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Abstract 

Background: Single ventricle and hypoplastic left heart syndrome (SV/HLHS) patients require 
lifelong medical monitoring and management to address potential complications and optimize 
their health. The consequence of SV/HLHS had detrimental effects on multiple organ systems, 
including on peripheral blood mononuclear cells (PBMCs) and can weaken the immune system, 
exacerbating the risk of infection and various cardiovascular complications. 

Methods: Using single-cell RNA sequencing (scRNA-seq), we studied PBMCs from 33 
pediatric patients (10 females and 23 males) with SV/HLHS. By a pair-wide study design, the 
SV/HLHS patients were compared to 33 controls without heart diseases.  

Results: Four cell types account for the top 62% cumulative importance of disease effects on 
gene expression in different cell types, i.e., [T cells, CD4+, Th1/17], [T cells, CD4+, TFH], [NK 
cells], and [T cells, CD4+, Th2]. Significant sex differences were observed in [T cells, CD4+, 
TFH], with less prominent effects in female patients. A total of 6659 genes in different cell types 
were significantly differentially expressed (DE). Hierarchical clustering by WGCNA analysis of 
the DE genes revealed that DE genes in NK cells are most closely related to those in SV/HLHS. 
A total of 822 genes showed cell specific DE with opposite directions in different cell types, 
highlighting overrepresented MYC and IFN-γ activity in T cell and NK cell populations, as well 
as underrepresentation in monocytes and Treg cells.  

Conclusion: This study elucidates the complex transcriptome landscape in PBMCs in patients 
with SV/HLHS, emphasizing the differential impacts on various cell types. New insights are 
gained into the precise modulation of MYC and IFN-γ activity in SV/HLHS, which may help 
balance immune responses and reduce harmful inflammation, and promote effective tissue repair 
and infection control. 

Keywords: monocytes; NK cells; peripheral blood mononuclear cells; single-cell RNA 
sequencing; Treg cells 

 

1. Introduction 

Single ventricle and hypoplastic left heart syndrome (SV/HLHS) are complex congenital heart 
defects, necessitating restructuring of circulation to optimize blood flow and oxygenation1. 
Affected patients require lifelong medical monitoring and management to address potential 
complications and optimize their health. Peripheral blood mononuclear cells (PBMCs) have been 
implicated in the pathophysiology of various cardiovascular complications, including heart 
failure, arrhythmias, and vascular dysfunction. In particular, infection is a significant 
complication for individuals with SV/HLHS. The frequent use of central lines, catheters, and 
other medical devices in these patients serves as potential sources of infection2. In addition to 
bloodstream infections, patients are also at an increased risk for respiratory infections due to 
impaired immune function and potential respiratory complications from heart failure3. The 
chronic impact of SV/HLHS on PBMCs can weaken the immune system, exacerbating the risk 
of infection and various cardiovascular complications. Immunosuppression heightens 
susceptibility to both bloodstream and respiratory infections, further complicating clinical 
management. The altered immune profile contributes to cardiovascular issues such as heart 
failure, arrhythmias, and vascular dysfunction. Understanding the molecular and cellular 
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mechanisms underlying these complications is crucial. Key research questions include 
identifying the specific gene expression changes in PBMCs of patients with SV/HLHS compared 
to healthy controls and elucidating the underlying molecular pathways in PBMCs that contribute 
to the altered immune profile in SV/HLHS patients. Transcriptome profiling of PBMCs can offer 
valuable insights into the pathogenesis of SV/HLHS-related complications.  

      Using single-cell RNA sequencing (scRNA-seq), we examined the impact of SV/HLHS on 
PBMCs, uncovering sex differences across various cell types. By focusing on differentially 
expressed (DE) genes in SV/HLHS, we identified cell type-specific expression of a number of 
genes related to SV/HLHS. Additionally, we highlighted co-expressed gene sets related to 
SV/HLHS, providing new insights into the molecular underpinnings of the disease. 

