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Abstract 

Background: Generative AI models that can produce photorealistic images from text descriptions have 

many applications in medicine, including medical education and synthetic data. However, it can be 

challenging to evaluate and compare their range of heterogeneous outputs, and thus there is a need for a 

systematic approach enabling image and model comparisons.  

 

Methods: We develop an error classification system for annotating errors in AI-generated photorealistic 

images of humans and apply our method to a corpus of 240 images generated with three different models 

(DALL-E 3, Stable Diffusion XL and Stable Cascade) using 10 prompts with 8 images per prompt. The 

error classification system identifies five different error types with three different severities across five 

anatomical regions and specifies an associated quantitative scoring method based on aggregated 

proportions of errors per expected count of anatomical components for the generated image. We assess 

inter-rater agreement by double-annotating 25% of the images and calculating Krippendorf’s alpha and 

compare results across the three models and ten prompts quantitatively using a cumulative score per 

image.  

 

Findings: The error classification system, accompanying training manual, generated image collection, 

annotations, and all associated scripts are available from our GitHub repository at 

https://github.com/hastingslab-org/ai-human-images. Inter-rater agreement was relatively poor, reflecting 

the subjectivity of the error classification task. Model comparisons revealed DALL-E 3 performed 
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consistently better than Stable Diffusion, however, the latter generated images reflecting more diversity in 

personal attributes. Images with groups of people were more challenging for all the models than 

individuals or pairs; some prompts were challenging for all models.  

 

Interpretation: Our method enables systematic comparison of AI-generated photorealistic images of 

humans; our results can serve to catalyse improvements in these models for medical applications. 

 

Funding: This study received support from the University of Zurich’s Digital Society Initiative, and the 

Swiss National Science Foundation under grant agreement 209510. 

 

 

Research in context 

Evidence before this study 

The authors searched PubMed and Google Scholar to find publications evaluating text-to-image model 

outputs for medical applications between 2014 (when generative adversarial networks first become 

available) and 2024. While the bulk of evaluations focused on task-specific networks generating single 

types of medical image, a few evaluations emerged exploring the novel general-purpose text-to-image 

diffusion models more broadly for applications in medical education and synthetic data generation. 

However, no previous work attempts to develop a systematic approach to evaluate these models’ 

representations of human anatomy.  

  

Added value of this study 

We present an anatomical error classification system, the first systematic approach to evaluate AI-

generated images of humans that enables model and prompt comparisons. We apply our method to a 

corpus of generated images to compare state of the art large-scale models DALL-E 3 and two models 

from the Stable Diffusion family.  

  

Implications of all the available evidence 

While our approach enables systematic comparisons, it remains limited by subjectivity and is labour-

intensive for images with many represented figures. Future research should explore automation of some 

aspects of the evaluation through coupled segmentation and classification models.  
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1. Introduction 

Generative AI is poised to transform medicine through a range of potential future applications1–3. 

However, the evaluation of AI-generated outputs poses significant challenges4, as generated content is 

heterogeneous and subject to biases5,6. While the bulk of research into the impact of generative models in 

medicine has thus far focused on the generation of natural language texts, multi-modal models such as 

those that generate images promise an even greater impact3. Here, we focus on text-to-image generative 

models, such as DALL-E and Stable Diffusion, that enable the creation of photorealistic images from 

natural language descriptions. Applications of these models in medicine include generating representative 

illustrations for medical education, and creating synthetic data for a variety of scientific purposes in 

contexts where real-world images are insufficient, lacking, or unavailable due to privacy concerns. While 

task-specific models using Generative Adversarial Networks (GANs)7,8 have been available for some 

time, diffusion-based text-to-image models are distinguished by their generality and ease of use9.  

