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Abstract 

White matter hyperintensities (WMH) are common neuroimaging findings in brain scans of elderly 

people. WMH lead to structural and functional changes in brain connectivity and impact cognitive 
function. Using 7T MRI, we examined 40 cognitively healthy subjects (16 females, mean age 69.3) 

with WMH presence, clustered into three groups of low, moderate, and high WMH burden. We 
used diffusion tensor imaging data to construct structural connectivity matrices and resting-state 

functional MRI data to construct functional connectivity matrices. Using network-based statistics 
(NBS) and graph-theory analysis (GTA), we compared the structural and functional network 

differences between the groups and their association to cognitive function. NBS analysis revealed 
altered structural connectivity strength in the default mode network (DMN) in the high WMH burden 

group, which correlated with the Trail Making Test scores. GTA revealed, that compared to the low 
burden, the high burden group had increased small-worldness and modularity in the structural 

connectivity, and increased assortativity in the functional connectivity. We found altered 
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betweenness centrality (BC) in the DMN on both structural and functional connectivity. The BC 
difference in the functional connectivity in the DMN between the high and the low WMH burden 

groups had a linear relationship with Montreal Cognitive Assessment scores. Our results 
demonstrate that WMH burden alters both structural and functional brain connectivity and affects 

large-scale network organization at local and global levels in an otherwise healthy elderly 
population.   

 
Keywords: leukoaraiosis, graph theory analysis, network-based statistics, high resolution MRI 

 
Introduction   

White matter hyperintensities (WMH) are small lesions in the white matter, identified by T2-
weighted brain magnetic resonance imaging (MRI)1,2. They are one of the most common structural 

changes associated with older age3 and are linked to diseases like stroke, mild cognitive 
impairment, Alzheimer’s disease and vascular dementias1,4–9. Investigation of the WMH-
associated changes in the brain in cognitively healthy elderly individuals can provide insights into 

the WMH pathology itself and its implications for developing cognitive impairment. 
 

WMH compromise the structural integrity of the brain and disrupt the communication between and 
within brain areas10. The impact of WMH on brain connectivity is two-fold. These lesions interrupt 

the white matter fiber tracts and damage the structural connections between brain regions11. 
Moreover, local and remote brain areas interact through large-scale networks and WMH can thus 

disrupt these functional connections12. MRI can non-invasively assess the large-scale structural 
and functional brain networks. Structural networks are visualized by diffusion tensor imaging (DTI) 

and studies have reported reduced structural connectivity (SC) strength and slower information 
processing in WMH patients11,13. The functional networks are assessed with functional MRI by 

measuring the temporally synchronized activation of blood-oxygen-level-dependent signals 
between different brain regions over time14. The resting-state functional networks, characterized 
by the repeated and coherent activation of widely distributed brain regions at rest15,16, are reported 

to be affected by WMH17,18. WMH associated changes in functional connectivity (FC) are found 
within the default mode network, dorsal attention network, salience/ventral attention network and 

frontoparietal executive control network19–23.  These functional networks are linked to cognition24–

26 and thus impairment in the large-scale neural connections is suggested to also disrupt the 

interaction of these networks, thereby impacting cognitive control and attention27. It has been 
shown that FC alterations due to WMH among these networks correlate with reduced processing 

speed, impaired memory function and reduced executive functioning12,21,27–29. Overall, the existing 
literature provides evidence that WMH change the structural and functional brain connectivity and 

impact cognitive function. However, it is still not fully understood how the pathological cascade 
induced by WMH disrupts the neural network so that it may cause progressive cognitive 
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impairment. Moreover, studies examining healthy elderly subjects with WMH typically focus on the 
functional connectivity, or the correlation between WMH burden and cognitive function30–32. 

Studies emphasizing both structural and functional connectivity in the same healthy elderly 
subjects are thus needed and may provide new insights as to how WMH lesions alter different 

communication modes in the brain and how these alterations relate to cognitive function.   
 