 

2. Methods 

2.1 Subjects 

This study included 33 pediatric patients (10 females and 23 males) with SV/HLHS. Among 
these patients, 20 had European ancestry, 9 had African ancestry, 1 had Asian ancestry, and 3 
had other ancestries. The ages ranged from 0 to 21 years, with a median age of 6 years. Fifteen 
patients were diagnosed with SV, 24 were diagnosed with HLHS, and 18 underwent the Fontan 
procedure. Using a pair-wise study design, these patients were compared to 10 female and 23 
male de-identified children without heart disease. All experimental protocols were approved by 
the Institutional Review Board (IRB) of the Children’s Hospital of Philadelphia (CHOP) with the 
IRB number: IRB 16-013278. Informed consent was obtained from all subjects. If subjects are 
under 18, consent was also obtained from a parent and/or legal guardian with assent from the 
child if 7 years or older. 

2.2 PBMC scRNA-seq  

Blood samples were collected from each participant in EDTA-coated tubes and immediately 
processed at the Center for Applied Genomics (CAG) at CHOP. PBMCs were isolated using 
Ficoll density gradient centrifugation. scRNAseq was conducted with the 10X Chromium Single 
Cell Gene Expression assay (10x Genomics, Single Cell 3' v3). Sequencing was carried out on 
the Illumina HiSeq2500 platform using SBS v4 chemistry. The resulting data from the 
Chromium single-cell RNA sequencing were processed and analyzed using Cell Ranger 7.1.0 
software (10x Genomics), with reads aligned to the GRCh38 reference genome. 

Each pair of subjects was considered an independent experiment. The scRNA-seq data from the 
33 independent pairs of children were analyzed using the Seurat R package4 5 for pair-wise 
comparison, employing SCTransform for normalization and scaling. To enhance comparability 
among samples, Harmony 6  was used to align datasets post-principal component analysis (PCA). 
Uniform manifold approximation and projection (UMAP) (Becht et al. 2019) was applied to 
group cells into clusters. Analysis included 15 cell types, identified using singleR and the 
celldex::DatabaseImmuneCellExpression Data() function7 (Supplementary Figure 1).  

2.3 Assessing cell types affected by SV/HLHS using machine learning 

To assess the impact of SV/HLHS on different cell types, data were structured into a matrix 
where rows represented individual genes and subject pairs, and columns denoted different cell 
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types. Each cell in the matrix contained the log2 fold change (log2FC) in gene expression for 
each cell type between each case/control pair. Missing values, due to insufficient cell numbers 
for a specific gene in a cell type, were imputed using the mean log2FC from other experiments. 
If a gene was not expressed in a particular cell type, it was assigned a value of 0. 

A RandomForestRegressor from scikit-learn8 was selected for its ability to manage high-
dimensional data and generate feature importance metrics. The dataset was split into training and 
testing sets with the 0.8-0.2 train-test split. The number of trees (n_estimators) was set to 100, 
max_depth to none, min_samples_split to 2, and random_state to 42. The model's robustness was 
assessed using 5-fold cross-validation (CV) to prevent overfitting, with the mean squared error 
(MSE) calculated for each fold to evaluate performance. Post-training, feature importance values 
were used for indicating the relative contribution of each cell type to the model's predictions. 
Cell types were then ranked according to their importance scores. To estimate the statistical 
significance of feature importance values, the permutation_importance function from 
sklearn.inspection was employed. This function shuffled feature values to perform 1000 
permutations for each feature. The p-value for each feature was computed as the proportion of 
permuted importance values that were equal to or greater than the original importance values. 

2.4 Differential expression (DE) analysis 

Based on the results of the Seurat R package4 5, a gene with DE was defined as FDR<0.05 in at 
least 2 pairs of samples, and with log2FCs in the same direction within the same cell type. 
Distribution of DE genes by cell type is visualized with the Venn diagram and the UpSetR 
package9. 

2.5 Weighted Gene Co-expression Network Analysis (WGCNA) of DE genes 

WGCNA analysis was done in 6319 DE genes with expression detected in each of the 66 PBMC 
samples. The average expression level per cell type for each gene in each sample was calculated 
using log-normalized values with the Seurat R package4 5. The WGCNA analysis was performed 
using the WGCNA R package10 11. Hallmark gene set overrepresentation analysis (ORA) were 
done using the clusterProfiler R package12 and the msigdbr R package13.  

