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Abstract

High-resolution temporal data on contacts between hosts provide crucial information on the
mixing patterns underlying infectious disease transmission. Publicly available data sets of contact
data are however typically recorded over short time windows with respect to the duration of an
epidemic. To inform models of disease transmission, data are thus often repeated several times,
yielding synthetic data covering long enough timescales. Looping over short term data to approx-
imate contact patterns on longer timescales can lead to unrealistic transmission chains because of
the deterministic repetition of all contacts, without any renewal of the contact partners of each
individual between successive periods. Real contacts indeed include a combination of regularly re-
peated contacts (e.g., due to friendship relations) and of more casual ones. In this paper, we propose
an algorithm to longitudinally extend contact data recorded in a school setting, taking into account
this dual aspect of contacts and in particular the presence of repeated contacts due to friendships.
To illustrate the interest of such an algorithm, we then simulate the spread of SARS-CoV-2 on our
synthetic contacts using an agent-based model specific to the school setting. We compare the re-
sults with simulations performed on synthetic data extended with simpler algorithms to determine
the impact of preserving friendships in the data extension method. Notably, the preservation of
friendships does not strongly affect transmission routes between classes in the school but has a clear
impact on the infection pathways between individual students. Our results moreover indicate that
gathering contact data during two days in a population is sufficient to generate realistic synthetic
contact sequences between individuals in that population on longer timescales. The proposed tool
will allow modellers to leverage existing contact data, and contributes to the design of optimal
future field data collection.

1 Introduction

Face-to-face contacts between individuals represent crucial transmission paths for respiratory viruses,
such as SARS-CoV-2, influenza or RSV (respiratory syncytial virus) [1]. These contacts occur through-
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out day-to-day life, e.g., in public transport, among children in schools, coworkers in workplaces, house-
hold members, as well as in the wider community, creating opportunities for the spread of diseases.
The global contact network among individuals in a population, which thus approximates possibilities
for transmission, remains challenging to measure [2–4]. Nonetheless, an increasing number of research
groups have developed ways to automatically record high-resolution empirical contact networks in a
variety of settings, particularly in various types of schools [5–10], but also in a university [11], in an
office building [12], in a conference [13], in hospital wards [14–17], in households in rural villages [18]
or on a cruise-ship [19]. These empirical contact networks in turn can provide valuable input to inform
models of infectious disease spread and to design or evaluate intervention strategies [5, 15, 17, 20–25].

Several characteristics of the network of contacts impact the patterns of a spread unfolding on that
network. For instance, clustering (the tendency of the contacts of a person to be in contacts them-
selves) [26, 27], heterogeneity in the number of contacts per individual [28], contact duration [9, 29],
and the repetitions of contacts in successive periods (e.g., days) [13, 30–33] all influence the disease
spread. The role of contact repetition [26, 27] in particular has been recently considered [33, 34]:
When generating contact networks from contact matrices [35, 36] at a daily temporal scale to inform
disease spreading models, not taking into account the fact that a non-negligible fraction of contacts
are repeated from one day to the next (up to 35% of reported contacts according to some surveys [31])
can lead to overestimated attack rates [33]. Additionally, contact repetition (over different days) and
retention (the tendency of people to remain in contact over time with an individual) can also affect
the identification of superspreaders and superspreading events [34]. When building synthetic data on
contacts between individuals to feed e.g. agent-based models of disease spread [13, 37, 38], correctly
taking into account the presence of repeated contacts is therefore crucial.

Despite the increased availability of high-resolution data on contact patterns [3, 5–14, 16, 19], each
data set remains limited to a given specific context and data collection period, and most often to a
relatively short data collection time window of a few days. On the other hand, agent-based models need
to be simulated on long time scales and their results should not depend on the specificity of a data set
collection time [25, 29]. These models thus need to be fed by realistic synthetic data covering arbitrarily
long time scales. Such inputs are obtained by longitudinally extending recorded data, often by simply
repeating the empirical data over and over [13, 21, 22, 24, 39], which means that each and every
contact or contact pattern is repeated periodically in such synthetic data, with no variation. So far,
few works have explored the potential of leveraging data on the actual amount of repetition of contacts
between different periods (e.g., days) to extend longitudinally existing data sets in a way that respects
the balance between repeated contacts and more casual, randomly occurring ones. This is particularly
relevant for contacts recorded in educational settings where (1) various respiratory viral infections
circulate among students [40] that densely mix in an indoor context [6, 7] and (2) strong social ties
due for instance to friendships and associated with longer contacts [41] drive behaviour, inducing
repeated encounters with correlated characteristics that co-exist with casual interactions [7, 8].

Here, we tackle this issue and present and illustrate methods to use empirical contact data recorded
during a few days to generate long-term synthetic contact data with realistic statistical properties
and on arbitrarily long timescales, in the context of a secondary school [8]. We specifically design
and compare two mechanisms for this purpose: In the “Friendship-based approach”, we generate
synthetic contacts that take into account data on the repetition of contacts across different days,
which we interpret as a sign of probable friendship between the corresponding individuals; In the
“Class-mixing-based approach” on the other hand, we preserve the mixing patterns between classes
in each day of synthetic data, but do not consider any other memory effects between days (i.e., we
do not take into account the data on contact repetition). As a baseline, we also consider a simple
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procedure of looping the empirical contact data.

We then use the three types of obtained synthetic data sets to separately inform a realistic agent-based
model of the spread of SARS-CoV-2 in a school [24]. In order to evaluate the impact of taking into
account friendship relations in this context, we compare the outcomes of the numerical simulations
fed by the various types of synthetic contact data, focusing on the one hand on the distributions of
outbreak size distributions, and on the other hand on the infection networks and infection trees [42, 43],
which summarize the preferential paths along which the disease progresses through the population.