In recent years, network-based statistics (NBS)33 and graph theory analysis (GTA)34 have been 
utilized as a means of exploring the large-scale structural and functional brain connectivity. Both 

methods model neural connections as a graph and construct a connectivity matrix by defining the 
neuronal ensembles as “nodes”, and the white matter fiber tracts as “edges”. For the FC matrix, 

edges are defined as the temporal co-activation of different regions33,34. NBS can help identify the 
network differences i.e., the strength of the network connection, and GTA allows to study the global 

and local characteristics of the networks, for example by providing different types of information on 
the number of neural connections in the network34. To the best of our knowledge, few studies have 
utilized NBS and GTA together to extensively study the different structural and functional 

connectivity modes at local and global levels using subject-specific DTI and resting-state functional 
MRI (rs-fMRI) in a sample of cognitively healthy elderly with WMH.  

 
In this study we aimed to identify and compare the unique topological and large-scale functional 

network characteristics of a healthy elderly sample with high, moderate, and low WMH burdens. 
We applied NBS to identify the differences in structural and functional connectivity strength 

between the different burden groups based, respectively, on the DTI and rs-fMRI data. Next, we 
utilized GTA to construct whole-brain SC and FC matrices and the corresponding large-scale brain 

networks for different WMH burden groups. We then investigated and compared the global and 
local network characteristics and tested potential associations with cognitive function, evaluated 

by Trail Making Test and Montreal Cognitive Assessment. We anticipated that the high WMH 
burden group would have decreased structural connectivity strength and altered network 
characteristics both at global and local levels compared to the low burden group and we would find 

associations with the cognitive test scores.  
 

Methods   
Participants 

40 subjects (24 males; age 69.3 ± 7.3 years) signed informed consent, composing the control arm 
of a stroke project. The baseline characteristics are reported in our previous work35. Inclusion 

criteria followed as: 1) age 55-85 years; 2) no current or previous 
psychiatric/neurological/neurodegenerative disease or cognitive symptoms; 3) no brain 

tumor/neurotrauma; 4) no aphasia; 5) can provide informed consent; 6) can be scanned with 7T 
MRI. A designated senior medical doctor working in the Stroke Department finalized the inclusions. 
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The study followed the Declaration of Helsinki and was approved by the regional ethical committee 
of Central Norway (REK Number: 171264).  

 
Cognitive assessments   

A certified administrator conducted Montreal Cognitive Assessment (MoCA) Norwegian 8.1 
version36. Subjects with ≤ 12 years of education were given one extra point. The Trail Making 

Test37 (TMT) followed two parts: TMT-A including only randomly distributed numbers 1-25 and 
TMT-B including both randomly distributed numbers 1-13 and letters A-L. Scoring was based on 

the time to finish each test in seconds.  
 
MRI data acquisition   

We used MRI at 7T (Magnetom Terra, equipped with a Nova Medical Head Coil 1TX/32RX, 
Siemens Healthcare GmbH, Erlangen, Germany) for scanning. The process of mapping 

anatomical brain areas is explained in our previous work35. The DTI protocols were adapted from 
the Human Connectome Project38, acquired with a high spatial resolution of 1.4 mm isotropic 

(TR/TE = 5600 ms/71.0 ms) with three different shells of b = 0, 1000 and 2000 s/mm2/. For the rs-
fMRI, a full-brain coverage gradient-echo EPI sequence (100 slices; FOV = 198 x 198 x 150 mm; 

isotropic resolution = 1.5 x 1.5 x 1.5 mm; TR = 1.53 s; FA = 68°; TE = 21 ms; echo spacing = 0.77 
ms; bandwidth = 1456 Hz/Px; partial-fourier = 6/8; SMS = 4; phase-encoding direction = anterior-

posterior; 318 volumes) were collected. To implement susceptibility distortion correction during 
subsequent processing, four volumes with opposite phase-encoding direction (i.e., posterior-

anterior) were acquired. During rs-fMRI, we instructed the participants to look at a black cross on 
a white screen and remain focused.  
 

