reverse causation and confounding than 84 

observational studies. In contrast to RCTs, MR requires no intervention and can be performed 85 

even on cross-sectional epidemiological data, allowing for a more diverse study sample than the 86 

typically restricted populations in RCTs (Lawlor et al., 2008). Furthermore, MR is cost- and 87 

time- efficient, in contrast to RCTs which require longitudinal data to investigate causal effects, 88 

which becomes particularly challenging to estimate life-time causal effects (e.g., effect of diet on 89 

a long-term outcome such as cancer) (Lawlor et al., 2008). Yet, it is important to note that MR 90 

estimates are prone to other sources of bias. To yield accurate causal estimates, MR relies on 91 

three main assumptions (Figure 1a): First, the relevance assumption: the genetic variants are 92 
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robustly associated with the outcome. Second, the exchangeability assumption: the genetic 93 

variants are not associated with any confounder of the exposure-outcome relationship. Third, 94 

exclusion restriction: the genetic variants are only associated with the outcome through the 95 

exposure, i.e., the relationship between the genetic variants and the outcome is fully mediated 96 

through the exposure (Lawlor et al., 2008) (Figure 1a). Whilst these are the standard 97 

assumptions, MR has other implicit assumptions, such as gene-environment equivalence (a 98 

change in the exposure should have the same 99 

effect on the outcome, regardless of whether it 100 

results from genetic or environmental 101 

variation (Sanderson et al., 2022)), causal 102 

effect linearity (the causal effect of an 103 

exposure on an outcome is the same for all 104 

levels of the exposure), and effect 105 

homogeneity (the obtained causal effect is the 106 

same for everyone (Sanderson et al., 2022)). 107 

In this work, we aim to address one plausible 108 

cause for the violation of the effect 109 

homogeneity assumption, by considering how 110 

environmental variables may modulate causal 111 

effects (even in presence of non-linear 112 

exposure-outcome relationships).  113 

Figure 1 a: MR assumptions. G = genetic instruments, X = 
Exposure, Y = Outcome, U = Confounding variable ß = 
relevance assumption, II = exchangeability assumption, III = 
exclusion restriction. b: Interaction analysis as performed by 
Richardson and colleagues. By selecting genetic variants whose 
association with X depends on the interaction parameter E, 
different levels of X depending on E can be obtained. Lifetime Y 
is regressed on those levels of X in a uni- and multivariable 
fashion to investigate the causal effect of X on Y depending on 
the level of E. 
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Interactions in MR 114 

Recent studies indicate that environmental factors (E) such as age may modulate the 115 

observed causal estimates of an exposure (X) on an outcome (Y). For example, Richardson and 116 

colleagues (2020) investigated if the effect of body size on different health outcomes is age 117 

dependent. After obtaining distinct genetic instruments for adult and childhood body size, they 118 

fitted both uni- and multivariable MR models on a range of outcomes. If the effect of early life 119 

body size is significant in the univariable MR framework, but not in the multivariable MR 120 

framework, it indicates that the association is likely mediated through adult body size (and vice 121 

versa). Whilst the effect of early life body size on coronary heart disease was fully mediated 122 

through adult body size, they observed a strong protective effect of larger childhood body size on 123 

breast cancer risk, independent of adult body size. Richardson’s approach allows for 124 

investigating the effect of the same exposure (e.g., body size) at different levels of the 125 

environment (e.g., age) on an outcome Y (e.g., coronary heart disease) (Figure 1b). 126 

For Richardson’s approach, it is necessary to obtain IVs to separately instrument the 127 

exposure at different levels of the environment. This requirement implies two major challenges. 128 

First, the levels of the environment are defined arbitrarily. Richardson and colleagues considered 129 

childhood body size and adult body size because data was available for these two time points in 130 

the UK Biobank (UKBB). Depending on the available data, artificial stratification of the 131 

environmental variable E is necessary, which likely would impact the results. Second, it is 132 

necessary to obtain IVs that differ in their association with the exposure depending on the 133 

environment E. For the ranges of age, socioeconomic status, smoking, air pollution, TV time, 134 

and physical activity that are available in the UKBB, we only found evidence for at least one 135 
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genome-wide significant gene-environment interaction effect for 22 out of 228 environment – 136 

exposure pairs. Therefore, the applicability of this approach is very limited. 137 

Interactions in presence of non-linear causal effects 138 

It has long been known that interactions can arise from unspecified nonlinear effects of 139 

correlated variables (Cortina, 1993; Matuschek & Kliegl, 2018). In simpler terms, if the exposure 140 

term X and the effect modifying variable E are correlated and X2 is associated with the outcome 141 

Y, but the quadratic effect is not included in the regression model, the 𝑋 ∙ 𝐸 interaction term may 142 

be overestimated. Whilst the reverse is also true (i.e., in presence of a true interaction, if only the 143 

quadratic effect is included in the model, but not the interaction, the quadratic effect may be 144 

overestimated), the present work focuses on obtaining accurate interaction estimates and only 145 

considers nonlinear effect estimates as a nuisance parameter. Considering non-linear effects is of 146 

relevance as they play a role in a wide range of causal exposure-outcome relationships. A 147 

common example is the J-shaped association between BMI and all-cause mortality (Berrington 148 

de Gonzalez et al., 2010), which has not only been reported in observational, but also in MR 149 

studies (Sun et al., 2019). Furthermore, Sulc and colleagues (2021) estimated the causal effects 150 

of four anthropometric traits (such as body fat percentage) on seven health biomarkers (such as 151 

systolic blood pressure) and found significant evidence for nonlinearity for most of the 152 

investigated causal effects (84%).  153 

Thus, to address the abovementioned limitations, we developed 2SLS-I, an approach to 154 

estimate exposure interactions with a non-instrumentable environmental variable E (e.g., age, 155 

socioeconomic status, physical activity), while accounting for potential nonlinear causal effects. 156 

We suggest investigating interactions by instrumenting 𝑋 ∙ 𝐸 with 𝐺 ∙ 𝐸, where G is a genetic 157 

instrument for the exposure X. The advantage of this approach is that it does not require the 158 
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existence of genetic instruments for X that have different effects on X depending on the value of 159 

E and it allows for accounting for non-linear effects. In extensive simulation settings, we were 160 

able to obtain accurate main- and interaction estimates even in presence of sources of bias, such 161 

as linear and quadratic confounding, a quadratic exposure-outcome relationship, and a causal 162 

effect of the environment on the exposure. Application to a wide range of exposure (e.g. body fat 163 

percentage, education, and Vitamin D), environment (e.g. age, socioeconomic deprivation, 164 

physical inactivity), and outcome (e.g. fluid intelligence score, forced expiratory volume within 1 165 

s, CRP) combinations in the UK Biobank revealed multiple relevant settings where the 166 

environmental variable significantly modulated causal effects. For example, we found that 167 

multiple causal effects are attenuated with older age, whilst socioeconomic deprivation and 168 

smoking, in tendency, exacerbated detrimental causal effects. 169 

  170 
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Methods 171 

All simulations and analyses were performed using R version 4.2.1 “Funny looking kid” 172 

(R Core Team, 2022). For the application of 2SLS-I, Snakemake version 7.25.3 (Mölder et al., 173 

2021) was used as a workflow manager. 174 

Simulations 175 

All simulations were performed with a sample size of 10’000 and 500 repetitions. We 176 

simulated the data as follows. 177 

Equation 1 178 

𝑋 = 𝛽!→# ∙ 𝐸 + 𝛽$%&!→# ∙ 𝐺𝑅𝑆# + 𝛽'→# ∙ 𝑈 + 𝜀# 179 

Equation 2 180 

𝑌 = 	𝛽#→( ∙ 𝑋 +	𝛽#"→( ∙ 𝑋) +	𝛽#∙!→( ∙ 𝑋 ∙ 𝐸 +	𝛽'→( ∙ 𝑈 +	𝛽'"→( ∙ 𝑈) +	𝛽'∙!→( ∙ 𝑈 ∙ 𝐸	 +	𝜀( 181 

Where both E and U were drawn separately from a standard normal distribution. Thereby, 182 

E represents the non-instrumentable effect modifying environment (e.g. age), whilst U represents 183 

an unmeasured confounder. The GRS, representing a polygenic score for X, was drawn from a 184 

Parameter Values 

𝛽!→# {0, 0.1, 0.3} 
𝛽$%&!→# {1} 
𝛽#∗!→( {0, 0.1, 0.3} 
𝛽#→( {0.2} 
𝛽#"→( {0, 0.05, 0.15} 
𝛽'→# {0.3} 
𝛽'→( {0, 0.1, 0.3} 
𝛽'"→( {0, 0.1} 
𝛽'∗!→( {0, 0.1, 0.3} 