2 Methods

2.1 Empirical contact networks

We consider empirical contact data collected among students in the second grade of “Classes Préparatoires” [8].
These classes are offered by some high-schools in France during two additional years to prepare stu-
dents for entrance examinations to higher-education establishments in France. In the “Lycée Thiers”
(Marseille, France) where the data was gathered, the second grade of these classes is organised in 9
classes of 3 specialties (mathematics: 3 “MP” classes, biology: 3 “BIO” classes, and physics-chemistry:
3 “PC” classes). Close face-to-face proximity events were recorded between students in these 9 classes
during school hours [7], as described in [8, 44]: such contacts were recorded between students wearing
RFID (Radio Frequency Identification) sensors that exchanged low-power data packets when in close
proximity (up to 1-1.5 meters). Data was collected over four and a half days (Monday the 2nd to
Friday the 6th of December 2013), with a high participation rate: out of the 379 students in the 9
second grade classes, 327 participated to the study (86.3% participation rate). The resulting data sets
are temporal networks were nodes represent students and temporal edges represent recorded proximity
events with a temporal resolution of 20 seconds [44, 45]. Such data can also be expressed as lists of
timestamps tij for each pair (i, j) of individuals who have been in contact. We moreover build, from
the data and without loss of information, daily contact networks as follows: for each day d of the
deployment, such a network Gd includes students as nodes and encodes the occurrence of contacts
between them during that day as contact links, denoted (i, j), that carry both a weight wd

ij and a

contact timeline tldij . The weight wd
ij is given by the cumulative time recorded in contact between

students i and j during day d, and the “activity timeline” tldij is given by the list {tij}d of all contact

timestamps between nodes i and j during day d (note that wd
ij is thus simply proportional to the

length of the list {tij}d).

Using the daily contact networks, we identify the pairs of students who have been in contact in at least
two different days of the data collection. Interestingly, the data also includes information on friendship
relations between students, as gathered from a survey [8]. We use the combination of contact data
and friendship data to show in the Supplementary Information that the repetition of contacts across
distinct days is an indication of the likely existence of a friendship relationship between the students.
We will thus refer in the following to the pairs of students that are in contact during at least two days
of the deployment as “friendship links”. Note that the links of each daily network Gd will thus be
divided into (1) a set Fd of friendship links (i, j) that are observed in at least one other daily network
Gd′ (with d′ ̸= d) and (2) a set Cd of “casual” links between individuals who have been observed in
contact only in day d.
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2.2 Synthetic extension of the contact data

We propose here two methods to leverage the empirical daily contact networks and create synthetic
ones among the same students, with high-resolution timelines and preserving several important sta-
tistical properties observed in the empirical data. For each day, each method takes as input a daily
contact network and can output an arbitrary number of similar, statistically plausible, synthetic daily
contact networks. Both methods preserve in particular the class-mixing matrix of the day consid-
ered, defined as the number of contact links NAB between each pair of classes A, B and within each
class A = B during that day. In the first method, which we call the “friendship-based approach”,
friendship links of the day considered are preferentially retained in the synthetic version of that day.
This approach hence preserves the local structure of the students friendships, while additional random
contact links mimic stochasticity in contact behaviour (the “casual” links in the data). In a second
approach, the “class-mixing-based approach”, the distinction between friendship and casual links is
not taken into account to create the synthetic data, which only preserve the class-mixing matrix and
the overall timeline of when interactions occur within a class or between two classes (to respect e.g.
the fact that interactions between classes may take place only when the school schedule allows it).

2.2.1 Friendship-based approach

In this approach, we take into account that, as discussed above, the contact patterns among students
are not fully random but bear similarities over different days. Contacts between a given pair of students
may reoccur in different days [6, 34, 46], in particular between friends, and the contacts total duration
(link weights) of friendship links also tend to be larger [7].

We thus propose the algorithm below (summarized in Fig. 1) to generate synthetic daily contact
networks. The algorithm takes as input (1) one day of data collection, that we call the base day
and (2) the separation between friendship links and casual links of that day. It can thus be run
independently for each day of data collection once the friendship links have been extracted from the
comparison of the various empirical daily contact networks. The algorithm generates contact links
class by class, and pair of classes by pair of classes until all classes (and pairs of classes) have been
considered. Combining all the contact events generated provides synthetic contacts inheriting the
properties of the daily contact network of the base day considered.

For a given base day d, the algorithm proceeds as follows to build synthetic contact networks between
the students of each pair of classes A and B (and within the students of each class A = B).

1. Inputs from data: the algorithm uses as inputs the number of contact links Nd
AB between classes

A and B on the base day, the lists of contact links {(i, j)}dAB between them (i.e., all contact
links such that i is in class A and j is in class B or vice-versa), of their weights W d

AB = {wij}
(cumulative contact durations) and associated timelines TLd

AB = {tlij}. The inputs include as
well the friendship links on the base day between individuals of classes A and B, which are put
in a dictionary of the form FrdAB[(i, j)] = {weights : {w}ij , timelines : {tl}ij}, where {w}ij
is the list of weights of (i, j), and {tl}ij the list of timelines of (i, j) on all days in which the
friendship link is observed in the data.

2. Taking friendships into account: Each of the friendship links in FrdAB is included as a con-
tact link in the synthetic network with probability f . For each such link (i, j) added in this
step, a synthetic weight and timeline are generated from {w}ij and {tl}ij (see Supplementary
Information for details).