Structural preprocessing, WMH segmentation and subjects’ partitioning   
The preprocessing of the structural T1-weighted data, the corresponding WMH segmentation and 

subjects’ partitioning into 3 clusters are explained in our previous work35. We performed the brain 
parcellation on the output obtained from FreeSurfer using the available online tool39,40. This 

parcellation process utilizes the Schaefer atlas41, resulting in the overall division of the brain into 
200 regions. The following sections explain the processes to construct the matrices of structural 

connectivity (SC) using DTI data and the functional connectivity (FC) using rs-fMRI data.   
 

DTI   
Figure 1 illustrates the WMH spatial distribution at 7T, DTI, and rs-fMRI preprocessing and analysis 

pipelines. We conducted the whole-brain tractography using FSL42 and MRtrix43 for all the DTI 
preprocessing steps. The data processing involved the raw nifti data conversion to the MRtrix-

specific .mif format, denoising using TOPUP44, correction of artifacts using EDDY45, and bias field 
correction to ensure data quality. We then applied the ACT framework to segment the brain into 
cortical gray matter, subcortical gray matter, white matter and cerebrospinal fluid46. We aligned the 
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results with the T1-preprocessed image using FLIRT with 6 degrees of freedom and BBR 
options47.    

 
To begin the construction of the streamline, we performed spherical deconvolution on the multi-

shell-multi-tissue data using "dwi2response" function48 and we computed fiber orientation 
distributions (FODs) for grey matter, WM, and CSF using the "dwi2fod" function. After that, we 

carried out the normalization of the FODs. We generated 10 million streamlines with "tckgen," 
setting maximum and minimum lengths to 250 mm and 5 mm, respectively. To optimize the 

tractography results while preserving connectivity information, we employed the "tcksift2" 
algorithm49. Finally, we parcellated the resulting tractography data into 214 regions based on the 

Schaefer atlas41, which includes 14 regions of interests added from the freesurfer40 regions. We 
constructed the SC matrix to represent the connectivity strength between these regions.  

 
Rs- fMRI  
All the preprocessing steps were performed using fmriprep50, explained in our previous work35. 

Additionally, the average of 214 regions used the individual parcellated atlas were generated using 
315 time points of the bold signal40.   

   
For the construction of the brain network based on FC from rs-fMRI data, we employed the 

dpabinet tools51. By this approach, we created a correlation matrix using the Pearson correlation 
coefficient for 200 nodes. We used the connectivity matrix obtained from the DTI data using the 

weight conversion function from the Brain Connectivity Toolbox (BCT) for normalization52. We 
carried out the normalization process to ensure that the values in the FC matrix were within the 

range of 0 to 1 and achieve standardized comparisons during subsequent network analysis.    
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Figure 1. A. WMH spatial distribution at 7T, fractions of subjects in entire sample. Figure reused 
from Iandolo et al. (2024)35 under the Creative Commons Attribution 4.0 International License 
(https://creativecommons.org/licenses/by/4.0/). B. DTI and rs-fMRI pipelines for MRI data 

preprocessing and analysis. Individual SC and FC matrices were constructed using NBS and GTA 
for the brain-network analysis. The nodes were generated based on Schaefer Atlas of 200 parcels 

and 17 networks41. WMH: White matter hyperintensities, DTI: Diffusion tensor imaging, ACT: 

Anatomically-constraint tractography, SC: structural connectivity, rs-fMRI: resting state functional 

magnetic resonance imaging, FC: Functional connectivity, NBS: Network-based statistics, GTA: 

Graph theory analysis 

 
Network Analysis  

Network-Based Statistics (NBS) 
We employed network-based statistics (NBS) to assess intergroup differences in connectivity 

strength33. First, we performed two sample t-tests two-sided between each group (G1 compared 
to G2, G1 compared to G3, G2 compared to G3), followed by the permutation 5000 times according 
to PALM53. Then, we calculated the whole NBS results. A result of 200× 200 edges of t-statistics 

values were thresholded by an initial P < 0.001 as the output for each group comparison.   
 