The potential of these text-to-image models in medicine is already being evaluated, for example 

to generate accurate anatomical illustrations of the human skull, heart and brain10, human faces and other 

body parts with various pathologies11–13, and illustrations of resuscitation techniques14,15 . Their 

applicability has also been tested for surgical planning and patient consultation in dental surgery16 and 

aesthetic surgery17. Moreover, DALL-E 2 has been used to synthesise realistic images for training 

predictive algorithms in dermatology18 and for aphasia assessment19. The technology has also been 

implemented to generate synthetic radiology images, e.g. chest x-rays20,21.  

It has been observed that a variety of visual errors are common in generated images, in particular, 

when rendering human hands22. Such inadvertent errors may potentially blur the diagnostic boundaries 

between the anatomical representations of healthy and diseased anatomy, which are essential for 

downstream applications in medicine. However, thus far, there has been no systematic examination of 

such errors or their direct comparison across different generative models. To address this gap, our study 

introduces a novel method of descriptive evaluation of anatomical errors in generated photorealistic 

images of the human body. Importantly, our focus on assessing model-inherent errors in generative 

photorealistic imagery of human bodies has no intention of discriminating against people with non-

normative bodies. Our assumption is that understanding the errors that these models make on the kinds of 

everyday images they were trained on will be essential for future evaluation of the errors these models 

make when generating domain-specific medical images.  
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2. Methods 

2. 1. Development of the Anatomical Error Classification System 

We developed the anatomical error classification system iteratively, as extensively detailed in 

Supplementary Method 1. In brief, we generated and annotated a collection of photorealistic images 

sampled from three models and multiple prompts, then applied our initial classification system to 

compute inter-rater reliability, as well as to compare models and prompts, followed by improving the 

system iteratively. The first iteration of the classification system defined five types of errors (missing, 

extra, configuration, orientation and proportion), and five anatomical regions (torso, limbs, feet, hands 

and face). In the second iteration, we introduced a proportion-based quantification of the errors in each 

image (Equation 1 below). In the final iteration, our quantitative system was extended with a weighting of 

errors by severity across three error severity levels (‘a’-low, ‘b’-medium and ‘c’-severe) along with a 

cumulative error severity score per image (Equation 2 below).  

 

2.2. Scores for Quantitative Comparisons 

Equation 1 (Proportion of Errors): For each picture, each body part, each error type and each error 

severity, we define the proportion of errors as the number of body parts i that present with the error type j 

with the corresponding error severity k (𝑛("#)!) divided by the number of body parts present, or the 

number of body parts that should be present given the number of people and what is or should be visible 

in the picture (𝑚"#): 

 
 

Equation 2 (Cumulative Score): Let 𝑃𝐸("#)!be the number of body parts i that exhibit an error of type j of 

error severity k. Let 𝑤% , 𝑤& , 𝑤' be the error severity weights that correspond to the error severity a, b, c, 

respectively (we used 0.2 for ‘a’, 0.5 for ‘b’, and 1 for ‘c’, to down-weight less severe errors). Then, the 

cumulative score 𝐶(  of image x is defined as: 

  
 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.21.24312353doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.21.24312353
http://creativecommons.org/licenses/by/4.0/


 

 

2.3. Generating the Image Dataset 

We used three models: DALL-E 3 (a commercial model), Stable Diffusion XL and Stable Cascade (two 

models from the non-commercial Stable Diffusion family). We designed 10 prompts, covering a variety 

of visual scenarios presenting either individuals, couples or groups of about five people in dynamic action 

and mutual interaction across heterogeneous everyday settings. The ten prompts were:  

1. athlete performing salto 

2. person jogging 

3. mother (or father) holding baby 

4. couple hugging 

5. two men (or women) wrestling in an arena 

6. old couple in sauna 

7. physician examining patient 

8. people eating pizza 

9. five people sunbathing on a beach 

10. five people playing volleyball 

 

For each prompt, we generated 8 images. We focused on obtaining a gender-balanced dataset: when a 

generative model showed implicit bias toward a particular gender, we explicitly prompted to counter this 

bias. We also focused on obtaining a dataset that covered a range of age groups, from babies to older 

individuals, and included diverse ethnicities, although most images nevertheless represent Caucasian 

individuals.  