3. Remaining links: Additional links are added one at a time. Each such link is either extracted
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from the list of empirical contact links {(i, j)}dAB, with probability p, or created randomly (with
probability 1− p) by choosing at random two students respectively in classes A and B. In both
cases, with probability ptr we add an extra step to preserve transitivity in the network [47] (the
fraction of closed triangles, i.e. of structures {(i, j), (j, k), (k, i)} among all possible connected
triads, i.e., such that at least {(i, j), (j, k)} exist). Specifically, if the transitivity of the current
synthetic network between classes A and B is lower than the empirical one, the additional link is
chosen (either in {(i, j)}dAB or randomly) such that it closes a triangle; conversely, if the current
transitivity is too high, the additional link is chosen in order to create an open triangle. With
probability 1− ptr, the choice of the additional link is made independently from the transitivity
of the network. This procedure of adding links is iterated until the synthetic contact network
between classes A and B (or within class A = B) contains Nd

AB contact links. Each added
contact link is then associated a timeline and matching weight selected randomly from TLd

AB

and W d
AB.

4. Weight correction: Once the synthetic contact network between classes A and B (or within class
A = B) includes the correct number of contact links, timestamps can be added or removed from
activity timelines in the network (longer timelines are preferably modified) to ensure that the
sum of all link weights in the synthetic contact network between classes A and B (or within
class A = B) is within a 10% tolerance of the corresponding quantity in the empirical contact
network of the base day – see Supplementary Information for details.

The above steps are repeated for every pair of classes A and B and for each class (A = B). The
resulting synthetic contact networks are then merged into daily synthetic contact networks involving
all individuals present in the base day. By construction, these synthetic contact networks preserve
the number of contact links and the total time in contact within and between each class (steps 3 and
4). In addition, as the timelines of the contact links are taken from the lists of empirical ones, the
timetable of the base day is also preserved.

In the algorithm, the parameter f controls the average fraction of friendship links that are preserved
in the synthetic data. The parameter 1− p controls the amount of stochasticity, by allowing links in
the synthetic network between students who have actually not been observed in contact during the
base day. In the following, we describe how we tune these parameters (f and p), as well as ptr, to
reproduce some features of the empirical networks.

2.2.2 Parameters optimisation

We tune the parameters of the model in order to take into account the day-to-day similarity between
daily contact networks observed empirically. To quantify this similarity, we consider the local cosine
similarity [48], which measures the similarity in the contact links of an individual i in two daily contact
networks (on days d1, d2). Mathematically, it is given by

LCS(i, d1, d2) =

∑
j∈N1∩N2

wij(d1)wij(d2)√∑
j∈N ∗

1
wij(d1)2

√∑
j∈N ∗

2
wij(d2)2

(1)

where N1 (resp. N2) refers to the set of nodes j in contact with node i on day d1 (resp. d2) with
contact link weights wij(d1) (resp. wij(d2)). The sums in the denominators run over N ∗

1 (resp. N ∗
2 )

which is the set of nodes in N1 (resp. N2) that are also present in the daily network of day d2
(resp. d1). This local-node-based similarity measure ranges from 0 to 1. When i has contact links
with disjoint sets of individuals on days d1 and d2, LCS(i, d1, d2) = 0. Partially overlapping contact
links with different cumulative duration (encoded in the weights wij(d1) and wij(d2)) instead lead to

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.20.24312288doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.20.24312288
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Daily network empirically observed

List of friendship links: 
reoccurring contact links on 
additional day(s)

…

1. Include fraction  of friendships, with associated weight (duration) and timeline.


2. Remaining links: fraction  (resp. ) empirical (resp. random).


3. Randomly pick weights and corresponding timelines for links in step 2.


4. Adjust timelines to preserve the total time in contact over the day.

f

p 1 − p

2. For each class, and pair of classes

List of all contact links

…

Weights (combined 
contact duration) and  
timelines of each link

8 mins {14:08}

25 mins {16:02, 16:35}

0.2 mins {9:08}

…

4. Synthetic daily contact network Legend

3. Copying mechanism

Friendship link, repeated over > 1 day in the data

Empirical contact link within class A

Empirical contact link within class B

Randomly added contact link in the synthetic daily network

Students from class A and B

Decreasing link weight (cumulative time in contact of the pair)

Figure 1: Schematic representation of the friendship-based approach to synthetic contacts generation. Daily
high-resolution empirical contact networks, schematically represented in panel 1, form the starting point (input)
of the method. Friendship links are highlighted in orange, while blue links correspond to empirical links occurring
only on a single day. Panel 2 details the specific inputs required. The algorithm operates class by class, and pair
of classes by pair of classes, as summarised in panel 3, to generate synthetic contact networks, schematically
represented in panel 4. These networks inherit properties from the empirical contact networks, such as the
number of links per class and between each pair of classes, a fraction of the friendship links (depicted in orange)
and of the non-repeated links (depicted in blue). These links are complemented by random links (depicted in
green) that were not necessarily observed in the base day.

0 < LCS(i, d1, d2) < 1, reaching 1 only for an individual i with exclusively the same contact links and
proportional weights in both days.

Panel E1 of Fig. 3 shows the distribution of values of the local similarity between any pairs of data
collection days for the participating students [8]. This distribution exhibits relative maxima at 0 and
1 values but is spread over all possible similarity values, showing a strong heterogeneity of similarity
patterns [30]. We thus tune the algorithm parameters f , p and ptr to reproduce this specific shape.
Specifically, we perform a grid-exploration for these three parameters (see Supplementary Information)
to minimise the Jensen-Shannon distance [49, 50] between the synthetic and empirical distributions
of local cosine similarities. In the following, contact networks generated with this method, using
optimised parameters, are called friendship-based (daily) contact networks. These synthetic daily
contact networks can also be expressed as lists of temporal contacts between individuals (with the
same temporal resolution as the empirical data), which we call friendship-based (synthetic) contacts.