Graph Theory Analysis (GTA)   
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We applied the graph theory analysis (GTA) to further investigate network topologies and the 
differences between the groups34. We computed all the topological attributes under different 

sparsity ranges, varying from 0.01 to 0.5 (with an interval of 0.01). Then, we calculated the Area 
Under the Curve (AUC) for sparsity ranges from 0.1 to 0.3454. To calculate the small-worldness, 

random times was set to 100 as default. Following the same approach, for the two-sample t-tests, 
we performed PALM53 to assess the differences between the groups on all the topological attribute 

measures.    
  

For all GTA calculations, we used BCT52 under the dpabinet toolbox51. We analyzed the brain 
network topology using multiple attributes: global level attributes of assortativity, clustering 

coefficient, average path length, modularity, and small-worldness; and the local level attributes of 
nodal efficiency, degree centrality and betweenness centrality for each individual node.    

  
Statistical analysis  
The correlation between significant edges identified in the NBS results and cognitive scales were 

analyzed using a significance level of FDR < 0.05 with the two-sample test permutation51. Ordinary 
least squares (OLS) regression was conducted for each clinical and cognitive measurement as 

independent variables to examine their individual relationships with both local and global 
properties, which served as the dependent variables. The analysis included an assessment of the 

relationships between these properties and proportional WMH calculated as the intracranial 
volume of the brain divided by total WMH, Age; scores of MoCA, TMT-A and TMT-B. For the 

between-group comparisons of local GTA properties, the non-parametric Mann-Whitney U test 
two-sided were used with the p value < 0.01.  

 
Results  

The demographic, clinical, cognitive and MRI characteristics of the cohort and WMH subgroups 
are reported in our previous work35.  Briefly, we stratified 40 subjects according to their peripheral 
and deep WMH lesion burden using k-means clustering. Then we used the Calinski-Harabasz 

metric to quantify the groups with most within-clusters compactness and between-clusters 
separation55, yielding 3 groups: Group 1 (G1) – low burden (low deep WMH and low-to-mild 

peripheral WMH), Group 2 (G2) – moderate burden (mild deep WMH and low-to-mild peripheral 
WMH), and Group 3 (G3) – high burden (heavy deep and peripheral WMH).  

 
Structural connectivity strength differ between the high and the low WMH burden groups 

We first investigated any differences in connectivity strength, assessed by edges, in the structural 
connectomes of the different WMH burden groups using NBS. We used the permutation-based p-

value (Pperm) set at 0.001 to determine the statistical significance. Statistically significant 
differences between G1 and G3 were found (Fig. 2), and the dominant networks corresponding to 
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the significantly different edges included visual network VIS-A (16.2%), default mode network 
DMN-B (13.4%) and DMN-A (8.8%), and executive control network CON-B (13.1%) 

(Supplementary Fig. 1). We found a significant correlation between the edges of the DMN and VIS 
and the Trail Making Test–B (TMT-B) scores, corrected FDR < 0.05 (Supplementary Fig. 2). 
Statistically significant differences were further found between G2 and G3 (Supplementary Fig. 3). 
Additionally in the full sample of 40 subjects, we found a significant linear relationship for the 

Montreal Cognitive Assessment (MoCA) scores and the edges of VIS, DMN, salience/ventral 
attention network (SAL/VAN) and CON, corrected FDR < 0.05, indicating subjects with a higher 

MoCA scores had more connectivity strength in the edges corresponding to these networks 
(Supplementary Fig. 4). We found no significant difference for the FC data. 