ℎ#)  {0.1} 

Table 1. Overview of the varied and constant 
parameters in simulations 

Figure 2. Data simulation settings. G = genetic 
instruments for exposure X, X = exposure, U = 
confounding variable, E = non-instrumentable 
environment, Y = outcome. 
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normal distribution with mean (𝜇) = 0 and variance (𝜎)) = 	ℎ#) , i.e., the variance of the GRS 185 

was set to be equal to the proportion of phenotypic variance explained by the polygenic score, 186 

which by default was set to 10%. The residual errors 𝜀# and 𝜀( were drawn from a normal 187 

distribution with mean 0 and their respective variances were set to ensure that the overall 188 

variance of X and Y is equal to 1. For an overview of the varied variables, see Table 1 and Figure 189 

2.  190 

For all MR models, 𝛽'→( was kept at 0.3 and 𝛽'"→( at 0.1, invoking linear and quadratic 191 

confounding. Four models were fitted to investigate the accuracy of the interaction estimate in 192 

different settings. An observational model, and three different MR models, where we once 193 

omitted the quadratic exposure term, once omitted the interaction term, and once fitted the full 194 

model (Table 2). In the main text, we present estimates from the full MR model. 195 

For the MR models, we instrument 𝑋 ∙ 𝐸 with 𝐺 ∙ 𝐸, where G represents a genetic score 196 

based on the genome wide significant independent genetic instruments for X. Evidently, the MR 197 

assumptions need to be extended to 𝐺 ⋅ 𝐸 for it to be a valid instrument of 𝑋 ⋅ 𝐸. 198 

 199 

Equation 3 200 

𝑌	~	𝛽#→( ∙ 𝑋> + 𝛽!→( ∙ 𝐸 + 𝛽#∗!→( ∙ 𝑋> ∙ 𝐸 + 𝛽#"→( ∙ 𝑋>) 201 

with 202 

Equation 4 203 

𝑋> = 𝛽?$%&→# ∙ 𝐺𝑅𝑆 204 
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Table 2. Models fitted in simulations. Y refers to the outcome variable, X to the observational exposure variable, E to the (non-205 
instrumentable) environmental variable and 𝑋"to the exposure variable when the effect is obtained using the GRS for X. 206 

 207 

 208 

 209 

 210 

Correction approach: 2SLS-I-corr 211 

In simulations, we found a systematic bias of the interaction estimate if the causal effect 212 

modifying variable E had an effect on the exposure X and X2 had an effect on the outcome Y. 213 

From Equation 1 we obtain Equation 5. 214 

Equation 5 215 

𝑋) =	@𝛽$%&!→# ∙ 𝐺𝑅𝑆#A
) + 2 ∙ 𝛽$%&!→# ∙ 𝐺𝑅𝑆# ∙ 𝛽!→# ∙ 𝐸 + (𝛽!→# ∙ 𝐸)

) + 2 ∙ 𝛽$%&!→# ∙ 𝐺𝑅𝑆# ∙216 

𝜀# + 	2 ∙ ß!→# ∙ 𝐸	 ∙ 𝜀# +	𝜀#) 217 

In Equation 5, it becomes evident that the MR interaction term 𝐺𝑅𝑆 ∙ 𝐸	is also 218 
represented in 𝑋), if 𝛽!→# ≠ 0. As a consequence, the raw 𝐺𝑅𝑆 ∙ 𝐸 estimate is biased if X is a 219 
function of E and X2 influences Y. From this, one can derive the following correction term. 220 

Equation 6 221 

𝛽?$%&!∙!→(	-.//0-102	 =	𝛽?$%&!∙!→( −	E
𝛽?$%&#"→(
@𝛽?$%&!→#A

) ∙ 2 ∙ 𝛽?$%&!→# ∙ 𝛽?!→#F 222 

Where the term in parentheses represents the extent to which 𝛽?$%&∙!→( deviates from the 223 

true 𝛽$%&∙!→( if 𝛽#"→( and 𝛽!→# are not equal to 0. 
34$%&#"→(
534$%&!→!6

" translates to the causal estimate of 224 

𝛽?#"→(. The remaining terms represent the extent to which the true interaction is overestimated in 225 
response to the quadratic effect of X on Y (i.e. the extent to which 𝑋) is a function of 𝐺𝑅𝑆 ∙ 𝐸), 226 
as visible in Equation 5 (marked in red). The full correction term from Equation 6 can be 227 
simplified as follows. 228 

Equation 7 229 

𝛽?$%&!∙!→(	-.//0-102	 =	𝛽?$%&!∙!→( − 	2 ⋅ E
𝛽?$%&#"→(
𝛽?$%&!→#

∙ 𝛽?!→#F 230 

Model Formula 
Observational 𝑌	~	𝑋 + 𝐸 + 𝑋) + 𝐸) + 	𝑋 ∙ 𝐸 
MR without interaction 
term 

𝑌	~	𝑋> + 𝐸 + 𝐸) + 𝑋>) 
MR without quadratic 
term 

𝑌	~	𝑋> + 𝐸 + 𝐸) + 𝑋> ∙ 𝐸 
Full MR model 𝑌	~	𝑋> + 𝐸 + 𝐸) + 𝑋>) + 𝐺𝑅𝑆 ∙ 𝐸 
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From Equation 7, using the first order Taylor expansion-based approximation of the 231 
variance of ratios, we can derive the variance of the corrected interaction term as follows. 232 

Equation 8 233 

𝜎G$%&!∙!→(
) = 𝜎G$%&!∙!→(

)234 

+H
𝛽?$%&!"→(
)

𝛽?$%&!→#
) ∙ E

𝜎G$%&!"→(
)

𝛽?$%&!"→(
) +

𝜎G$%&!→#
)

𝛽?$%&!→#
) F ∙ 𝜎G!→#⬚

) +
𝛽?$%&!"→(
)

𝛽?$%&!→#
) 	235 

∙ E
𝜎G$%&!"→(
)

𝛽?$%&!"→(
) +

𝜎G$%&!→#
)

𝛽?$%&!→#
) F ∙ 𝛽?!→#) + 𝜎G!→#) ∙ E

𝛽?$%&!"→(
𝛽?$%&!→#

+
𝜎G$%&!
) ∙ 𝛽?$%&!"→(
𝛽?$%&!→#
7 F

)

I ∙ 2) 236 

By setting 𝜎G!→#)  to 0 (i.e. ignoring the variance in the E-to-X effect estimation), Equation 237 
8 can be approximated as follows. 238 

Equation 9 239 

𝜎G$%&!∙!→(
) = 𝜎G$%&!∙!→(

) + 4 ⋅
𝛽?$%&!"→(
)

𝛽?$%&!→#
) ∙ E

𝜎G$%&!"→(
)

𝛽?$%&!"→(
) +

𝜎G$%&!→#
)

𝛽?$%&!→#
) F ∙ 𝛽?!→#)  240 

Power analysis 241 

Table 3. Simulation settings of the statistical power analysis 242 

 The accuracy and power of the corrected 243 

interaction estimate was assessed. For the power 244 

analysis, 𝛽!→# was set to 0.2, whilst the amount of 245 

variance that the GRS explained in X (ℎ#) ), the 246 

true interaction (𝛽$%&∙!→(), the quadratic effect of 247 

X on Y (𝛽#"→(), and the sample size were varied 248 

systematically. The settings for the power analysis 249 

are listed in Table 3. 250 

  251 

Parameter Range 

𝛽!→# {0.2} 
𝛽$%&!→# {1} 
𝜷𝑮𝑹𝑺∗𝑬→𝒀 {𝟎, 𝟎. 𝟎𝟓, 𝟎. 𝟏} 
𝛽$%&∗'→( {0} 
𝛽#→( {0.2} 
𝛽#"→( {0, 0.1} 
𝛽'→# {0.3} 
𝛽'→( {0.5} 
𝛽'"→( {	0.1} 

ℎ#)  {0.05, 0.1, 0.2} 
Sample Size {10=, 5 ∙ 10=, 10>} 
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Application to UK biobank 252 

We applied 2SLS-I to the UK biobank (UKBB) to investigate if interactions with 253 

environmental variables occur and how prone they are to bias induced by nonlinear effects of the 254 

exposure on the outcome. 255 

Cohort description 256 

UKBB is a volunteer-based biomedical cohort of ~500’000 individuals from the general UK 257 

population (Sudlow et al., 2015). The data was accessed through application number 16389. We 258 

selected unrelated, white British participants, for whom the inferred and reported sex aligned, 259 

leading to an initial sample size of n = 337’392. 260 

Phenotype selection 261 

We selected environmental variables which are difficult to instrument genetically but are 262 

likely to modulate causal relationships, namely age, current smoking, physical inactivity 263 