2.2.3 Class-mixing-based approach

In the “class-mixing-based approach”, the synthetic contacts are generated in order to reflect the
empirical mixing patterns between classes observed during the base day considered. However, the
algorithm does not take into account the distinction between friendship and casual links, nor the
transitivity (see Supplementary Information for details on the procedure). It is thus approximately
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recovered instead by the previous algorithm with parameters f = 0, p = 0 and ptr = 0. In particular,
the number of contact links within each class and among each pair of classes is preserved, as in
the friendship-based approach. However, the contact links between students are renewed each day
independently of any previous occurrence. Overall, the synthetic contacts obtained in this approach
preserve the class structure of the school, as well as the timetable features, but not the individual
friendships.

2.2.4 Creating synthetic contact data of arbitrary length

The algorithms described above create synthetic daily contact networks from empirical base days. As
the school timetable has typically a weekly periodicity, a natural procedure to create synthetic data
covering e.g. n weeks, starting from empirical data collected during one week, is to create n instances
of each empirical base day, and to create synthetic weeks using a synthetic instance of each weekday
(note that the students are considered isolated during the weekends [21, 24]). In the present case,
as, on the Monday, the data was collected only during half a day (Supplementary figures of [8]), we
use the Tuesday data as base day to create the Mondays synthetic contact networks. The synthetic
contact sequences built using the friendship-based approach applied in this way to the four base days
of data (Tuesday, Wednesday, Thursday, Friday) are called “Friendship 4d” in the following, while
synthetic contact sequences obtained with the class-mixing-based approach are called “Class Mixing
4d”.

As several data collection efforts have been carried out over even shorter timescales [3, 44], we also
mimic here such cases, by artificially restricting the number of base days available. For the friendship-
based algorithm, the minimal number of base days (in order to separate friendship from casual links)
is two, while for the class-mixing-based approach we can even restrict the data to one day. We then
create synthetic weekly sequences by combining the synthetic instances obtained from the various base
days as detailed in Table 1.

Sequence name Approach Base days Weekly sequence Total number of days

Friendship 4d Friendship-based 2,3,4,5 [2, 2, 3, 4, 5] 120 days
Friendship 3d Friendship-based 2,3,4 [2, 2, 3, 4, 3] 120 days
Friendship 2d Friendship-based 2,3 [2, 2, 3, 2, 3] 120 days

Class Mixing 4d Class-mixing 2,3,4,5 [2, 2, 3, 4, 5] 120 days
Class Mixing 3d Class-mixing 2,3,4 [2, 2, 3, 4, 3] 120 days
Class Mixing 2d Class-mixing 2,3 [2, 2, 3, 2, 3] 120 days
Class Mixing 1d Class-mixing 2 [2, 2, 2, 2, 2] 120 days

Looped 4d Looping data 2,3,4,5 [2, 2, 3, 4, 5] 120 days
Looped 3d Looping data 2,3,4 [2, 2, 3, 4, 3] 120 days
Looped 2d Looping data 2,3 [2, 2, 3, 2, 3] 120 days
Looped 1d Looping data 2 [2, 2, 2, 2, 2] 120 days

Table 1: Contact sequences used in the analysis. The base days and weekly sequence refer both to the
underlying four days in the data set as follows: Tuesday (2), Wednesday (3), Thursday (4) and Friday (5). Only
four full days are available, so that we systematically build the synthetic contacts on Mondays using the Tuesday
base day, in order to maintain a weekly periodicity. For all cases we create synthetic contact sequences of total
length 120 days. These contact sequences are composed of weekly sequences of each five days of synthetic
contacts and two weekend days where the students are treated as isolated.

In addition, we considered as a baseline synthetic contact sequences built exclusively by repeating
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empirical ones, i.e., by looping over empirical contact data as done in many previous works. We call
the resulting data looped contacts, where the repeated empirical data can include from one to four of
the available daily contact networks. Contact link weights of all sequences are uniformly rescaled to
match the total daily interaction time in the “Looped 4d” contacts. This ensures the comparability
of epidemiological outputs on contact sequences generated from different sequences of base days.

We denote in the following the various synthetic contact sequences by ctx (where x is one of the
sequence names of Table 1).

2.3 Transmission model

In the following, we leverage on the contact sequences from Table 1 to feed the stochastic agent-based
model from in [24] and simulate numerically the spread of SARS-CoV-2 in the school population.
In this model, when a transmission event occurs, the exposed individual (E) becomes infectious and
pre-symptomatic (Ip) after a time τE . The pre-symptomatic phase lasts τp, after which the individual
enters either a sub-clinical (Isc) or clinical (Ic) infectious state, which lasts τI before recovery (R). The
durations of each stage (τE , τp, τI) are drawn at random for each individual from Gamma distributions
parameterised following the literature [24]. The probability of developing a clinical (versus a sub-
clinical infection) is instead a fixed parameter.

The per unit-time transmission probability when a susceptible individual is in contact with an infection
one depends on the transmission rate β and on the relative infectiousness and susceptibility of the
individuals in contact (determined from infectious status and age). The impact of vaccination is
furthermore modelled by reducing the relative infectiousness of vaccinated individuals by 20% and
their relative susceptibility to infection by 50%. We assume a homogeneous 50% vaccination coverage
among the students. Moreover, we model partial immunity from previous infection by SARS-CoV-2
pre-Omicron variants in 40% of the population. The susceptibility of immune individuals to infection
is reduced by 81%. As time progresses, contacts encoded in the contact sequence considered are
replayed in the numerical simulation. To increase computational efficiency, high-resolution 20 seconds
contacts are aggregated in 15 minutes steps: each resulting contact is weighted by the fraction of time
actually spent in contact over the 15 minutes for each pair. Each such contact event in which an
infectious individual is interacting with a susceptible one represents an opportunity of transmission
for the simulated disease.