3. Results 

3.1 Cell types affected by SV/HLHS 

The CV MSE scores, the mean MSEs, and the standard deviations are shown in Table 1. The test 
MSEs are close to the mean CV MSEs in all three groups, indicating consistent model 
performance. The 15 cell types along with their corresponding feature importance values are 
shown in Table 2. Among the 15 cell types, two cell types, i.e. [T cells, CD8+, naive, stimulated] 
and [T cells, CD4+, naive, stimulated], were informative in less than 50% of the subject pairs. 
All the other 13 cell types were informative in at least 27 (82%) out of the 33 pairs of subjects.  

Four cell types account for the top 62% cumulative importance in disease effects on gene 
expression in different cell types, i.e., [T cells, CD4+, Th1/17], [T cells, CD4+, TFH], [NK 
cells], and [T cells, CD4+, Th2]. All four cell types have permutation P-values<0.001 in all 
subject pairs. Significant sex differences were observed in [T cells, CD4+, TFH], which was not 
affected in female patients (Table 2, Figure 1). 

3.2 DE genes 
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A total of 6659 genes in different cell types showed significant DE in the same direction in at 
least two independent pairs of samples (Supplementary Table 1). Gene sets that play critical 
roles in energy production, immune regulation, cell survival and proliferation, and maintenance 
of cellular integrity are significantly overrepresented (Table 3, Supplementary Figure 2). The 
distribution of the DE genes by cell type is shown in Figure 2. Among these genes, 822 genes 
showed opposite directions in different cell types (Supplementary Table 2).  

3.3 WGCNA of DE genes 

Among the 6659 DE genes, 6319 genes have expression detected in each of the 66 PBMC 
samples. Among the 15 cell types, 9 cell types are informative in all the 66 PBMC samples, 
including [Monocytes, CD14+], [NK cells], [T cells, CD4+, memory Treg], [T cells, CD4+, 
naïve], [T cells, CD4+, TFH], [T cells, CD4+, Th1], [T cells, CD4+, Th1/17], [T cells, CD4+, 
Th17], and [T cells, CD4+, Th2]. The genes were grouped into different modules based on the 
similarity of their expression patterns across samples (Supplementary Table 3). The Hallmark 
gene sets highlighted in each module are shown in Supplementary Table 4. The correlations of 
module eigengenes with cell types, sex, and disease status are shown in Fig.3. Among these 
modules, the turquoise and pink modules are significantly overexpressed in SV/HLHS. The 
turquoise module is significantly overexpressed in [NK cells] (Fig.3). Two Hallmark gene sets, 
MITOTIC_SPINDLE and G2M_CHECKPOINT, are highlighted in the turquoise module (Table 
4). Genes in the pink module exhibited variable expression patterns in relation to cell types and 
disease correlation. Specifically, these genes showed higher expression in [Monocytes, CD14+], 
but their expression in [Monocytes, CD14+] was downregulated in SV/HLHS. Additionally, 
their expression in T cells were overexpressed in SV/HLHS. No Hallmark genes were 
significantly overrepresented within this gene set. 

 

4. Discussion 

4.1 Immune cells affected by SV/HLHS 

This study showed four cell types of T cells to be most affected in SV/HLHS, i.e., [T cells, 
CD4+, Th1/17], [T cells, CD4+, TFH], [NK cells], and [T cells, CD4+, Th2]. Th1/17 cells 
producing both IFN-γ (Th1) and IL-17 (Th17). These cell types and cytokines may help combat 
infections, but may also contribute to immune dysregulation involved in myocardial damage, 
fibrosis, and vascular dysfunction14. In these cells, the Interferon-Induced Proteins with 
Tetratricopeptide Repeats (IFIT) family of proteins, including IFIT1, IFIT1B, IFIT2, and IFIT3, 
are significantly overexpressed in SV/HLHS, indicating an upregulated response to interferon 
signaling15. TFH cells are critical for the formation of germinal centers and the production of 
high-affinity antibodies16. The activation of TFH cells in SV/HLHS may be due to recurrent 
infections and chronic inflammation. Their prolonged activation can exacerbate cardiovascular 
complications, increasing the risk of autoimmunity. Interestingly, our study showed that TFH 
cells in females were less affected, which may explain their better clinical outcomes. Th2 cells 
are involved in the immune responses, including regulation of allergic responses17. Chronic 
activation of these cell types can contribute to an inflammatory environment and exacerbate 
immune dysregulation.  