(obtained using accelerometer data, sedentary behaviour, “PA: sed”), air pollution (Nitrogen 264 

dioxide (“AP: NO2”), time spent watching TV (“TV time”), and socioeconomic deprivation 265 

(Townsend deprivation index, “TDI”)). A range of outcome traits was selected to address 266 

different health-, and cognitive variables, namely: fluid intelligence score (FIS), reaction time 267 

(RT), systolic blood pressure (SBP), low-density lipoprotein cholesterol (LDL), hand grip 268 

strength (HGS), forced expiratory volume within 1 second (FEV1), and C-reactive protein 269 

(CRP). For each of the outcome traits, we searched the literature and the EpiGraphDB (Liu et al., 270 

2021) to obtain exposures that might have a causal effect on any outcome of interest. Exposure 271 

traits were considered for inclusion if they were strictly numeric, conceptually different from the 272 

outcome of interest (e.g. we removed HDL cholesterol as exposure for LDL cholesterol as the 273 

two variables are tightly related) and had at least one genome wide significant variant. If a 274 
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numeric alternative for a categorical trait was available, the numeric alternative was considered 275 

(e.g. instead of hypertension, we used systolic blood pressure). If multiple potential exposures 276 

covered conceptually very similar traits, only one was selected. For an overview of the selected 277 

exposure-, effect modifying environment-, and outcome traits, and the according UKBB field 278 

IDs, see Supplementary Tables 1-3. Exposure and outcome phenotypes were corrected for age, 279 

age2, sex, sex*age, and 40 genetic PCs and exposure phenotypes were inverse rank normal 280 

transformed (IRNT) (McCaw et al., 2020). Potentially effect modifying environmental 281 

phenotypes were corrected for age, age2, sex, and age*sex, except age (only corrected for sex). 282 

Effect modifying environment and outcome phenotypes were standardized to have zero mean 283 

and unit variance. 284 

SNP selection and GRS calculation 285 

For each exposure phenotype, we accessed summary statistics (Neale, 2017) and filtered 286 

for SNPs with a p-value < 10-4. Next, we clumped the selected SNPs using PLINK version 1.9 to 287 

obtain independent genetic variants for MR. For the remaining variants, we reassessed their 288 

association with the IRNT exposure phenotype of interest whilst correcting for age, sex, age2, 289 

and 40 PCs. For the GRS, we only kept SNPs which were genome wide significantly associated 290 

(p < 5*10-8) with the exposure in our sample. The selected SNPs were used to obtain the GRS for 291 

each exposure of interest. The GRS was calculated as follows: 𝐺𝑅𝑆? =	∑ 𝛽@ ∙ 𝑑𝑜𝑠𝑎𝑔𝑒@?A
@ , where 292 

m is the number of genome wide significant SNPs, 𝛽@ is the obtained effect size of 𝑆𝑁𝑃@ on the 293 

exposure of interest and the 𝑑𝑜𝑠𝑎𝑔𝑒@? is the number of copies of the coded allele for SNP i in 294 

individual j (Collister et al., 2022). The obtained GRS was scaled to have zero mean and unit 295 

variance. We further assessed if there was evidence for an interaction between the GRS and the 296 

environment E on the exposure X (level 1 interaction) at p < 0.05. We observed this in 77 out of 297 
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228 (33.8%) of the settings (of which 38 survive Bonferroni correction). In-depth analysis of the 298 

role of level 1 interactions revealed a negligible role for level 1 interactions (for details on 299 

simulations and application, see Supplementary Material Level 1 interactions).  300 

Inclusion of extended GRS (GRSext) to boost statistical power 301 

As interaction analyses require strong effects and a large sample size to obtain sufficient 302 

power, and the application of the quadratic effect correction further reduces the power to detect 303 

true interactions, we additionally performed MR with an extended GRS (GRSext) to boost for 304 

power. GRSext was calculated for all selected exposure phenotypes as described in Privé et al. 305 

(2022). All analyses were performed as for the strict GRS.  306 

Mendelian Randomization Models 307 

Next, the GRS was used to instrument the effect of each exposure on each outcome 308 

whilst considering the effect modifying environmental variables of interest. We fitted four 309 

different models for each setting, including the full model: 𝑌~	𝐺𝑅𝑆# + 	𝐸 + 𝐸) +	𝐺𝑅𝑆#) + 𝐸 ∗310 

𝐺𝑅𝑆# + 𝐶𝑜𝑣, a model without the quadratic term: 𝑌	~	𝐺𝑅𝑆# + 𝐸 + 𝐸) + 𝐸 ∙ 𝐺𝑅𝑆# + 𝐶𝑜𝑣, a 311 

model without the interaction term: 𝑌	~	𝐺𝑅𝑆# +	𝐺𝑅𝑆#) + 𝐶𝑜𝑣, and a minimal model: 312 

𝑌	~	𝐺𝑅𝑆# + 𝐶𝑜𝑣, where Y denotes the outcome of interest, the GRS is the previously obtained 313 

GRS for X, E is the effect modifying environmental variable of interest, and Cov translates to the 314 

covariates in the model. For all settings where E was not age, the covariates were age, age2, sex, 315 

and relevant medication. If the environmental variable was age, the age-related terms were 316 

excluded from the covariates. Only relevant medications were corrected for, obtained using UK 317 

Biobank data fields 6153 and 6177 for women and men, respectively. For an overview of the 318 

applied medication correction, see Supplementary Table 1. We used the ratio estimates for the 319 
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causal effects (X-to-Y and X×E-to-Y), i.e. 𝛽?$%&→( and 𝛽?$%&∙!→( were divided by 𝛽?$%&→#, whilst 320 

𝛽?$%&"→( was divided by 𝛽?$%&→#) . 321 

Correction of the interaction 322 

For the correction of the interaction (2SLS-I-corr), separate models were fitted to obtain 323 

𝛽?$%&!→# and 𝛽?!→# (and the according standard errors to obtain the variance). X was inverse-324 

normal rank transformed and E was z-standardized, and the models were corrected for the same 325 

covariates as the previously discussed MR models (depending on the exposure X and the 326 

environment E: age, age2, sex, medication). 𝛽?$%&!∙!→( and 𝛽?$%&#"→( were obtained from the full 327 

MR model described above. 2SLS-I-corr was only applied as discussed in the section Correction 328 

approach: 2SLS-I-corr if 𝛽?$%&#"→( was nominally significant (p < 0.05), otherwise the correction 329 

would just reduce power due to the increased estimator variance. 330 

Interaction tier score 331 

To gauge the reliability of the obtained interactions using both, the strict GRS and 332 

GRSext, we developed a rating strategy. For each interaction, we assessed whether 𝛽?#∙! differed 333 

significantly from 𝛽?#*#+∙! From this, tiers were computed as follows. 334 

𝑇𝑖𝑒𝑟#∙! = 3 ∙ @𝑏𝑜𝑡ℎB@C ∙ 𝑒𝑓𝑓𝑒𝑐𝑡2@/0-1@.D_FG@CD0BA + 2 ∙ @𝑒𝑖𝑡ℎ𝑒𝑟B@C ∙ 𝑒𝑓𝑓𝑒𝑐𝑡B@H0_FG@CD0BA335 

+ 𝑜𝑛𝑙𝑦_𝐺𝑅𝑆B@C +𝑚𝑎𝑖𝑛B@C 336 

Where all variables are binary. 𝑏𝑜𝑡ℎB@Cis equal to 1 if both, the GRS and the GRSext yield 337 

significant (at p < 0.001) interaction estimates, and 0 otherwise. 𝑒𝑓𝑓𝑒𝑐𝑡2@/0-1@.D_FG@CD0B is 1 if the 338 

sign of the effects obtained by the GRS and the GRSext agrees, and 0 otherwise. 339 

𝑒𝑓𝑓𝑒𝑐𝑡B@H0_FG@CD0B is 1 if the effect sizes obtained by the GRS and the GRSext do not differ 340 

significantly (p > 0.05), and 0 otherwise. 𝑜𝑛𝑙𝑦_𝐺𝑅𝑆B@C is 1 if the GRS yielded significance at p < 341 
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0.001, but the GRSext did not, and the effect size obtained by the GRS does not align with the 342 

effect size obtained by the GRSext. 𝑚𝑎𝑖𝑛B@C is 1 if there is Bonferroni corrected significant 343 

evidence for a causal effect of the exposure on the outcome. This approach gives the highest 344 

confidence for interactions which yield significance for both, the GRS and the GRSext, and if on 345 

top of that the sign of the obtained interaction effect aligns. If either the GRS or the GRSext yields 346 

a significant effect (at p < 0.001), and the obtained effects do not differ significantly (p > 0.05), 347 

the interaction would be classified as tier 2. If only the GRS yields a significant interaction (at p 348 