We consider a simple spreading scenario in the absence of control measures initiated by a single
infectious individual (the seed) among the students. The transmission rate β is tuned as in [24], to
achieve an effective reproductive number in the population with partial vaccination and immunity
R = 1.5 (see Supplementary information for details on the calibration).

2.4 Extraction and comparison of infection pathways

For each contact sequence (ctx, in Table 1) and for each initial seed s, we build an infection net-
work [42, 43], denoted Ginf (s, ctx), by aggregating transmission chains obtained from different simu-
lations (Panels 1 and 2 of Fig. 2). These infection networks are directed, as the probability that an
individual i transmits the disease to another one j is not necessarily equal to the probability that j
infects i. Moreover, each directed edge ℓ = (i, j) ̸= (j, i) from student i to j is weighted by the occur-
rence probability of a transmission event from i to j (denoted pℓ(s, ctx)), estimated by the fraction of
simulations in which such an event is observed [43].

Infection networks form an aggregated representation of the outbreak, in which a large fraction (or
even all) of the contact links between individuals in the population are represented. We thus also
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consider summarized versions, the infection trees (panel 3 of Fig 2). Each infection tree, denoted
Tinf (s, ctx), is given by the (directed) maximum spanning tree of the corresponding infection network,
as described in [42]. It approximates the “most likely” infection pathway from the seed s to each node,
by retaining edges ℓ that form a directed tree, such that their summed pℓ(s, ctx) is maximum.

The infection pathways defined in this way (networks and trees) describe the progression of the out-
break between students, for each given seed s. To adopt a more coarse-grained view, we also build
pathways using aggregated transmission chains between classes, in order to represent the pathways of
importation of cases into previously unexposed classes. We refer to the Supplementary Information
for additional details on the construction of the four types of infection pathways introduced.

Figure 2: Examples of simulated transmission chains between individuals are shown for a given seed in panel
1. An infection network Ginf (s, ctx) built from 135 realisations of the model initialised with the same seed is
shown in panel 2. Panel 3 shows the maximum spanning tree Tinf (s, ctx) extracted from the infection network
of panel 2. All results are obtained with ctx = “Friendship 4d” contacts. Darker edges in panel 1 correspond to
transmission events between different classes. Edge widths in panels 2 and 3 are proportional to their probability
of occurrence pℓ(s, ctx). Edges with probability of occurrence < 0.01 are omitted for readability in panel 2.
Nodes of the same class share the same color, and the seed is highlighted in black. Visualisations generated
with Gephi [51].

In order to investigate the impact of the type of synthetic data used in the simulations, we compare the
infection networks obtained with the same given seed s for two different contact sequences (denoted
by cta and ctb) using the global cosine similarity defined by:

GCS(s, cta, ctb) ≡ GCS(Ginf (s, cta),Ginf (s, ctb)) =

∑
ℓ∈Ea∩Eb pℓ(s, cta)pℓ(s, ctb)√∑

ℓ∈Ea pℓ(s, cta)
2
√∑

ℓ∈Eb pℓ(s, ctb)
2

(2)

where Ea (resp. Eb) denotes the set of edges of Ginf (s, cta) (resp. Ginf (s, ctb)). Note that we can also
compute the global cosine similarity between pairs of infection trees. This global cosine similarity
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takes values between 0 and 1 and provides a measure of overlap between two infection networks (or
trees). It is equal to 0 if and only if the networks (or trees) compared have no edges in common, and
reaches 1 if and only if the two networks or trees are identical in their edges and respective weights.

3 Results

As already described in [7], the total daily interaction time within each class is larger than between
pairs of classes (see panel A of Fig. 3 for day 2). More interaction time is also observed between classes
of the same specialty than between classes of different disciplines. This block diagonal structure is
correctly reproduced by the synthetic contact networks (Fig. 3 - panels B and C). The global school
activity timeline (total interaction time per time window of 15 minutes) is also well reproduced by
both types of synthetic contact data (panel D of Fig. 3).

Day 2 empirical Day 2 friendship-basedA B C

D E1 F

E2

Day 2 class-mixing-based

Figure 3: Panel A: daily total time measured in contact within and between classes for the recorded contacts on
day 2. Panels B and C: same for the corresponding synthetic data. Panel D represents the total time measured
in contact between all individuals in the school on successive 15 minutes time steps on days 2 and 3 for the three
types of contacts (empirical and two types of synthetic data). Panel E1: distribution of students’ local cosine
similarities for each pair of days observed in the empirical contacts (black), together with the same distribution
obtained with the friendship-based algorithm with optimised parameters, averaged over 10 realisations. Panel
E2 shows the same distribution averaged instead over 10 realisations of the class-mixing-based approach. Panel
F displays the global similarities between the daily contact networks of consecutive days (computed by applying
Eq. 2 to the contact networks), for contact sequences obtained with different versions of the algorithm (each
color corresponds to one single iteration of the contact sequence).