 

 
Figure 2. The edges with significantly different connectivity strengths identified by network-based 

statistics between G1 and G3 based on SC data. The node labels are grouped by the 17 Network 
Schaefer atlas41, statistical significance p < 0.001. G1 - low WMH burden group, G3 - high WMH 

burden group, SC: structural connectivity 

 

Structural and functional networks have different characteristics at global and local levels 
in the high- and low- WMH burden groups 
 
We investigated and compared the global and local characteristics of the structural and functional 

networks for different WMH burden groups using GTA. On the global level, we compared the 
groups in terms of small-worldness, modularity and assortativity. On the local level, we compared 
the groups in terms of nodal efficiency (NE), degree centrality (DC) and betweenness centrality 

(BC). We used the permutation-based p-value (Pperm) set at 0.05 to determine the statistical 
significance.  
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Global network in the high WMH burden group has increased structural small-worldness, 
modularity, and assortativity, but decreased functional assortativity  
 
We found significant differences in SC between G1 and G3 on Modularity_AUC (Pperm = 0.048), 

clustering coefficient Gamma_AUC (Pperm = 0.024) and SW parameter (Pperm = 0.03). 
Additionally, we found significant differences between G2 and G3 on Modularity_AUC (Pperm = 

0.011) and Assortativity_AUC (Pperm = 0.056). In FC, we found significant differences between 
G1 and G3 in Assortativity_AUC (Pperm  = 0.023) (Fig. 3).  

 

 
Fig. 3. Structural and functional connectivity global GTA differences among groups. Significant 

differences marked with an asterisk: For SC between G1 and G3 in small-worldness (Pperm = 
0.03), modularity (Pperm = 0.048); between G2 and G3 in modularity (Pperm = 0.011), assortativity 

(Pperm = 0.056); for FC between G1 and G3 in assortativity (Pperm = 0.023). SC: Structural 

connectivity, FC: Functional connectivity 
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Additionally, we used OLS regression analysis to determine significant associations between the 
global GTA parameters and explanatory variables of mean connectivity strength, WMH proportion, 

age, MoCA scores, TMT-A scores and TMT-B scores. The significant and non-significant results 
are reported in Supplementary Table 1. Supplementary Fig. 5 depicts the linear associations 

between the explanatory variables and each global GTA variable for SC and FC individually.  
 
Degree centrality and nodal efficiency are different between the high WMH burden and low 
WMH burden groups in large-scale functional neural networks 
 
In SC, we found significant differences between G1 and G3 on BC corresponding to the edges of 

SAL/VAN-A, DMN-B, MOT-A and LIM-B (p<0.01). Between G1 and G2, we found significant 
differences on BC in the edges of DMN-B and LIM-B (p<0.01). Between G2 and G3, we found 

significant differences on BC in the nodes of MOT-A (p<0.01). 
 
In FC, we found significant differences between G1 and G3 on BC corresponding to the edges of 

DMN-A and LIM-A(p<0.01), on DC in the edges of DAN-A, SAL/VAN-A, VIS-A, VIS-B and MOT-A 
(p<0.01), on NE in the edges of VIS-B and MOT-B (p<0.01). Between G1 and G2, we found 

significant differences on DC in the edges of VIS-A and MOT-A (p<0.01). Between G2 and G3, we 
found significant differences on DC corresponding to the nodes of TMP (p<0.01).   

 
The significant difference in FC on BC between G1 and G3 corresponding to edges of DMN-A was 

further found to have a significant linear association with the MoCA scores (p=0.01), indicating the 
difference in MoCA scores between these groups were reflected by the difference in betweenness 

centrality values among the edges of the DMN-A (Supplementary Fig. 6). We illustrated the BC 
difference along with the affected edges between G1 and G3 in Fig. 4 using spring layout56, SC 

thresholded proportionally using BCT52.  
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Figure 4. Illustration of the nodes and edges with their betweenness centrality (BC) values based 
on the structural connectome. The node sizes are based on the BC values of G1, and colors are 

based on the negative log p –values of the group differences. The labels of the nodes are taken 
from the Schaefer 17 subnetworks41.  