< 0.001), but the GRSext estimate does not agree, the interaction is classified as tier 1. By this we 349 

aim to account for the higher reliability of the GRS in comparison to the GRSext. Finally, if an 350 

interaction yielded a tier score > 0, we increased the tier score by +1 if we found significant 351 

evidence (pbonferroni < 0.05) for a main effect of the exposure on the outcome. 352 

Sensitivity analyses 353 

To ensure the robustness of our findings, we performed extensive sensitivity analyses 354 

validating our results.  355 

For example, we assessed whether there was evidence for a stronger effect of the 356 

exposure on the environment than vice versa and flagged up such interactions as this 357 

circumstance may lead to a (collider) bias in the interaction estimate. The according interactions 358 

are shaded out in the respective results plot. For details of the analysis, see Supplementary 359 

Material, Exposure on environment effects. 360 

Furthermore, we assessed the robustness of our results to inverse rank normal 361 

transforming the outcome phenotypes. For details of the analysis, see Supplementary Material, 362 

Inverse rank normal transformed outcome phenotypes. 363 
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Finally, to investigate if some interactions are only picked up due to method specific 364 

features of 2SLS-I, we assessed the same settings in an extended doubly ranked stratification 365 

(Tian et al., 2023) framework (DRS). Whilst the doubly ranked stratification method was 366 

developed to investigate non-linear exposure-outcome relationships, it can be adapted to allow 367 

for investigating interactions by stratifying by an environmental variable (instead of the exposure 368 

value) adjusted by the exposure’s instrument and regressing the obtained MR estimates on the 369 

predefined strata midpoint value. For a detailed effect comparison between the two methods, see 370 

Supplementary Material, Replication analysis. 371 

  372 
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Results 373 

Simulations 374 

Biased interaction effects for the uninstrumented regression model 375 

 376 

Figure 3. Deviation from the true simulated interaction effect for interaction estimates obtained from observational (obs) and two 377 
different MR models (MR no X2: no quadratic effect of X on Y fitted, MR full: full MR model) in presence of an interaction 378 
between the environment E and the confounder U and a quadratic effect of X on Y. The tile color indicates deviation of the 379 
interaction estimate from the simulated interaction, with darker colors indicating stronger deviations. 380 

Before assessing the accuracy of interaction effects in a Mendelian Randomization (MR) 381 

framework, we investigated under which circumstances MR may yield an advantage over 382 

observational models. We found that interactions (in contrast to main effects (𝛽?#→() and 383 

quadratic effects (𝛽?#"→(), respectively) are robust against linear (𝛽'→# = 0.3, 𝛽'→( = 0.3) and 384 

quadratic (𝛽'→# = 0.3, 𝛽'"→( = 0.1) confounding (Mdiff = -0.00007, SDdiff = 0.009). Yet, the 385 

observational model yielded biased interaction estimates in presence of an interaction between 386 
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the confounder (U) and the environment (E) (𝛽'→# = 0.3, 𝛽'∙!→( = 0.3, Mdiff = 0.9, SDdiff = 387 

0.0099). In contrast, the interaction estimates obtained from MR were accurate even in the 388 

strongest settings of confounding (𝛽'→# = 0.3, 𝛽'→( = 0.3, 𝛽'∙!→( = 0.3) (Mdiff = -0.0003, 389 

SDdiff = 0.036). 390 

Biased interaction estimates in presence of quadratic effect of X on Y and effect of E 391 

on X 392 

We assessed the accuracy of the interaction estimates in an MR framework using 393 

simulations. Data was simulated with a constant effect of the exposure on the outcome (𝛽#→( =394 

Figure 4. The obtained raw (2SLS-I-raw, blue) and corrected (2SLS-I-corr, yellow) interaction estimates for different levels of 
𝛽!→#, 𝛽#!→$, and 𝛽!∙&'("→$. The red lines indicate the different levels of the simulated interaction effect (𝛽!∙&'("→$), also indicated 
on the x-axis. We observed accurate raw interaction estimates as long as either the environment-exposure or the exposure outcome 
quadratic effect is absent (𝛽!→# = 0 or 𝛽#!→$ = 0) (corresponding to plots in the bottom row and left column). Deviation of both	
𝛽!→# and 𝛽#!→$ from 0 led to an overestimation of the raw interaction (in blue, 2SLS-I-raw) between GRS and E on Y (top right). 
This bias was successfully attenuated in the corrected interaction estimates (in yellow, 2SLS-I-corr). The elements of the boxplot are 
as follows: center line: median, box limits (lower and upper hinges): quartiles (25th and 75th percentile), upper whisker: largest 
value no further than 1.5 times the interquartile range (IQR) from the hinge, lower whisker: smallest value no further than 1.5 times 
the IQR from the hinge. Data beyond the end of the whiskers are plotted individually as dots. 
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0.2), whilst the levels of the true interaction between the environment and the exposure (𝛽!∙#→(), 395 

the quadratic effect of the exposure on the outcome (𝛽#"→(), and the effect of the environment on 396 

the exposure (𝛽!→#) were varied systematically (for simulation settings, see Table 1).  397 

We observed that if both the association between the environmental variable E and the 398 

exposure X (𝛽!→#) and the quadratic effect of the exposure X on Y (𝛽#"→() deviated from 0, the 399 

obtained raw interactions (2SLS-I-raw) between GRS and E on Y (𝛽?!∙$%&→(), were 400 

systematically biased. For the most extreme simulation settings (𝛽!→# = 0.3 and 𝛽#"→( = 0.15), 401 

𝛽?!∙$%&→( was overestimated by 0.089 (SD = 0.035) on average. 402 

In absence of a quadratic effect of X on Y (𝛽#"→( = 0), even a strong association 403 

between the environmental variable E and the exposure X (𝛽!→# = 0.3) did not lead to any bias 404 

using 2SLS-I-raw (Mdiff = -0.0009, SDdiff = 0.033). Vice versa, if 𝛽!→# was set to 0, the obtained 405 

raw interaction estimates did not deviate from the true interaction, even in presence of a very 406 

strong quadratic effect of the exposure X on Y (𝛽#"→( = 0.15) (Mdiff = -0.0009, SDdiff = 0.034) 407 

(Figure 4). 408 

Accuracy of 2SLS-I-corr 409 

As described in the section Correction approach: 2SLS-I-corr, we investigated the source 410 

of bias and developed a method to correct for the bias observed if both the association between 411 

the environmental variable E and the exposure X (𝛽!→#) and the quadratic effect of the exposure 412 

X on Y (𝛽#"→() deviated from 0 (2SLS-I-corr). 2SLS-I-corr yielded unbiased interaction 413 

estimates independent of the simulated settings. Most importantly, 2SLS-I-corr allowed for 414 

accurate interaction estimates even in presence of both a strong association between E and X 415 

(𝛽!→# = 0.3) and a strong quadratic effect of X on Y (𝛽#"→( = 0.15) (Mdiff = -0.003, SDdiff = 416 

0.05). As expected, when both the quadratic effect of X on Y (𝛽#"→(), and the association 417 
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between the effect modifying environment, E, and the exposure X (𝛽!→#) were set to 0, 2SLS-I-418 

corr yielded accurate estimates of the interaction (Mdiff = 0.0001, SDdiff = 0.033). In presence of a 419 

strong quadratic effect of X on Y (𝛽#"→( = 0.15), and in absence of an association between E and 420 

X (𝛽!→# = 0), the estimates from 2SLS-I-corr did not deviate from the simulated interaction 421 

(Mdiff = -0.0008, SDdiff = 0.034). It is worth noting that we observed an increase in the standard 422 

error (SE) for 2SLS-I-corr in comparison to the SE of the raw interactions (2SLS-I-raw) (M = 423 

0.0081, SD = 0.0094, p < 0.0001, 95% CI [0.0080, 0.0083]). We fitted a multiple linear 424 

regression to predict the difference in the SE between 2SLS-I-corr and 2SLS-I-raw based on 425 

𝛽!→#, 𝛽#"→(, and 𝛽!∙#→(. This resulted in a significant model, F(3, 13496) = 87140, p < 0.0001, 426 

R2 = 0.95. The increased SE was positively associated with the strength of the association 427 

between the environmental variable, E, and the exposure X (𝛽!→#, ß = 0.074, SE = 0.0001, p < 428 