 

2.4. Allocating Image Annotations 

Our annotation team consisted of four annotators. To be able to assess the inter-rater agreement between 

the annotators, we submitted 25% of our dataset (60 images) to double annotation. This resulted in 300 

annotations that were equally distributed across the annotators. To ensure that the three generative 

models, the 10 prompts, and the 60 double-annotated images were randomly distributed across the 4 

annotators, we automated the distribution (script available on our GitHub repository23).  

 

2.5. Assessing Inter-Rater Reliability 

We assessed the inter-rater agreement by calculating the Krippendorff’s alpha coefficient24 using the 

Python package fast-krippendorff. We applied Krippendorff’s alpha to three variations of our annotation 

results: 1) the cumulative error score for each image; 2) an overall error severity for each image (low, 

medium, high); and 3) a vector of 25 entries for each category and body part with 0 for no error and 1 for 
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an error. We determined an overall error severity by using the cumulative score to categorise each image 

based on quantiles of the error distribution of each individual annotator: with the 0.5 quantile as a 

threshold for overall error level low, 0.75 for overall error level medium, above 0.75 as overall error level 

high. 

 

2.6. Quantitative Model Comparison 

We applied the error classification system to several different comparisons using our image dataset: 

between models, between error types, between anatomical regions, and between individual vs. group 

prompts. For these comparisons, we used the cumulative score and the aggregate counts per error severity 

to compare the models.  

 

3. Results 

3.1. The Anatomical Error Classification System 

The anatomical error classification system supports the identification and quantification of different 

anatomical errors in photorealistic images of humans based on visual analysis of individual images. 

 

 
Figure 1: The Anatomical Error Classification System – illustration of visual components (A) – anatomical regions; (B) – types 

of error.  
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The system (Figure 1) consists of three components: (1) five anatomical regions – face, torso, hands, 

limbs and feet (Figure 1A); (2) five error types – proportion, extra, orientation, configuration, and missing 

(Figure 1B); and (3) a quantification of error severity and method of aggregation. The error types are:  

1. Proportion errors: misshaped or disproportionate body parts (e.g., limbs that are too short for the 

body). 

2. Extra errors: additional body parts (e.g., a hand with six fingers) 

3. Orientation errors: anatomically implausible orientations of body parts (e.g., the upper and lower 

body facing in opposite directions), 

4. Configuration errors: body parts that are disjointed (e.g. a hand disconnected from the body), 

displaced (e.g., a hand connected to the chest), or fused in ways that make their differentiation 

challenging (e.g., a hand merged with a fork) 

5. Missing errors: absent body parts (e.g., an arm without a hand) 

We developed an annotation manual (see our repository23) to mitigate inconsistent decisions 

among annotators. The manual introduces and explains the system using annotated examples. It instructs 

the annotators to only consider the main anatomical errors in generated images evident at first glance, 

while disregarding minor errors that require zooming in to detect. 

 

3.2. The Image Dataset and Qualitative Evaluation 

Our three models, 10 prompts and 8 images per prompt resulted in a dataset of 240 generated images,  

available from our repository23. Example images are shown in Figure 2.  
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Figure 2: Selected example images from the generated image dataset. (A) physician examining patient; (B) old couple in sauna; 

(C) athlete performing salto; (D) mother holding baby. 
 

While developing our image dataset, we noticed that some of the designed prompts proved to be 

challenging for some of the models. For example, the prompt about an aged couple in a sauna repeatedly 

led to an error in DALL-E 3 and even to temporary blocking of the account for a few hours without any 

explanation. We had a similar experience with the prompt that instructed DALL-E 3 to generate two 

women wrestling in an arena, but not when prompting for wrestling men. The other two models did not 

have any problems with these prompts. Initially, we planned to use the prompt ‘a couple kissing.’ 