As discussed above, the parameters of the friendship-based approach are tuned to reproduce the
observed distribution of local cosine similarities in the contact links of each student in different days.
We obtain as optimal parameters f = 0.8 (average fraction of friendship links included), 1 − p =
0.6 (probability of drawing remaining links randomly) and ptr = 0.75 (probability of adjusting for
transitivity). We show in panel E1 of Fig. 3 that the resulting distribution of similarities mimics indeed
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well the empirical one, and panel E2 shows that the class-mixing-based approach leads instead to a
qualitatively different picture with only small values of the similarities between the contact links of each
individual in different days. This picture is confirmed by panel F of the figure, which displays the global
cosine similarity (calculated by applying Eq. 2 between the daily contact networks) of consecutive
days of the complete contact sequences: the values obtained with contact sequences built using the
friendship-based approach are close to the empirical ones, while the class-mixing-based approach leads
to very small values. We refer to the Supplementary Information for figures showing how the two
approaches reproduce other properties of the empirical contact networks. For instance, friendship-
based contact sequences closely preserve the fraction of repeated contacts, while class-mixing-based
contacts underestimate it significantly (see Supplementary Information, Fig. 7). Friendship-based
contacts additionally perform better than class-mixing-based contacts in reproducing the number of
triangles and transitivity, within class and between classes (see Supplementary Information, Fig. 8).
They also reproduce more closely than class-mixing-based contacts the degree distribution within
class (number of contact links within the class of each individual, see Supplementary Information,
Fig. 9) observed in empirical contacts. Finally, class-mixing-based and friendship-based contact
sequences preserve equally well the distributions of node strengths and link weights (see Supplementary
Information Fig. 9), as well as characteristic features of the contacts such as the total daily time spent
interacting, number of nodes and number of links (see Supplementary Information Fig. 8).

A B C D

Epidemic size distributions 
from friendship-based contacts 

Epidemic size distributions 
from class-mixing-based contacts 

Epidemic size distributions 
from looped contacts 

Comparison of distributions from 
different contacts

Figure 4: Distributions (Gaussian kernel density estimations) of the final epidemic sizes obtained with
friendship-based, class-mixing-based and looped contact sequences are shown in Panels A, B and C. The distri-
butions are computed over simulations leading to a fraction of infected individuals larger than 20% (over 120
days) in order to better highlight differences between the distributions. Results including all simulations are
shown in the Supplementary Information, Fig. 12. The first and third quartiles (25% and 75%) are indicated
with dotted lines while the median is shown with a dashed line. The Jensen-Shannon distance between the
distributions obtained with the friendship-based contacts (panel A) and all other distributions are plotted in
Panel D. For each contact sequence, 150 simulations are conducted for each of the 325 students as seed (48, 750
simulations for each contact sequence).

Let us now discuss and compare the outcomes of the epidemic spreading simulations performed on
the various contact sequences of Table 1. Figure 4 first focuses on the resulting distributions of
epidemic sizes, by showing them as violin plots in panels A to C. The distributions obtained with
the three friendship-based contact sequences (panel A) are visually very similar. This is confirmed
quantitatively by the low Jensen-Shannon distances [49, 50] between these three distributions (panel
D). Looped contacts instead lead to epidemic size distributions with a different shape (panel C),
as confirmed from the Jensen-Shannon distances (panel D). The distance with the epidemic size
distributions obtained with the friendship-based contact sequences is particularly large when only one
day is looped over. As the comparison of panels A and C indicates, this is due to an overall shift of
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the distribution to lower values. This shift is due to the restricted number of propagation pathways
when the same contact patterns are repeated every day (“Looped 1d” case). When two days or more
are included in the looped data, the range of epidemic size values reached by the simulations becomes
similar to the one obtained with the friendship-based data. However, the shape of the distribution
remains different: large outbreaks are in fact more probable, and outbreaks of small and intermediate
sizes are much less probable. Finally, friendship-based and class-mixing-based contact sequences lead
to visually rather similar distributions of epidemic sizes, with close values of the medians. Differences
however emerge for large epidemic sizes, which are more probable when using contact sequences that
preserve the balance between friendships and casual contacts.

To go beyond these distributions, we also characterise and summarise the propagation paths in the
population, for each seed s and contact sequence ctx considered, by the infection networks Ginf (s, ctx)
and trees Tinf (s, ctx) (computed between students on the one hand and between classes on the other
hand), as described in the Methods section. We present here the analysis of the infection networks
and refer to the Supplementary Information for the same analysis concerning the infection trees.

Panel A of Fig. 5 shows that the infection networks between students resulting from simulations
performed on friendship-based contact sequences generated from two, three or four days of data
and with the same seed are highly similar for almost all seeds (the panel shows as violin plots the
distribution ofGCS(s, cta, ctb) for all seeds s and different pairs of contact sequences cta, ctb; Individual
values of GCS(s, cta, ctb) are shown as black dots): the number of days used when building the
contact sequences does not impact strongly the propagation patterns in the population. Contact
sequences built from the class-mixing-based approach lead to infection networks having significantly
lower similarity with the infection networks of the friendship-based synthetic data (panels B and C).
Note that the distributions of GCS(s, cta, ctb) when cta and ctb are both class-mixing-based contact
sequences, but built using different numbers of days, peak at approximately 0.4 (see Supplementary
Information Fig. 16): a quite high diversity of infection networks is thus also obtained within the
class-mixing-based approach. These results suggest significant differences in the detailed spreading
patterns observed with the two types of synthetic data. On the other hand, simulations on looped
contact data are again rather similar to the ones of friendship-based contact sequences (Note also
that, for cta and ctb both looped contact sequences –built with different numbers of base days–, the
infection networks are highly similar, with distributions of GCS(s, cta, ctb) peaking between 0.75 and
0.9, see Supplementary Information Fig. 17).