0.0001). Furthermore, the difference between the SE of the raw and corrected interaction was 429 

slightly reduced in presence of a stronger interaction between E and X (𝛽!∙#→(, ß = -0.0004, SE 430 

= 0.0001, p = 0.0058). The strength of the quadratic effect of the exposure on the outcome 431 

(𝛽#"→() did not significantly contribute to the increase in variance observed in the corrected 432 

interaction estimates (ß = 0.00005, SE = 0.0003, p = 0.87). 433 

To assess the accuracy of the estimator of the SE of 2SLS-I-corr, we compared our 434 

analytically derived SE with the empirical SE of the corrected interaction estimates. For 435 

comparison, we did the same for the raw interaction estimates, separately for each simulation 436 

setting. Across all settings, we found that the analytical SE agreed well with the empirical SE for 437 

both, the 2SLS-I-raw and 2SLS-I-corr. The raw model SE did not significantly differ from the 438 

raw empirical SE (mean difference = 0.002, and a similar observation was made for the corrected 439 
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model SE (mean difference = 0.00098). This confirms that our analytical formula for the 440 

variance of the corrected effect is unbiased.  441 
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Power analysis of 2SLS-I 442 

To investigate the impact of our correction approach in hypothesis testing, we compared 443 

the type I error (T1E) and power of the 2SLS-I-corr with that of the 2SLS-I-raw. In these 444 

simulations, the association between the environmental parameter E and the exposure X (𝛽!→#) 445 

was set to 0.2, whilst the true interaction (𝛽!∙#→(), the quadratic effect of the exposure X on the 446 

outcome Y (𝛽#"→(), the amount of variance of X that is explained by the GRS (𝑅$%&→#) ), and the 447 

sample size were varied systematically (for the simulation settings, see Table 3). 448 

Figure 5. Analysis of the type I error (T1E) and power of raw (2SLS-I-raw) and corrected (2SLS-I-corr) interaction estimates in 
absence and presence of bias. The first row illustrates the type I error, as the true interaction between E and X (𝛽!∙#→$) was set 
to 0. In absence of any source of bias (𝛽#!→$ = 0, first and second column), the T1E of both, 2SLS-I-raw and 2SLS-I-corr are 
close to 5%. In presence of a quadratic effect of X on Y (𝛽#!→$ = 0.1, third and fourth column), the raw interaction estimates are 
nominally significant in up to 100% of the cases in absence of a true interaction. This effect is successfully attenuated in the 
corrected interaction estimates, where the T1E does not exceed 5%. In presence of a weak interaction (middle row), 2SLS-I-corr 
showed reduced power in comparison to 2SLS-I-raw in absence of bias. C: Lastly, the power of 2SLS-I-corr reached a ceiling 
effect in presence of a strong interaction (𝛽!∙#→$ = 0.1) with a sample size ≥ 50.000 and R2GRSàX ≥ 0.1 (bottom column). 
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In absence of a true interaction (𝛽!∙#→( = 0) and without the source of bias (𝛽#"→( = 0), 449 

the (5% nominal level) T1E of 2SLS-I-corr (0.039 (SD = 0.01)) was comparable with the T1E of 450 

2SLS-I-raw (0.046 (SD = 0.0089)). In presence of the source of bias (𝛽#"→( = 0.1), we observed 451 

a T1E of up to 1 for 2SLS-I-raw (on average 0.66 (SD = 0.33)). Importantly, even with a small 452 

sample size of 10.000 and a 𝑅$%&→#)  of 0.05, the T1E was 0.14 for the raw interaction in presence 453 

of bias. 2SLS-I-corr attenuated the T1E to a maximum of 0.05 (average of 0.035 across settings 454 

(SD = 0.0089)).  455 

In presence of a weak interaction (𝛽!∙#→( = 0.05) and in absence of bias, 2SLS-I-raw had 456 

a power of more than 0.7 in all settings where the sample size was larger than 10.000 (M = 0.75, 457 

SD = 0.3). In contrast, 2SLS-I-corr only exceeded the power of 0.7 if both the sample size was 458 

larger than 10.000 and the amount of variance in X explained by the GRS exceeded 0.05 (M = 459 

0.599, SD = 0.35). This reduction in power of the 2SLS-I-corr in comparison to the 2SLS-I-raw 460 

results from the increased variance in response to our additive correction in comparison to the 461 

raw interaction estimates.  462 

In presence of a strong interaction, the power of 2SLS-I-raw exceeded 0.8 in all settings 463 

except if the 𝑅$%&→#)  and the sample size were set to 0.05 and 10.000, respectively (M = 0.94, 464 

SD = 0.14). For 2SLS-I-corr, the power exceeded 0.8 in all settings except if the 𝑅$%&→#)  was 465 

smaller than 0.2 and the sample size was limited to 10.000 (M = 0.86, SD = 0.25).  466 

In summary, 2SLS-I-corr has a much better controlled type 1 error than the 2SLS-I-raw 467 

whilst maintaining considerable power to detect true interactions if 𝑅$%&→#)  exceeded 0.05 and 468 

for sample size > 10.000 participants. 469 

  470 
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Application 471 

To elaborate the relevance of environmental moderators of causal effects, we investigated 472 

how a range of not genetically instrumentable environmental parameters (age, air pollution 473 

(NO2), sedentary behaviour, socioeconomic deprivation (Townsend Deprivation Index, TDI), 474 

smoking, and time spent watching TV (TV time)) modulate causal relationships between 475 

different health- and lifestyle- parameters. As simulations (see section Biased interaction 476 

estimates in presence of quadratic effect of X on Y and effect of E on X) indicated that non-linear 477 

effects of the exposure on the outcome may lead to spurious interaction effects, corrected 478 

interaction estimates (2SLS-I-corr) were considered in presence of a nominally significant 479 

quadratic effect of the exposure (215 out of 1274, 16.9%). For all other settings, raw interaction 480 

estimates (2SLS-I-raw) were considered, in order to maximise discovery power. To account for 481 

the limited power to detect true interactions, we replicated our analyses using an extended 482 

genetic risk score (GRSext) in addition to the strict genetic risk score (where the GRSext is based 483 

on all SNPs that contribute to an exposure whilst the strict GRS is only based on independent 484 

SNPs that are genome wide significantly associated to an exposure). Evidence for interactions 485 

were classified into tiers from 0 to 4 to account for different levels of confidence (see section 486 

Interaction tier score), considering significance (of both, the GRS and the GRSext), robustness of 487 

the interaction effect, and presence of a main effect. 488 

Of the effect modifying environmental parameters, age, TDI, and smoking modulated the 489 

most causal relationships (nage = 60 and nTDI = 36, nsmoking = 22, respectively). In particular, we 490 

found a reduction in strength for a range of causal effects with increasing age. For example, the 491 

causal effect of height on hand grip strength (HGS) (ß = 0.22, SE = 0.0037, p < 10-323), was 492 
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significantly attenuated with higher age (Tier score = 4, ßGRS*E = -0.019, SEGRS*E = 0.0037, 493 

pvalGRS*E < 10-6, Figure 8a). 494 

For socioeconomic deprivation, we found that most interactions were associated with an 495 

exacerbation of the causal effects. For example, the negative effect of systolic blood pressure on 496 

forced expiratory volume within the first second (FEV1) (ß = -0.099, SE = 0.013, p < 10-13), was 497 

intensified for people exposed to higher levels of socioeconomic deprivation (Tier score = 3, 498 

ßGRS*E = -0.021, SEGRS*E = 0.013, pGRS*E = 0.105, ßGRSext*E = -0.022, SEGRSext*E = 0.0041, 499 

pGRSext*E < 10-7, Figure 8b). 500 

Furthermore, we found evidence that smoking modulates 22 causal effects. For example, 501 

the positive causal effect of Gamma-glutamyl transferase (Gamma GLT) on CRP (ß = -0.107, SE 502 

= 0.006, p < 10-76) seems to be intensified in smokers (Tier score = 4, ßGRS*E = 0.019, SEGRS*E = 503 

0.006, pGRS*E < 0.001, ßGRSext*E = 0.018, SEGRSext*E = 0.004, pGRSext*E < 10-5). Yet, it is worth 504 

noting that the interaction between smoking and Gamma GLT is scale dependent (i.e. the effect 505 

may be driven by individuals with very high CRP levels), as it yielded a tier score of 0 if the 506 

outcome was inverse-rank normal transformed. 507 

Out of 19 causal effects that were modulated by air pollution (NO2), 8 affected the 508 

outcome CRP and 5 the outcome Forced Expiratory Volume (FEV1). For example, we observed 509 

that the effect of Education on FEV1 (ß = 0.208, SE = 0.016, p < 10-38) was significantly 510 

intensified for people who live in areas with higher air pollution (Tier score = 4, ßGRS*E = 0.060, 511 