However, DALL-E 3 declared this forbidden content, so we adjusted the prompt to ‘a couple hugging.’ 

We also noticed that when prompting the models to generate images that included two 

individuals, these individuals often looked almost identical, like twin or digital copies of each other. 

Another pattern that became apparent was that doctors always had a stethoscope, a detail that was 

impossible to avoid even when using negative prompting. Additional stereotypes included mothers being 

predominantly young and always having long hair, whereas older people, despite having somewhat 

wrinkled faces, were generated with bodies having impeccably smooth skin. Relatedly, across all models, 

the prompt ‘a couple hugging’ resulted in images of heteronormative couples. 
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Ethnic diversity was considerably more present in Stable Diffusion XL and Stable Cascade than 

DALL-E 3. When prompted to generate an image of a person without any explicit specification of gender, 

Stable Diffusion XL and Stable Cascade generated more gender-diverse images, whereas we had to 

prompt DALL-E 3 explicitly about gender aspects to generate a gender-balanced dataset. 

 

3.3. Annotation Results and Quantitative Evaluation 

 
Figure 3: A – Overall cumulative score distributions for annotation dataset. B – Distributions of overall image severity per 

model.  C – Distribution of cumulative scores per annotator. D  – pair-wise inter-rater agreement for the pairs of annotators 

across metrics. E – Distribution of cumulative scores per model. F – Aggregate error scores by severity per model. 

The distribution of cumulative scores for all images and all annotators is shown in Figure 3A, and the 

distribution of overall per-annotator error severity levels by model is shown in Figure 3B.  

The distribution of scores for each of the four annotators (Figure 3C) reveals potential inter-rater 

differences in annotation styles which reflect the subjectivity of the task. Figure 3D shows the inter-rater 

agreement for individual annotator pairs for the three different metrics: cumulative score agreement, 

overall per-annotator error severity agreement, and agreement per category. The average Krippendorff’s 

alpha coefficient for the cumulative score agreement, the overall error severity agreement and the binary 

category agreement are 0.44, 0.57 and 0.45, respectively. These are above random, but reflect a relatively 

poor level of agreement, which may be expected given the complexity and subjectivity of the rating task.  
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Figure 3E shows the distribution of cumulative scores for images across models. DALL-E 3 has 

the lowest cumulative error scores overall (mean 0.82, variance 0.73; Welch t-test statistic -6.72 and -

4.67; p-value 3.72E-10 and 7.12E-6; comparing DALL-E 3 to SDXL and Stable Cascade, respectively). 

Stable Cascade and SDXL were not significantly different (Welch t-test statistic of -1.05 and p-value 0.3), 

although we observed a slightly lower mean for SDXL but higher variance (mean of 2.1 and 1.8, variance 

of 2.72 and 3.69 for Stable Cascade and SDXL, respectively).  

Next, we compared the aggregate counts per error severity scores (‘a’, ‘b’, and ‘c’) across models 

(Figure 3F). While DALL-E 3 has a similar number of errors with severity ‘a’ as SDXL (101.73 and 

101.35, respectively), it has much fewer errors of severity ‘b’ or ‘c’ than the other models (severity b: 

51.99, 99.15, 89.53 for DALL-E 3, Stable Cascade, SDXL, respectively, severity c: 35.66, 136.81, 109.46 

for DALL-E 3, Stable Cascade, SDXL, respectively). Furthermore, SDXL has the highest number of 

severe ‘c’ errors. 

Next, we compared cumulative scores and aggregate error counts per error severity for each 

prompt (Figure 4). Certain prompts were more challenging and error-prone than others. For example, the 

prompt “five people sunbathing on a beach”, led to notably higher cumulative error score (mean 3.96, 

variance 6.1) than the prompt “mother or father holding a baby” (mean 0.82, variance 0.42) (Figure 4A). 