4.2 NK cells and related DE genes 
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This study identified 6659 DE genes, which are overrepresented with critical roles in energy 
production, immune regulation, cell survival and proliferation, and maintenance of cellular 
integrity. By WGCNA analysis of the DE genes, hierarchical clustering revealed that genes 
expressed in NK cells are most closely related to SV/HLHS (Fig.3). NK cells are a vital 
component of the innate immune system, targeting and killing virally infected cells18. Genes in 
the lightgreen (HALLMARK_TNFA_SIGNALING_VIA_NFKB overrepresented in this 
module, with higher expression in NK cells, upregulated in SV/HLHS), midnightblue 
(HALLMARK_ALLOGRAFT_REJECTION overrepresented in this module, with higher 
expression in NK cells, downregulated in SV/HLHS), and turquoise 
(HALLMARK_MITOTIC_SPINDLE and HALLMARK_G2M_CHECKPOINT overrepresented 
in this module, with higher expression in NK cells, upregulated in SV/HLHS) modules were 
significantly correlated with NK cells (Supplementary Table 4). Upregulation of genes involved 
in the TNF-alpha signaling pathway via the NF-kB pathway regulates cell proliferation, 
differentiation, and survival, and leads to the activation of inflammatory responses19. The 
aggregate effects of downregulated expression of the gene set 
HALLMARK_ALLOGRAFT_REJECTION in NK cells may result in reduced cytotoxic activity 
and impaired ability to target and eliminate infected cells, weakening overall immune 
surveillance and response13. The overexpression of the genes of 
HALLMARK_MITOTIC_SPINDLE and HALLMARK_G2M_CHECKPOINT in NK cells can 
increase proliferation and cell cycle activity20. 

4.3 Cell type specific DE genes 

Cell-type specific DEs are commonly identified in this study, underscoring cellular heterogeneity 
consequent to SV/HLHS (Fig.2). In particular, 822 (12%) genes showed cell-type specific DE 
with opposite directions in different cell types (Supplementary Table 2). Among these, a number 
of genes are related to MYC targets, variant 1 and interferon gamma response. 

The HALLMARK_MYC_TARGETS_V1 genes are direct targets of the MYC transcription 
factor, which is a critical regulator of cell growth, proliferation, and metabolism21. In SV/HLHS, 
these genes tend to be upregulated in [T cells, CD4+, naive], [T cells, CD4+, TFH], [T cells, 
CD4+, Th1], and [T cells, CD8+, naive]; and downregulated in [Monocytes, CD14+], 
[Monocytes, CD16+], [T cells, CD4+, memory TREG], [T cells, CD4+, naive, stimulated], [T 
cells, CD4+, Th17], and [T cells, CD4+, Th2]. The differential regulation of MYC targets 
underscores the functional specialization between T cells and monocytes. The upregulation in 
naive CD4+ T cells, TFH cells, Th1 cells, and naive CD8+ T cells, particularly upon activation, 
require robust proliferative capacity, which is supported by MYC target upregulation22. In 
contrast, monocytes, which are more involved in immediate and direct immune responses, do not 
rely heavily on such proliferation mechanisms23. The downregulation in memory Treg cells, 
which are crucial for maintaining immune tolerance and preventing autoimmunity26, may lead to 
a reduced number for these cells to control excessive immune responses, possibly leading to 
autoimmunity or prolonged inflammation. 

The HALLMARK_INTERFERON_GAMMA_RESPONSE genes are upregulated in response to 
interferon-gamma (IFN-γ), a cytokine crucial for innate and adaptive immunity24. In SV/HLHS, 
these genes tend to be upregulated in [T cells, CD4+, naive], [T cells, CD4+, naive, stimulated], 
[T cells, CD4+, TFH], [T cells, CD4+, Th17], [T cells, CD4+, Th1], and [T cells, CD8+, naive]; 
and downregulated in [Monocytes, CD14+] and [Monocytes, CD16+]. The upregulation of IFN-
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γ response genes in T cells suggests a robust activation state and readiness for immune response 
in these cells, indicating a potential for strong pro-inflammatory signaling. Conversely, 
monocytes play a crucial role in inflammation and tissue repair23. Monocytes differentiate into 
macrophages and dendritic cells, which help clear debris, secrete growth factors, and regulate 
inflammation, thus promoting healing and regeneration25. The reduced IFN-γ response in 
monocytes might imply a diminished capacity to manage inflammation and repair tissue23.  