 

Secondly, by calculating the average of the 200 nodes and grouping them based on their indices 

into the corresponding 17 subnetworks41, we illustrated how the local GTA properties differ 
between groups for the specific networks. Figure 5. A-C presents the SC and FC profiles of the 

three groups for NE, DC and BC based on these calculations. Fig. 5.D-F presents the whole-
sample correlations of the subnetworks and WMH.   
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Figure 5. Average of network nodes grouped by the 17 subnetworks41. Left columns: SC, Right 

columns: FC. A-C. Network profiles for G1 (blue), G2 (red) and G3 (green). D-F. Correlation 

matrices for the whole sample and the subnetworks, last rows demonstrate WMH correlation. A, 
D: betweenness centrality. B, E: degree centrality. C, F: nodal efficiency. SC: Structural 

connectivity, FC: Functional connectivity, WMH: White matter hyperintensities. 

 

Discussion   
In this study, we investigated the structural and functional neural network characteristics of a 
sample of healthy elderly subjects without cognitive impairment. Within our sample, we compared 

three different groups with low (G1), moderate (G2) and high (G3) WMH burdens.  
 

NBS analysis revealed that different WMH burdens were associated with different structural 
connectivity strength, and as we hypothesized the high WMH burden group had decreased 

connectivity strength. These connectivity strength differences were more pronounced between the 
high (G3) vs. low (G1) burden group, compared to the moderate (G2) vs. high (G3) burden group. 

This could indicate that WMH burden is increasingly reflected in the degenerative changes in the 
structural connectomes between the groups. The differences between G1 and G3 were most 
prominent in the areas corresponding to DMN structures and these edges that have different 
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structural connectivity strength demonstrated a correlation with the TMT-B scores as we 
hypothesized priorly. The TMT necessitates the engagement of multiple cognitive abilities by 

recruiting different brain regions57–59, and part B further relies on the ability to modify answers and 
shift between different choices60. We found the difference in connectivity strength in the DMN-A 

network, which includes the areas of inferior parietal lobule, dorsal and medial prefrontal cortex 
(PFC), and posterior cingulate cortex (PCC). These areas have dense interactions with local and 

interregional brain areas61. Previous studies suggested that PCC connectivity within DMN were 
related to cognitive function62,63 and that the structural integrity of dorsolateral PFC could be a 

contributing factor for healthy cognitive aging64. Increased WMH volume has been previously 
associated with reduction in cognitive function17,19,30 and WMH load could predict the 

transformation from cognitively healthy to mild cognitive impairment65,66. The difference in 
connectivity strength between the high and low WMH burden groups in DMN areas correlating with 

the cognitive scores of TMT-B suggest that there could be a temporal relationship between the 
degree of WMH and increasing risk of gradual cognitive decline. WMH could thus represent an 
evolving pathological process, which in turn serve as a biomarker for the early stages of cognitive 

decline in otherwise healthy individuals.  
 

Next, we investigated the global network characteristics of the low, moderate, and high WMH 
burden groups by GTA and as we expected, the high WMH burden group demonstrated altered 

network characteristics. We found clear structural differences, such that the high WMH burden 
group (G3) had higher small-worldness, modularity and longer average path length compared to 

the low WMH burden group (G1). Small-worldness is calculated as the clustering coefficient to 
average path length ratio. This metric thus indicates that G3 employed a longer distance to transfer 

information compared to G1, suggesting rerouting of information resulting from reduced structural 
integrity. A primary benefit of small-world organization in the brain is to decrease energy and wiring 

demands67, by favoring low-cost, highly efficient pathways68. Damaged structural integrity in the 
neural network affects information transfer, which may result in rerouting through alternative nodal 
pathways. These additional connections could help improve efficiency within the network, however 

longer paths would also increase the metabolic costs such as the anatomical space needed for 
connections or the energy demand for information transfer69. It would also likely increase the time 

to accomplish the information transfer due to the overload of existing routes. One would further 
expect a higher error rate due to overload, which may not be consistent but dependent on the 

actual traffic at each timepoint. The increased energy demand for rerouting of information could 
have global consequences by shunting blood to areas with pathologically increased need for 

nutrient supply. Moreover, the higher modularity found in G3 suggests that this group had more 
densely connected modules with few external connections to the whole network, compared to both 