The difference is statistically significant (Welch t-test statistic 6.74; p-value 1.12E-7). The former prompt 

not only had the highest cumulative error score but also a significant number of ‘c’ (severe) errors (Figure 

4B). DALL-E 3, SDXL, and Stable Cascade exhibited numerous ‘a’, ‘b’, and ‘c’ errors, with ‘c’ errors 

(179.72) exceeding the cumulative counts of ‘a’ (71.55) and ‘b’ (86.67) errors.  
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Figure 4: Errors per prompts. A - Cumulative score. B - Error aggregates per severity  

In general, prompts involving groups of people, such as “five people sunbathing on the beach” and “five 

people playing volleyball,” not only had higher cumulative error scores but also exhibited a more dispersed 

score distribution (Figure 5A). In terms of the per-severity error counts (Figure 5B), prompts featuring 

groups of people had more errors overall, with a higher proportion of ‘c’ errors compared to prompts 

involving one or two people, although “people eating pizza” was an exception. Across all prompts, DALL-

E 3 consistently demonstrated the best performance, with lower overall error counts and fewer severe ‘c’ 

errors. Aside from “five people sunbathing on the beach,” DALL-E 3 showed a pattern where ‘a’ error 

counts exceeded those of ‘b’ and ‘c’ errors. Stable Diffusion XL and Stable Cascade performed similarly, 

however, aside from “five people sunbathing on the beach” and “five people playing volleyball,” Stable 

Diffusion Cascade had lower total error counts than Stable Diffusion XL and generally fewer ‘c’ errors.  
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Figure 5: Aggregates of errors by error type (A) and body part (B) 

For all models, configuration errors are the most prominent, with the count of ‘a’, ‘b’, and ‘c’ levels far 

exceeding those of the other error types (Figure 5A).  Moreover, the number of ‘c’ errors surpasses both 

‘a’ and ‘b’ errors, indicating that not only are configuration errors more common, but also often quite 

severe. Missing errors follow, with similar counts of ‘a’ and ‘c’ errors. Surprisingly, extra errors rank last 

in the total count. Nonetheless, these errors are more severe when they occur. Conversely, proportion 

errors, despite their higher overall count, are predominantly ‘a’ errors. For instance, many images 

generated by DALL-E 3 feature exaggerated muscle or body proportions without missing or extra body 

structures. Regarding body parts, hands are the most problematic anatomical region (Figure 5B). Face and 

limbs follow, with feet and torso being the least problematic.  

 

4. Discussion  

Generative text-to-image models have the potential for wide-ranging future applications in the medical 

domain, including for privacy-preserving synthetic data generation. However, it is necessary to better 

understand the limitations of such models and qualitatively and quantitatively assess the errors they make 

in generating images of human anatomy. Assessing generated content is challenging and subjective, and 

to the best of our knowledge this is the first attempt to create a systematic approach with broad 

applicability.  

There are several limitations to our method. As tested through double annotations and 

quantifications of inter-rater agreement in our sample, there is a subjective aspect in how the errors are 

identified in the images, particularly regarding their varying severity levels. The introduction of a manual 

aims to reduce subjectivity by defining operative rules for how to apply the method. We also recommend 
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training and discussions to mutually align annotators’ potentially subjective interpretations of error 

severities. However, even with the manual and training, it is impossible to fully exclude subjectivity from 

each annotator’s decisions on what counts as an anatomical error in generated images and error severity. 

This is because such decisions are necessarily influenced by multiple subjective factors, such as the 

annotator’s implicit assumptions about what counts as ‘normal’ anatomy or which body parts should be 

visible in an image from a particular perspective.  