Precisely modulating MYC and IFN-γ activity in SV/HLHS, based on the insights gained from 
our study, may balance immune responses, reduce harmful inflammation, and promote effective 
tissue repair and infection control. More specifically, at the cellular level, this precise modulation 
could involve targeting overactive T cell populations while bolstering the proliferation and 
function of monocytes, balancing effective infection control with minimizing harmful 
inflammation.  

Conclusion 

This study elucidates the complex transcriptome landscape in PBMCs in SV/HLHS, emphasizing 
the differential impacts on various cell types. The significant correlation between gene 
expression in NK cells and SV/HLHS highlights a cellular emphasis. A number of gene sets in 
NK cells offer insights into the underlying mechanisms and provide targets for intervention in 
SV/HLHS. Additionally, specific genes that exhibit differential expression in opposite directions 
across various cell types present unique targets and opportunities to fine-tune immunity in 
SV/HLHS. Future research should explore therapeutic interventions aimed at modulating 
immune responses by targeting the critical gene sets identified in this study.  
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Table 1 Different parameters and train-test split ratios tested for the RandomForestRegressor 

Subjects Cross-Validation MSE Scores Mean CV 
MSE 

Standard 
Deviation 
of CV 
MSE 

Test MSE 

All [4.62e-03, 5.20e-03, 4.88e-03, 5.13e-
03, 5.23e-03] 

5.01e-03 2.31e-04 4.81e-03 

Females [6.00e-03, 5.75e-03, 6.37e-03, 6.24e-
03, 5.32e-03] 

5.94e-03 3.72e-04 5.76e-03 

Males [5.54e-03, 5.45e-03, 5.73e-03, 5.56e-
03, 5.68e-03] 

5.59e-03 1.00e-04 5.38e-03 
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Table 2 Cell types with corresponding feature importance values 

Cell type Importance 
(all) 

Permutation 
P-value* (all) 

Importance 
(female) 

Permutation 
P-value* 
(female) 

Importance 
(male) 

Permutation 
P-value* 
(male) 

T cells, CD4+, Th1/17 0.2857 0.000 0.2874 0.000 0.2866 0.000 
T cells, CD4+, TFH 0.1330 0.000 0.0491 0.939 0.1325 0.000 
NK cells 0.1126 0.000 0.1269 0.000 0.0909 0.000 
T cells, CD4+, Th2 0.0860 0.000 0.0488 0.000 0.0820 0.000 
Monocytes, CD14+ 0.0639 1.000 0.0633 1.000 0.0634 1.000 
T cells, CD4+, naïve Treg 0.0528 0.000 0.0332 0.000 0.0832 0.000 
T cells, CD4+, Th17 0.0500 0.000 0.0876 0.000 0.0410 0.000 
Monocytes, CD16+ 0.0494 1.000 0.0501 1.000 0.0484 1.000 
T cells, CD8+, naïve 0.0320 1.000 0.0274 0.000 0.0316 0.984 
T cells, CD4+, naïve 0.0294 0.000 0.1192 0.000 0.0262 0.000 
B cells, naïve 0.0285 0.000 0.0328 0.000 0.0253 1.000 
T cells, CD4+, memory Treg 0.0259 0.000 0.0229 0.000 0.0349 0.000 
T cells, CD8+, naïve, stimulated

# 0.0190 1.000 0.0194 1.000 0.0182 1.000 
T cells, CD4+, Th1 0.0189 1.000 0.0223 1.000 0.0206 1.000 
T cells, CD4+, naïve, stimulated

# 0.0131 0.000 0.0094 0.000 0.0151 0.000 
*Based on 1000 permutations. #[T cells, CD8+, naive, stimulated] and [T cells, CD4+, naive, stimulated] were informative in less than 
50% of the subject pairs. 
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Table 3 Hallmark gene sets overrepresented in differentially expressed genes in SV/HLHS 