The results concerning the similarities between infection networks might be put in relation with the
distributions of similarities of the individual contact links in different days: they are indeed close for
looped and friendship-based synthetic data, while they are very different for class-mixing-based data
(Panels E1, E2 and F of Fig. 3). This is consistent with the fact that the number of days looped over
has an additional impact on the similarity between the resulting infection networks and the ones of the
friendship-based data. In particular, infection networks obtained on “Looped 1d” synthetic contact
sequences are significantly more dissimilar than for the rest of the looped contact sequences, due to the
lack of diversity of these contact sequences. These contact sequences indeed inherit only the contact
links and properties of a single day of measurements and lack a realistic diversity in contact behaviour
(the local cosine similarities between days are all trivially equal to 1). Looping over as many days (or
more) than used to produce the friendship-based contact data leads to infection networks more similar
to the ones obtained with the friendship-based data (e.g., panel C indicates an increasing similarity
with the infection networks of friendship-based contact sequences built from four base days as the
number of days looped over increases from one to four).

When considering the seed wise infection networks between classes, we obtain high values of the
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A B C

D E F

Infection networks between students

Infection networks between classes

Figure 5: Distributions over all seeds of the global cosine similarities GCS(Ginf (s, cta),Ginf (s, ctb)) are shown
for infection networks obtained from pairs of contact sequences cta and ctb in “Friendship 2d”, “Friendship
3d” and ”Friendship 4d” in panels A (for infection networks between students) and D (for infection networks
between classes). In panels B (students) and E (classes), cta is fixed to “Friendship 2d”, and the distribution
of GCS(Ginf (s, cta),Ginf (s, ctb)) over all seeds s is shown for different sequences ctb (class-mixing-based and
looped contacts); this procedure is repeated in panels C (between students) and F (between classes) with
cta =“Friendship 4d”. For each contact sequence, infection networks are obtained from 150 simulations for each
seed, and each of the 325 students are successively considered as seed s.

global cosine similarities (panels D-F of Fig. 5) regardless of the types of contact sequences used.
These epidemiological outputs are thus not affected by the distinction between friendship and casual
links. Only a slight shift to lower similarity values can be observed with the “Looped 1d” contacts.
This can be caused by pairs of classes that do not interact at all on the day looped over, causing slight
differences in spreading patterns. Interactions between these pairs of classes are instead observed
as soon as two days of empirical data are taken into account. Note that class-mixing-based contact
sequences generated from a single base day of data are less affected by this issue, because the stochastic
character of the algorithm creates many different pathways between the other classes, and overall
produces enough pathways between these non-interacting classes through a third class. The presence
of outliers in these distributions (plotted in panel D, omitted in panels E and F) reveal that the
propagation paths of the disease between classes remain sensitive to the type of contact sequences
considered for a minority of the seeds.
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4 Discussion

We have proposed and explored two approaches to generate synthetic contact sequences with realistic
statistical properties between students in a school. Both preserve the class-mixing matrices (i.e., the
amount of interactions within each class and between pairs of classes) observed daily during the data
collection, as well as the global timeline of activity driven by the underlying timetable. The class-
mixing-based approach creates contact links independently for each simulated day. On the other hand,
the friendship-based approach preserves the balance between contacts that reoccur over different days
(indicative of friendship links between students) and casual contacts that were observed only on one
of the days of the data collection. This balance is preserved both at the global level and in terms of its
heterogeneity between students. We have then performed numerical simulations of a model describing
the spread of an infectious disease in the population, informed by synthetic contact sequences built
using the two approaches and relying on a varying amount of empirical data. Specifically, we have
considered the spreading dynamics of SARS-CoV-2, as an example of recent important concern, in
particular in school settings. We have compared the outcomes of the simulations at the level both of
the distributions of final epidemic sizes and of the most probable infection pathways between students
and across classes.

The friendship-based approach successfully reproduces the main features of empirically observed con-
tact patterns in a school population, while the class-mixing-based approach fails to capture the het-
erogeneity of similarity levels in the contact patterns of individuals on different days. Both types of
synthetic contacts accurately represent the global features of the school where the base data was col-
lected (class-mixing matrix, activity timeline). By preserving as well the balance between friendship
relations that lead to repeated contacts and casual encounters, synthetic contact sequences generated
with the friendship-based approach provide realistic contact data that can be used for modelling pur-
poses. We note that our work notably differs from several other mechanisms that have been proposed
to go beyond the simple looping procedure to extend contact network data while preserving some
properties of the data, either in a general context [39] or for epidemic modelling purposes [13, 24].
In particular, the approach of [39] does not preserve class-mixing patterns and does not take into
account the existence of repeated contacts (friendships), leading to more random interaction patterns
than actually observed. On the other hand, references [13] and [24] focused only on reproducing the
global fraction of repeated contacts (whatever their durations) between daily networks (in [13], by a
reshuffling of nodes that led to an identical underlying structure in successive days, in [24] by a non-
optimized ad-hoc procedure), without dealing with the population heterogeneity. Here, by considering
the whole distribution of local cosine similarities between the neighborhood of individuals in different
days, and by performing an optimization of the parameters of the algorithm, we can create synthetic
contact sequences that faithfully reproduce the heterogeneity of contact behaviours in the population.
Finally, several mechanisms to generate realistic synthetic contact data have also been devised to cor-
rect for incompleteness of data due to diverse types of sampling [52–55]. These methods however are
designed to reconstruct missing contacts occurring alongside empirically recorded contacts, covering
thus the data collection window. The friendship-based and class-mixing-based approaches that we
have presented fill a different purpose, and instead longitudinally extend limited existing data.