There are two other limitations to our method. First, for images that show larger groups of 

multiple individuals, the application of our method’s manual error counting becomes impractical since the 

number of anatomical parts that must be visually examined for errors becomes too large and the body 

parts too small to be assessed without zooming in. For this reason, in our image dataset, we prompted for 

a maximum of five figures (resulting in images containing up to seven figures given the variability in 

outputs). Second, for practical reasons, we limited the error types to five, as increasing the number of 

types would have led to a significant increase in error categories (number of error types x number of 

anatomical regions), thus potentially overwhelming the annotators. This, however, meant that some error 

types (e.g. configuration and proportion errors) are more broadly defined than others (e.g. missing, extra, 

and orientation errors).  

The qualitative findings that we observed during the process of generating our dataset with the 

ten prompts are fully aligned with and further contribute to the ongoing discussion in the current literature 

around the implicit gender and ethnic biases of generative models 25–28. By prompting for older people in 

a sauna, we have also demonstrated an implicit ageism bias in these models, as images of older 

individuals were often rendered with unrealistically youthful bodies, a type of bias that has to our 

knowledge not previously been reported in the literature. 

Perhaps unsurprisingly, in our quantitative comparison the commercial model DALL-E 3 

performed better than the competing non-commercial alternatives. However, this result has to be balanced 

alongside qualitative observations of problems that were not covered by our anatomical error 

classification system, such as the ethnic bias, as well as the observed “twinning” (multiple people having 

the same facial features) and “hyper-idealisation” (overly perfect and unrealistic representations) of 

human figures, which was more prominent in DALL-E.  

More surprising was the result of the diachronic comparison of two versions of Stability AI’s 

models, the more recent Stable Cascade and the earlier Stable Diffusion XL. In our dataset, the 

quantitative comparison of errors showed that Stable Cascade generated a smaller amount of serious 

errors than Stable Diffusion XL but a comparable amount of moderate and even a larger amount of minor 

errors. We presume that the reason for this relative similarity of performance can be attributed to the fact 

that these two models use different architectures and that the Stable Cascade was primarily developed to 
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optimise the speed, efficiency and flexibility for fine-tuning of image generation, rather than to 

substantially reduce errors in the generated images29.  

Interestingly, in developing a range of prompts that covered different everyday scenarios, we 

discovered that some prompts challenged all the models. For example, “five people sunbathing on a 

beach” led to a surprisingly high number of severe errors in all three models. Our quantitative findings 

also reveal that prompts that describe less common bodily constellations, such as two people wrestling in 

an arena or a single individual performing a salto, also challenge all the models we tested, resulting in an 

increase of anatomical errors compared to less challenging prompts, such as a mother or father holding a 

baby. This is in line with previous results evaluating generative AI models which have shown that such 

models’ performance drops for prompts corresponding to scenarios less present in the training dataset30.  

A limitation of our findings is that our dataset was relatively small and only contained images 

generated by three text-to-image models using ten prompts. In the future, a more comprehensive 

comparison across further models using a larger number of prompts that cover a more heterogeneous 

range of everyday scenarios would be desirable. However, such comparison would require a larger team 

of annotators, which, in turn, could potentially exacerbate the problem of limited inter-rater agreement 

when applying a method that necessarily entails a subjective element of image evaluation. Thus, we also 

plan to explore approaches that use additional model types such as segmentation to attempt to partially 

automate parts of the error detection and classification system.  

 

 

5. Conclusions 

Generative AI is already having a significant impact in society and in medicine but developing a better 

understanding of the strengths and limitations of such models requires new methods to evaluate their 

outputs. Here, we report a novel approach to evaluate errors in the images of human anatomy from such 

models and apply our approach to compare models and their outputs. Our approach was developed with 

potential medical applications in mind, to enable systematically differentiating medically meaningful 

anatomical pathologies from model-driven unintended visual errors, without discriminating against 

persons with non-normative anatomies. We also foresee broader potential usage in non-medical contexts 

as generative AI images of humans become more prominent across wide-ranging applications. 

Additionally, our method could support academic research to assess and compare implicit visual biases of 

different generative models, supporting the improvement and optimisation of such models in the future.  
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