HALLMARK GeneRatio BgRatio pvalue p.adjust qvalue 

MYC_TARGETS_V1 164/2073 200/4383 3.64E-25 9.10E-24 5.75E-24 

OXIDATIVE_PHOSPHORYLATION 164/2073 200/4383 3.64E-25 9.10E-24 5.75E-24 

INTERFERON_GAMMA_RESPONSE 144/2073 200/4383 3.74E-13 6.23E-12 3.93E-12 

TNFA_SIGNALING_VIA_NFKB 137/2073 200/4383 4.74E-10 5.92E-09 3.74E-09 

PROTEIN_SECRETION 74/2073 96/4383 1.62E-09 1.62E-08 1.02E-08 

MTORC1_SIGNALING 132/2073 200/4383 3.83E-08 3.19E-07 2.02E-07 

HEME_METABOLISM 130/2073 200/4383 1.89E-07 1.35E-06 8.54E-07 

INTERFERON_ALPHA_RESPONSE 67/2073 97/4383 9.69E-06 6.06E-05 3.82E-05 

ALLOGRAFT_REJECTION 123/2073 200/4383 2.55E-05 1.41E-04 8.93E-05 

TGF_BETA_SIGNALING 40/2073 54/4383 5.25E-05 2.63E-04 1.66E-04 

IL2_STAT5_SIGNALING 120/2073 199/4383 1.12E-04 5.07E-04 3.21E-04 

UNFOLDED_PROTEIN_RESPONSE 70/2073 113/4383 1.07E-03 4.47E-03 2.82E-03 

REACTIVE_OXYGEN_SPECIES_PATHWAY 34/2073 49/4383 1.39E-03 5.35E-03 3.38E-03 

APOPTOSIS 94/2073 161/4383 2.63E-03 9.39E-03 5.93E-03 

ANDROGEN_RESPONSE 61/2073 100/4383 3.71E-03 1.24E-02 7.80E-03 

DNA_REPAIR 87/2073 150/4383 4.82E-03 1.51E-02 9.52E-03 

COMPLEMENT 112/2073 200/4383 7.15E-03 2.10E-02 1.33E-02 

ADIPOGENESIS 110/2073 200/4383 1.54E-02 4.21E-02 2.66E-02 

PI3K_AKT_MTOR_SIGNALING 61/2073 105/4383 1.60E-02 4.21E-02 2.66E-02 

MITOTIC_SPINDLE 109/2073 199/4383 1.84E-02 4.59E-02 2.90E-02 
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Table 4 Hallmark gene sets overrepresented in the turquoise module correlated with SV/HLHS and NK cells  

HALLMARK qvalue Genes 

MITOTIC_SPINDLE 3.13E-04 

LRPPRC/SPTBN1/CLASP1/RAB3GAP1/FLNB/PPP4R2/RASA2/SMC4/RFC1/CENPE/ARHGAP10/RICTOR/RANBP9
/CD2AP/LATS1/EZR/RAPGEF5/PCM1/ARFGEF1/ABL1/ABI1/KIF5B/PCGF5/PXN/ARHGEF7/KLC1/AKAP13/PAF
AH1B1/CDC27/CSNK1D/MAPRE1/STAU1/TIAM1/PCNT/MYH9 

G2M_CHECKPOINT 3.13E-04 

MTF2/CUL3/SMARCC1/STAG1/SMC4/YTHDC1/HNRNPD/CENPE/SLC12A2/HUS1/DBF4/CUL1/EZH2/WRN/RAD
21/RAD23B/ABL1/KIF5B/NUP98/RBM14/CUL5/SLC38A1/CCNT1/SLC7A1/CUL4A/ARID4A/KNL1/GSPT1/SLC7A5/
PAFAH1B1/CDC27/SS18/CHAF1A/DDX39A/NUP50 
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Supplementary Table 1 Average log2FC of the DE genes by the 15 cell types 

*Positive value means higher expression in cases. 

Supplementary Table 2 DE genes with opposite directions in different cell types 

*Positive value means higher expression in cases. 

Supplementary Table 3 The DE genes grouped into different modules  

 

Supplementary Table 4 Significant Hallmark gene sets overrepresented in each module 
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Figures 

 

 

Fig.1 Cell types affected in SV/HLHS. X-axis represents feature importance in RandomForestRegressor. 
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Fig.2 Distribution of DE genes by cell type 
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Fig.3 WGCNA module relationships 
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Supplementary Figure 1 Cell types of PBMCs in a case and control pair. 
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Supplementary Figure 2 Hallmark Overrepresentation Analysis for DE genes 
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