SEGRS*E = 0.016, pGRS*E = 0.0002, Figure 8c). 512 

Sedentary behaviour, defined as time spent inactively, measured using an accelerometer 513 

device, mostly intensified causal effects on CRP (7 out of 8 interactions with a tier score > 0). 514 

For three of these interactions, we found evidence that physical inactivity may act as a collider 515 
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between the exposures (BFP, education, and water mass) and the outcome (CRP), which likely 516 

leads to a bias in the interaction estimates. In addition, we observed that the effect of grip 517 

strength, cystatin C, Na in Urine, and SHB on CRP are significantly intensified in people who 518 

spend more time physically inactive. Finally, there was one setting where sedentary behaviour 519 

modified an effect on an outcome that is not CRP, namely the interaction with HbA1c on reaction 520 

time (tier = 1). 521 

For time spent watching TV (TV time), we observed that the causal effect of Cystatin C 522 

on CRP (ß = 0.032, SE = 0.0061, p < 10-7) is intensified in people who spend more time 523 

watching TV (Tier score = 3, ßGRS*E = 0.017, SEGRS*E = 0.0061, pGRS*E = 0.004, ßGRSext*E = 0.02, 524 

SEGRSext*E = 0.0034, pGRSext*E < 10-8, Figure 8d). Noteworthily, the interaction between TV time 525 

and Cystatin C on CRP seems to be scale dependent (i.e. to some extent driven by individuals 526 

with very high levels of CRP), as the interaction on the IRN-transformed outcome phenotype 527 

yielded a tier score of 0. 528 

For detailed results, see Figure 6, Figure 7, Figure 8, Table 4, and Supplementary Table 529 

4. 530 
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  532 

Figure 6. Causal effects of a range of exposures (x-axis) on a range of outcomes (y-axis), obtained from the minimal MR model. The color of the tiles 
indicates the direction of the main effect, whilst the opacity indicates the strength of the main effect. Bonferroni corrected significant effects are 
marked with a star. ALT: Alanine Aminotransferase, AST: Aspartate Aminotransferase, BP: Blood pressure, CRP: C-reactive Protein, FEV1: Forced 
Expiratory Volume within 1 second, FIS: Fluid Intelligence Score, HbA1c: Glycated hemoglobin, HDL: High density lipoprotein, HR: Heart rate, 
NO2: Nitrogen dioxide, SHBG: sex hormone binding globulin, PO4: phosphate, Vit D: Vitamin D 
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 534 

  535 

Figure 8. Plots of single interactions obtained using the full MR model. Selection of raw interactions obtained using the strict 
GRS. Units translate to the standard deviation (SD), and the confidence hulls indicate the 95% confidence interval. FEV1: 
Forced expiratory volume within 1 s, BP: blood pressure, p10: 10th percentile, p90: 90st percentile, TDI: Townsend Deprivation 
Index, AP: Air pollution, CRP: C-reactive protein. 

Figure 7. Results of the applied interaction analysis. Panels indicate interactions with each a different interaction parameter (age, 
socioeconomic deprivation (Townsend Deprivation Index, TDI), smoking, air pollution (NO2), sedentary behavior, and time spent 
watching TV (TV time). The dots indicate evidence for an interaction, with the size of the dots representing the tier score (1 = very 
little confidence, 2 = little confidence, 3 = some confidence, 4 = high confidence). The color of the dots indicates whether the 
interaction effect agrees with the direction of the main effect (dark blue) or not (red), i.e. whether the effect of the exposure on the 
outcome increases with higher levels of the environment (dark blue). The small white dots indicate when the corrected interaction 
estimate was considered due to the presence of a non-linear exposure-outcome relationship. Dots were shaded out if there was 
evidence for a strong causal effect of the exposure on the environment, as this may lead to biases in the interaction estimates. ALT: 
Alanine Aminotransferase, AST: Aspartate Aminotransferase, BP: Blood pressure, CRP: C-reactive Protein, FEV1: Forced 
Expiratory Volume within 1 second, FIS: Fluid Intelligence Score, HbA1c: Glycated hemoglobin, HDL: High density lipoprotein, 
HR: Heart rate, NO2: Nitrogen dioxide, SHBG: sex hormone binding globulin, PO4: phosphate, Vit D: Vitamin D 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.21.24312360doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.21.24312360
http://creativecommons.org/licenses/by/4.0/


Discussion 536 

We present 2SLS-I, an approach to investigate how environmental variables modulate 537 

causal effects. Extensive simulations revealed accurate interaction estimates for almost all 538 

settings. Yet, we observed biased interaction estimates in presence of a non-linear exposure-539 

outcome relationship and dependent environment and exposure, for which we provide a method 540 

to correct if indicated. Application of 2SLS-I to a range of health-related exposure- and outcome 541 

phenotypes revealed that all considered environments (age, socioeconomic deprivation 542 

(Townsend Deprivation Index, TDI), smoking, air pollution (nitrogen dioxide, NO2), physical 543 

inactivity (sedentary behaviour, PA: sed) and time spent watching TV (TV time)) modulate some 544 

causal relationships. We found that the strength of causal relationships tends to be attenuated in 545 

higher age. For example, our results indicate that age modulates the well-known relationship 546 

between height and hand grip strength (HGS). Whilst it is known that not only height (Abaraogu 547 

et al., 2017), but also age (e.g. Frederiksen et al., 2006) predicts HGS, it seems that the effects of 548 

age and height on HGS are not only additive, but in fact multiplicative. The tendency for causal 549 

effects to be attenuated in older individuals may be the result of the accumulation of other health-550 

related factors which become more relevant the older a person grows.  551 

Interestingly, we observed the opposite pattern for socioeconomic deprivation (Townsend 552 

Deprivation Index, TDI), where (mostly detrimental) causal effects seem to be intensified for 553 

people living in more deprived areas. For example, we found that the detrimental effect of 554 

systolic blood pressure (SBP) on forced expiratory volume (FEV1) was significantly intensified 555 

for people with lower socioeconomic status. Whilst there is some evidence for an association 556 

between hypertension and FEV1 (Miele et al., 2018), others argue that the effect is reverse, in 557 

fact, with lower FEV1 increasing blood pressure (Engström et al., 2001). Furthermore, there is 558 
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also evidence that the negative association between blood pressure and FEV1 may result from 559 

confounding due to antihypertensive medication (Schnabel et al., 2011). Yet, causal inference 560 

methods point toward a negative effect of higher systolic blood pressure on FEV1 (Zekavat et al., 561 

2021). Extending findings from Wheeler and colleagues (2005), who reported a positive 562 

association between socioeconomic status and FEV1, we provide evidence that the causal effect 563 

of SBP on FEV1 is exacerbated in response to socioeconomic deprivation. 564 

For smoking, we observed that numerous causal effects were exacerbated in smokers in 565 

comparison to non-smokers. For example, we found that the causal effect of Gamma GLT on 566 

CRP is more pronounced in smokers than in non-smokers. Whilst it has long been known that 567 

Gamma GLT has a positive (i.e. increasing) effect on CRP (Lee et al., 2003), and studies found 568 

that smoking increases both, levels of Gamma GLT (Zhang et al., 2021) and CRP (O’Loughlin et 569 

al., 2008; Tracy et al., 1997), we provide evidence that the relationship between Gamma GLT 570 

and CRP is exacerbated in smokers in comparison to non-smokers. 571 

Meanwhile, air pollution (NO2) mostly modulated effects on CRP and FEV1, whereby it 572 

exclusively intensified the causal effects. For example, the effect of education on FEV1 was 573 

intensified in response to living in an area with higher air pollution. Tabak and colleagues (2009) 574 

report a lower smoking adjusted FEV1 at baseline in people with a low educational level in 575 

comparison to people with a high educational level. Furthermore, it has long been known that 576 

short- and long-term exposure to air pollution (and NO2 in particular) is negatively associated 577 

with lung function (both FVC and FEV1) (Ackermann-Liebrich et al., 1997; Strassmann et al., 578 

2021). Interestingly, multiple studies show some modulating effect of (parental) socioeconomic 579 

status on the association between air pollution and lung capacity (Cakmak et al., 2016; Wheeler, 580 

2005). Yet, the effects seem to differ depending on participants’ sex and the definition (and 581 
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potentially stratification) of the SES variable(s). A systematic comparison between varying 582 

definitions of education, potentially stratifying by sex, may contribute to a better understanding 583 

of the mechanisms through which education is protective against the detrimental effects of air 584 

pollution on lung function. 585 

The effect modifying role of physical activity could only be assessed to a limited extent. 586 