When feeding synthetic data to numerical simulations of spreading models, taking into account the
presence of friendships, which lead to repeated contacts with correlated durations in successive days,
impacted mostly the transmission patterns at the level of students. Indeed, infection pathways be-
tween students are consistently dissimilar when feeding the model with either friendship-based or
class-mixing-based contact sequences. Preserving the balance between friendships and casual en-
counters is therefore essential to accurately characterise disease spreading patterns between students.
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Previous works have already noted that contact repetition must also be captured when building daily
contact networks [33] from survey data [35, 36]. In that context, ignoring the reported repetition of
contacts [31] overestimates the weekly number of distinct contacts per individual. This in turn pro-
vokes transmission opportunities that would not occur otherwise, resulting in simulated higher attack
rates and lower extinction rates [33]. In the present study, which considers the specific context of
interactions in a school, we do not observe the effects reported in Ref. [33], although friendship-based
and class-mixing-based approaches indeed lead to different distinct numbers of contact per individual
over a set period (e.g., one week). This can be explained by the rather high density of contacts among
individuals in the school: the repetition of contacts in this context does not hinder the spread of the dis-
ease as a sufficiently high number of distinct contacts between students is present in all cases. Finally,
it has been discussed that contact repetition must be considered to accurately identify superspreaders
and super-spreading events from contact data [34]. While our study does not explicitly investigate this
aspect, we expect the friendship-based contact data to faithfully capture super-spreading dynamics
thanks to the fact that it preserves the correlations between contact patterns in different days.

Changing scale from the individual to the classes, we find that preserving class-mixing patterns and
global activity levels throughout the day is sufficient to predict the spread of the disease at the scale of
classes. Consequently, while taking into account friendship links in synthetic contact data is necessary
to evaluate localised and fine grained mitigation strategies targeted to students (e.g. reactive testing
of contacts), larger scale protocols targeting classes (such as reactive class closure), grades (closure of
all classes of a grade) or the entire school (school closure) can be evaluated using synthetic contact
data generated with the class-mixing-based approach. This is in line with the negligible impact of
randomising contacts per class on average transmissions found in Ref. [9], and our analysis confirms
this in the case of class-based infection pathways.

Our study also highlights consequences of looping over the data, an approach commonly used to inform
models with high-resolution data. Looping over recorded data limits the pool of susceptible individuals
an infectious individual can pass the infection to. This effect is strongest when looping over a single
day of data. This results in a general shift of epidemic size distributions to lower sizes. On the other
hand, the periodic recurrence of all contacts can reinforce transmission routes as identical contacts
reoccur during the infectious period. This effect counteracts the depletion of susceptible individuals.
In our simulations, we find that it dominates as soon as two days of data are looped over, yielding
inflated epidemic outbreaks. Larger epidemic sizes are known to occur when repeated contacts are
not included [33], when contact duration are averaged over the contacts [9, 13] and where the network
of contacts is discarded in favor of an all-mixing approximation [29]. The larger outbreaks observed
with the looped contacts are instead attributed here to the reinforcement of contacts looped over, in
a context where sufficient contacts allow unhindered propagation.

Finally, our results contribute to the design of efficient data collection windows. Both infection path-
ways and epidemic size distributions obtained from friendship-based contacts remain highly similar
to each other as two, three or four base days are used to generate the synthetic contact sequences.
Additionally, infection pathways built from friendship-based contacts obtained with two days of data
remain similar to pathways built from looping over two, three or four days of data. Friendship-based
contact sequences useful for modelling purposes may therefore be obtained from two days of data. This
is in line with previous results showing that two days of recordings are sufficient to accurately predict
the epidemic threshold in a temporal network of contacts measured over three days in a workplace
context [56]. We note that, as contacts in schools or workplaces are dictated by timetables and shifts,
one day of data may already provide representative global features of the contacts (classes, or groups
interacting more tightly, structure of a typical day). A minimum of a second day is then necessary to
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distinguish stable relationships from casual contacts.

Our work presents several limitations worth discussing. First, the friendship-based approach associates
to each synthetic contact link a total daily duration and timeline observed in the class, or pair of classes
of the contact. This pool of weights and timelines may be too limited when few interactions occur,
leading to an unrealistic lack of diversity in the timelines. This does not impact spreading dynamics
for diseases progressing slower than the timeline time step [13], as is the case here. In the case of faster
disease spread, it may become necessary to generate synthetic timelines from observed timestamps [52]
in order to avoid unrealistic repetitions. Second, the numbers of contacts are exactly preserved for
each class and pair of classes. Pairs of classes not interacting at all during the data collection period
are thus also not interacting in the synthetic data, which may not be realistic over longer periods.
In our specific case, this does not affect the friendship-based approach as all classes have interacted
by the end of the second day. In other settings, care should be taken to ensure enough contacts are
observed to populate the class-mixing matrix. Finally, the number of days a contact must reoccur
over to be considered a friendship was fixed to two, regardless of the time spent interacting on either
days. Further tuning of this criteria may be necessary, e.g. for a longer data set in which even casual
contacts might be repeated.

We finally note that the friendship and class-mixing-based approaches extend existing short recordings
in the school context to inform models with realistic contact inputs. Generalising these to other
contexts might require to capture additional contact characteristics. For example, synthetic contacts
in the healthcare setting should capture the turnover of patients due to intakes and discharges of
patients, as well as staff shifts. Our approach would therefore need to be modified to capture these
elements in order to extend contact data measured e.g. in healthcare settings [16].

5 Conclusion

The friendship-based and class-mixing-based approaches provide modellers with generalisable methods
to generate synthetic contact sequences over long time-scales from existing data. The friendship-based
approach captures repeatability in contacts inherent to social behaviour, a feature crucial for the
prediction of infection pathways between students. This contributes to a growing toolkit allowing
modellers to inform agent-based models with data of increasing realism without the need for further
expensive data collection.

Data availability

Empirical contact networks used as base for the synthetic contacts are publicly available as part of
Ref. [8] on the web-page [44].
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