G1 and G2. Modularity has been suggested to promote adaptability and robustness70. For 
example, in response to abrupt local damage, existing modules can limit the impact to the region 
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where the damage occurs and rearrange the connections within the immediately affected module 
if it is necessary70–72. On the other hand, it has also been suggested that if modularity is too high, 

this may also affect communication and cooperation with other modules when needed70. 
Supporting these arguments, a previous PET-fMRI study found that the brain networks of 

Alzheimer’s patients had higher modularity and assortativity compared to patients with mild 
cognitive impairment73. Our findings imply that structurally, G3 may have more reliance on the 

modular organization, since their average paths are longer and long-range communication is 
metabolically costly, thus, modules can promote neural communication within the network. On the 

other hand, G1 could utilize both the long-range connections and the modules, as the neural paths 
are shorter and more energy efficient, thus it can maintain interactions among different areas better 

compared to G3. We found that structurally the networks in the high WMH burden group (G3) were 
the most assortative, while functionally the networks in the low WMH burden group (G1) were the 

most assortative. Assortativity indicates that in a network, high-degree nodes tend to connect with 
other high-degree nodes, whereas low-degree nodes tend to connect with other low-degree 
nodes74. Previous research suggested that when a high-degree node gets damaged, other existing 

high-degree nodes connect to each other to prevent dysconnectivity in the overall network75. As 
such, higher assortativity in the network is beneficial in case of structural damage or loss of a 

specific node75. However, particularly for functionally interdependent networks, higher assortativity 
has been reported to negatively affect network stability and to decrease the speed of information 

propagation75. Clinical studies focusing on functional connectivity have reported that lower 
assortativity was found in Asperger’s syndrome patients76 and Alzheimer’s patients73,77 compared 

to control subjects, and they have discussed that the change in assortativity may be attributable to 
a more random brain network reconfiguration. Conversely, higher assortativity in structural 

connectivity has been reported for Alzheimer’s patients compared to patients with mild cognitive 
impairment79. Similarly in our results, G3 presented structurally more assortative network 

organization, indicating high-degree nodes increased their connectivity with other high degree 
nodes, but as a result their network might have become less stable and slower. On the other hand, 
G1 presented functionally more assortative, indicating more stable network patterns and faster 

information transfer throughout the global network. It is also noteworthy that we have found 
significant linear associations with the TMT-B scores for all the global GTA measures on the 

structural connectome, suggesting the altered global network mechanisms impact the interaction 
of different brain regions, which is required during the cognitively demanding TMT-B task. 

 
Lastly, we examined the local network characteristics of the different WMH burden groups. 

Structurally, we found alterations in the betweenness centrality between high (G3), moderate (G2), 
and low (G1) burden groups. In neural networks, some nodes are more important or “central” 

compared to others, and betweenness centrality helps determine through which nodes information 
is more likely to propagate64. Higher betweenness centrality indicates that there are not many 
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pathway options in the network and information must thus pass through the same central nodes at 
all times putting high demands on these nodes. On the other hand, lower betweenness centrality 

indicates that the network is well interconnected and there are several alternative route options 
through which information can pass80. As we hypothesized, we found that G3 had altered local 

network characteristics. G3 had significantly higher betweenness centrality within the structural 
network compared to both G2 and G1. G2 also had significantly higher betweenness centrality 