As accelerometer data was only available in 67912 individuals after quality control, and physical 587 

inactivity seems to act as a collider in multiple relevant settings (e.g. the effect of body fat 588 

percentage on CRP), we only detected interactions with relatively low confidence (maximum tier 589 

score = 3). Importantly, physical inactivity mostly modulated effects on the outcome CRP (7 out 590 

of 8 interactions with a tier score > 0), of which all indicated that physical inactivity intensifies 591 

the (univariable) main effects. Given the well-known anti-inflammatory effect of physical 592 

activity, it is likely that physical inactivity exacerbates detrimental causal effects on CRP, which 593 

aligns with our observations. Nevertheless, it would be of great interest to investigate the effect 594 

modifying role of physical (in)activity more thoroughly in a larger sample. 595 

The moderating effect of TV time turns out to be difficult to interpret. For example, we 596 

found that the positive effect of Cystatin C on CRP is significantly intensified in people who 597 

spend more time watching TV. Whilst there is evidence for an association between Cystatin C 598 

and CRP (Shlipak et al., 2005), it is worth noting that higher levels in Cystatin C have been 599 

found to be associated with higher age, higher triglycerides, lower HDL-Cholesterol and a range 600 

of inflammatory markers other than CRP, such as TNFa and Interleukin-6 (Luc et al., 2006). 601 

Meanwhile, TV time has been found to be positively associated with CRP even in children 602 

(Gabel et al., 2016) and after accounting for a range of relevant covariates such as waist 603 

circumference, physical activity, and dietary density (Gabel et al., 2016). As TV time is likely a 604 
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function of many factors, such as age, general health, and socioeconomic status, and cannot be 605 

instrumented genetically, it remains difficult to investigate to what extent an intervention on TV 606 

time would reduce the health consequences associated with it. 607 

Collectively, these results illustrate the relevance of environmental parameters as 608 

modulators of causal effects. Nevertheless, it is important to keep in mind limitations of the 609 

current study. 610 

Firstly, whilst we tested our methods in a wide range of settings and simulated many 611 

(potential) sources of bias, from non-linear causal effects to linear and non-linear confounding, to 612 

the presence of level 1 interactions, simulations are typically incapable of accounting for the 613 

complexities of the real world. Whilst we are confident that 2SLS-I yields accurate effects in a 614 

wide range of settings, it is likely that there are specific circumstances where 2SLS-I fails to 615 

provide accurate findings. 616 

Second, the detection of interactions has low statistical power. To address this, we 617 

replicated our analysis using an extended GRS (GRSext), which may violate MR assumptions 618 

(the weaker SNPs correlate with the exposure, the more likely that they act indirectly). To 619 

account for this circumstance, we ensured that the results from the GRSext only contributed to an 620 

increased tier score if the effect estimate agreed with the respective estimate of the strict GRS. 621 

Furthermore, we considered interactions as “significant” if they reached a p-value < 0.001, which 622 

allowed us to detect more potential interactions, but also increases the false discovery rate. 623 

Another way to increase power is by carefully choosing when to apply the corrected interaction 624 

estimates. Since the 2SLS-I-corr effects have larger variance than the uncorrected counterpart, 625 

they should primarily be used when there is evidence for a non-linear causal effect. The 626 

replication of the present findings in an additional cohort would be necessary to confidently 627 
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consider them as valid, in particular those with a tier score < 4. Such interactions, however, may 628 

be population-specific, which renders replication particularly difficult. Furthermore, despite 629 

making a considerable effort to account for the reduced power inherent to interaction analysis 630 

(and Mendelian Randomization), the absence of a significant interaction may still be the result of 631 

lacking power and does not translate to a proof of inexistence, in particular for phenotypes with 632 

relatively small sample size and high variance of noise, such as physical inactivity. Yet, thanks to 633 

the ever-increasing sample size of available biobanks, we are confident that the reduced power of 634 

interaction analyses will become a smaller challenge in the future. If this is the case, 2SLS-I 635 

would even allow for the investigation of environment-dependent non-linear effects (e.g. 𝑋) ∙ 𝐸), 636 

which may be of relevance as we observed multiple settings with evidence for non-linear causal 637 

effects. Still, it has to be noted that we modelled only quadratic X-to-Y effects and our proposed 638 

correction is suboptimal for more complex non-linear X-Y relationships. 639 

Third, due to the far-reaching effects of many environmental parameters, some 640 

interactions are difficult to interpret. A detected exposure-environment interaction may arise only 641 

due to a true interaction between the exposure and another (correlated) environment. Whilst 642 

understanding that an environmental variable modulates a causal effect is of great relevance, we 643 

note that the present analysis could (and should) be extended for almost all detected interactions 644 

to obtain a detailed understanding of the complex interplay between variables, in particular for 645 

those related to SES. 646 

Fourth, detected interactions may be scale specific and not persist when modelling a 647 

transformed version of the outcome (e.g. log(Y)). This is a general weakness of all types of 648 

interaction analyses. Nevertheless, we replicated our analysis by inverse-rank normal 649 

transforming the outcome phenotypes and found that most interactions yield comparable effects 650 
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independent of the outcome standardization. Yet, in particular for CRP we observed multiple 651 

settings where the effect seems to depend on the standardization of the outcome phenotype due 652 

to the strong right-skewedness of CRP. 653 

Fifth, one has to carefully exclude the possibility that a tested environment is a collider of 654 

the exposure-outcome relationship, because it can lead to biased interaction estimates. If such 655 

situation occurs, it is safer to regress out the exposure from the environmental variable and 656 

consider the residual trait as the new tested environment. Similarly, analyses should assess the 657 

presence and relevance of 𝐺 ∙ 𝐸 effects on X as they violate our assumption that the genetic 658 

effects on the exposure are environment-invariant. 659 

Sixth, the full overlap between samples from which the SNP-exposure and SNP-outcome 660 

effects are estimated can introduce bias in the interaction estimates, which requires further work 661 

to account for. However, based on the impact of sample overlap on the causal main effect, 662 

(Mounier & Kutalik, 2023), it is likely to play a minor role for interactions too. 663 

Furthermore, we did not aim at validating the non-linear effects observed using 2SLS-I. 664 

Although we obtained accurate non-linear estimates for all simulated settings, future projects 665 

could aim at extending the simulation settings to challenge the accuracy of 2SLS-I for non-linear 666 

effects or perform negative control experiments to investigate if the non-linear effects of 2SLS-I 667 

are robust across a wide range of settings. 668 

Finally, the present analysis was restricted to individuals of White British ancestry. As 669 

many environmental parameters, such as SES, vary between different ancestries, it would be of 670 

great relevance to extend the present analyses to diverse ancestral groups. 671 

In conclusion, we present 2SLS-I, a method to investigate how environmental variables 672 

modulate causal effects, even in presence of sources of bias, such as non-linear effects of the 673 
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exposure on the outcome. We demonstrate the reliability of 2SLS-I in a wide range of simulation 674 

settings. Finally, we provide evidence that it is relevant to consider the modulating effects of 675 

environmental variables such as age and SES when examining the causal effect of classical 676 

epidemiological risk factors, which is a step towards precision medicine. 677 

  678 
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Data availability 679 

 The data that support the findings of this study are available from the UK Biobank 680 

(UKBB), but restrictions apply to the availability of these data, which were used under license 681 

for the current study. Access to the UKBB can be requested through a standard protocol 682 

(https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). Summary statistics were 683 

accessed from Neale and colleagues (2017), which are publicly available 684 

(http://www.nealelab.is/uk-biobank), just as the weights to calculate the extended genetic risk 685 

score as in Privé et al. (2022) (https://www.pgscatalog.org/publication/PGP000263/). 686 

Code availability 687 

Scripts used to perform the analyses are available at https://github.com/leonakn/2SLS-I. 688 

Additional information 689 

Ethical approval 690 

The UK Biobank has approval from the North West Multi-centre Research Ethics 691 

Committee (MREC). The data was accessed through application number 16389.  692 
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 836 

Supplementary Material 837 

Sensitivity Analyses 838 

Multiple sensitivity analyses were performed to account for potential biases in our 839 

effects. Amongst them are the effect of level 1 interactions, meaning an interaction between the 840 

GRS and the environment on the exposure X, the potential for the environment to act as a 841 

collider between the exposure and the outcome, the risk for the interactions to depend on the 842 

standardization or transformation of the outcome variable and the potential for the detected 843 

interactions to be method-specific. 844 
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Level 1 interactions 846 