compared to G1, indicating that the interconnectedness of the networks gradually decreases with 
increasing WMH burden. Furthermore, both in the structural and functional connectomes, the 

betweenness centrality differences were found among the DMN nodes, while in the functional 
connectome, we also found a positive linear relationship with MoCA scores, showing that the 

subjects with higher cognitive test scores also had higher betweenness centrality on functional 
connectivity among these DMN regions. Alterations in betweenness centrality among DMN nodes 

were previously reported for different patient cohorts compared to healthy subjects on both 
structural and functional connectivity. One study compared the structural connectomes of three 
groups i.e., WMH patients with mild cognitive impairment, WMH patients without mild cognitive 

impairment and healthy controls and reported betweenness centrality differences among DMN 
nodes along with a mediatory effect of betweenness centrality on the relationship between 

language function and WMH81. Another study investigated the functional connectomes of patients 
with cerebral small vessel disease and healthy controls and reported betweenness centrality 

differences among DMN nodes, further correlated with attention82. In the present study, we found 
that the high WMH burden group had both structurally and functionally altered BC among the 

nodes of DMN, but we only found a correlation with MoCA scores on the functional connectome. 
Our results demonstrate that the network of the high WMH burden group (G3) interconnected 

differently compared to the low WMH burden group (G1) particularly among the DMN nodes. The 
higher MoCA scores in the low WMH burden group (G1) showing a correlation with the functional 

betweenness centrality among the DMN nodes might be due to G1 having more alternative 
pathways to propagate information, whereas the high burden group (G3) with lower MoCA scores 
may have limited number of central nodes they could recruit among DMN nodes. 

 
Regarding the functional local network characteristics, we found differences between all groups 

for the degree centrality measure. Degree centrality is a measure of how strongly a node is 
connected to all the other nodes based on its direct connections83. We found that G3 had increased 

degree centrality among salience/ventral attention network (SAL/VAN) nodes, while G1 had 
increased degree centrality among dorsal attention network (DAN) nodes. Previous rs-fMRI studies 

have reported distinct functional connectivity patterns for DAN and SAL/VAN, but also a dynamic 
interaction between them based on task demand84,85. Rs-fMRI protocols commonly entail 

sustained and focused attention, which is suggested to relate to the activation of DAN, whereas 
SAL/VAN may take part in reorientation of attention in the presence of a salient stimulus84,86. Our 
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results suggest that G1 had more direct connections among nodes of DAN, which would potentially 
help successfully activate this network during rest-state fMRI protocol. On the other hand, in G3, 

the direct connections of several nodes may be disrupted due to WMH, possibly leading to the 
additional recruitment of SAL/VAN during the same protocol. The increased activation in SAL/VAN 

has also been previously reported to correlate with WMH load and it has been suggested to be a 
neuroplasticity mechanism, such that the increased activation could be a compensation towards 

WMH burden87. Lastly, we found a decrease in local nodal efficiency for G3 compared to G1. It 
has been previously reported that a decrease in local nodal efficiency can be associated with a 

higher WMH burden88,89. Our finding may thus suggest that G1 has more efficient neural 
communication because of less WMH impact on the functional network organization.  

 
Conclusion 
To summarize, our results demonstrated altered structural and functional connectivity associated 
with different WMH burdens in a cohort of healthy elderly. Compared to the low WMH burden, the 
high WMH burden group had both structural and functional differences in the global network and 

the local network. Altered DMN organization between the low WMH burden and high WMH burden 
groups having a correlation with cognitive test scores indicate that the interaction of brain areas 

during a cognitive task are affected by WMH burden. These results suggest that WMH lead to 
different communication modes in the brain networks of healthy elderly. Future studies can 

investigate WMH-related connectivity differences in patient cohorts i.e. small vessel disease 
patients and healthy subjects to establish the clinical application of WMH as an early marker for 

impending gradual cognitive decline.  
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