Assuming the exposure X is defined as follows: 847 

𝑋 = 𝛽!→# ∙ 𝐸 + 𝛽$%&!→# ∙ 𝐺𝑅𝑆# + 𝛽$%&!∙!→# ∙ 𝐺𝑅𝑆# ∙ 𝐸 + 𝑞'→# ∙ 𝑈 + 𝜀#, 848 

while the outcome Y is – amongst other things – a function of X, and 𝛽$%&!∙!→# deviates 849 

from zero, we will overestimate the effect of 𝛽$%&!∙!→( by 𝛽$%&!∙!→# ∙ 𝛽#→(. We validated this 850 

in simulation settings (Supplementary Figure 1). We investigated to what extent the presence of 851 

level 1 interactions may affect our interaction estimates from the application study. For 160 852 

interactions with a tier score > 0, there was none where correction for level 1 interaction would 853 

lead to a change in the sign of the interaction estimate. Furthermore, there were only 5 settings 854 

where the absolute ratio between the obtained interaction estimate and the correction was smaller 855 

Supplementary Figure 1: Bias in interaction effect in response to varying level 1 interactions if the simulated effect of the exposure on the 
outcome is 0.2. We observe that the bias translates to 𝛽𝐺𝑅𝑆𝑋∙𝐸→𝑋 ∙ 𝛽𝑋→𝑌 and can be corrected for by subtracting the according term from 
the interaction estimate, which attenuated the bias in interaction estimates to zero. 
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than 5, namely the interaction between Body fat percentage and Nitrogen dioxide on CRP, the 856 

interactions between water mass and TV time on forced expiratory volume and hand grip 857 

strength, the interaction between CRP and age on systolic blood pressure and finally the 858 

interaction between height and socioeconomic deprivation on forced expiratory volume. 859 

Exposure on environment effects 860 

For some settings, we observed that there was a causal effect of the exposure on the 861 

environment. For these settings, we obtained the (observational, as the environment often is not 862 

meaningfully genetically instrumentable) effect of the environment on the exposure. We obtained 863 

the ratio 3!→,
3,→!

 and the according 95% confidence intervals. If the lower absolute confidence 864 

interval of the 
3$%&!→,
3,→!

 ratio was larger than 0.5, we considered the interaction as potentially 865 

biased and shaded it out in the according plots. For example, for body fat percentage we found a 866 

relatively strong effect on SES, TV time, and sedentary behavior, relative to the reverse effect. 867 

Noteworthily, we also found evidence for some causal effects on age, namely of heart rate, 868 

Gamma GLT, and SBP. Those likely result from sample bias, meaning that people with 869 

genetically high systolic blood pressure do not feel well enough to participate in such a study at 870 

an age where their peers still are able to participate. 871 

  872 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.21.24312360doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.21.24312360
http://creativecommons.org/licenses/by/4.0/


Inverse rank normal transformed outcome phenotypes 873 

We replicated our analyses whereby we inverse rank normal transformed the outcome 874 

phenotypes (which by default were z-standardized). For the majority of settings (136 out of 182 875 

interactions with a tier score > 0, 74.7%), the IRNT outcome phenotypes yielded interaction 876 

results that agreed well (tier > 0, agreement in direction) with the z-standardized outcome 877 

phenotypes. It is worth nothing, though, that we observed in 44 (24.2%) of all interactions with a 878 

tier score > 0, that the result could not be replicated when the outcome was IRN-transformed 879 

(tier score for IRN-transformed outcome = 0). There were two settings where both, the 880 

interaction on the IRN-transformed outcome and the interaction on the z-standardized outcome 881 

yielded a tier score > 0 but the direction of the effect did not agree, namely the interation 882 

between FEV1 and age on HGS and the interaction between Body fat % and age on CRP. 883 

Finally, there were 55 interactions which only yielded a tier score > 0 when the outcome was 884 

IRN-transformed, but not when it was z standardized. The majority of interactions that deviated 885 

depending on the preprocessing of the outcome phenotype were interactions affecting CRP (64 886 

of 101 settings), RT (12 of 101 settings), and FEV1 (11 of 101 settings). This finding is little 887 

surprising given the heavy right skewing of the raw (and thus z-standardized) CRP phenotype, 888 

indicating that some of the interactions may be driven by the extreme values on the upper end of 889 

the scale. As these values may be of distinctive mechanistic relevance, it depends on the specific 890 

research question whether it is more accurate to consider the results obtained using the z-891 

standardized or the IRN-transformed outcome phenotype. 892 
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 893 

Supplementary Figure 3. Replication of findings when outcome phenotype is not z-standardized but inverse-rank normal transformed 
(IRNT). The color of the tiles represents the direction of the main effect if there was evidence for a main effect. The round shapes 
represent the interactions with a tier score > 0 obtained when the outcome was z-standardized, whereby the color indicates the 
direction of the interaction relative to the main effect. The rhombuses represent the interactions with tier > 0 obtained when the 
outcome phenotype was inverse rank normal transformed, whereby the color indicates the direction of the interaction relative to the 
main effect. The size represents the tier score, with larger shapes indicating higher confidence. The small white dot indicates if an 
interaction was corrected due to evidence for a quadratic effect of the exposure on the outcome and an effect of the environment on the 
exposure. Finally, interactions are shaded out if there was evidence for a stronger effect of the exposure on the environment than vice 
versa, as this likely leads to biased interaction estimates. AP: Air pollution, ALT: Alanine Aminotransferase, AST: Aspartate 
Aminotransferase, BP: Blood pressure, CRP: C-reactive Protein, FEV1: Forced Expiratory Volume within 1 second, FIS: Fluid 
Intelligence Score, HbA1c: Glycated hemoglobin, HDL: High density lipoprotein, HR: Heart rate, NO2: Nitrogen dioxide, SHBG: sex 
hormone binding globulin, PO4: phosphate, TDI: Townsend deprivation index, Vit D: Vitamin D 

Supplementary Figure 2. Density plots of the z-
standardized (zstd, blue, left) vs. inverse rank normal 
transformed (IRNT, right) outcome phenotypes. HGS (l): 
hand grip strength (left), FEV1: forced expiratory volume 
within 1 second, SBP (auto): systolic blood pressure, 
automated reading, FIS: fluid intelligence score, RT: 
reaction time at pattern matching task, CRP: C-reactive 
protein, LDL: Low density Lipoprotein. 
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Replication analysis 895 

To validate the present interaction effects, we assessed the same settings in an extended 896 

doubly ranked stratification (Tian et al., 2023) framework (DRS). Whilst the doubly ranked 897 

stratification method was developed to investigate non-linear exposure-outcome relationships, it 898 

can be adapted to allow for investigating interactions by stratifying by an environmental variable 899 

(instead of the exposure value) adjusted by the exposure’s instrument and regressing the obtained 900 

MR estimates on the predefined strata midpoint value. Applying DRS to the same phenotype 901 

combination as 2SLS-I, we found substantial agreement between the two methods. In 136 (85 %) 902 

of all interactions with a tier score > 0, the direction of DRS aligned. In 30 (18.75%) of all 903 

interactions with a tier score > 0, the doubly ranked method agreed in sign and significance. Vice 904 

versa, out of 50 settings where DRS yielded significance at p < 0.001, 2SLS-I yielded a tier score 905 

> 0 in 30 (60 %).There was no setting where both, the DRS (at p < 0.001) and 2SLS-I (tier > 0) 906 

yielded significant effects which did not agree in sign. In summary, DRS and 2SLS-I yield 907 

comparable results (Supplementary Figure 4) Whilst this contributes to the confidence in the 908 

results obtained with 2SLS-I, it should be noted that there is a potential for both, 2SLS-I and the 909 

DRS yielding false-positive (e.g. if the environment acts as collider between the exposure and 910 

the outcome) or false-negative (e.g. due to lacking power) results. 911 

 912 

Supplementary Figure 4. All interaction effects from 2SLS-I were replicated using a doubly ranked stratification (DRS) method. 
The figure summarizes the effect agreement between 2SLS-I and DRS. Tiles are filled if all three estimates (strict GRS of 2SLS-I, 
extended GRS of 2SLS-I, and DRS) agree in the direction of the effect, with the fill color indicating the direction of the interaction.  
For each estimate that yielded significance at p < 0.05, a shape is plotted to indicate the level of significance: a circle (p < 0.05), 
a rhombus (p < 0.01) or a triangle (p < 0.001). The position of the according shape within each tile indicates which method has 
yielded the according significance level, with the strict GRS of 2SLS-I being on the top left, the extended GRS of 2SLS-I on the top 
right and the DRS at the bottom. The color of each of these shapes indicates the direction of the effect. Finally, the number in the 
middle of each tile relates to the obtained tier score, i.e. the confidence rating obtained using 2SLS-I. 
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