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Abstract 61 

High-density lipoprotein (HDL) cholesterol is typically protective for cognitive function due to its anti-62 

inflammatory, antioxidant, and vascular health benefits. However, recent studies indicated that certain 63 

HDL subtypes might be associated with adverse brain structural changes, commonly seen in mild 64 

cognitive impairment (MCI). Thus, further research is needed to understand the intricate relationship 65 

between HDL levels and brain structure, potentially leading to more effective therapeutic strategies. The 66 

current study aimed to investigate the impact of HDL subtypes, such as XL_HDL_P, M_HDL_FC_PCT, 67 

M_HDL_P, M_HDL_C, and M_HDL_CE, as well as APOA1, on brain structure in individuals with MCI 68 

using tensor-based morphometry (TBM). The study analyzed ADNI data from subjects with at least two 69 

serial MRI scans, processed using the Mayo TBM-Symmetric Normalization (SyN) pipeline and SyN for 70 

longitudinal measures. The CDR and ADAS scores were used to assess the severity of cognitive 71 

impairment and disease progression in our study participants. Significant ROIs were identified from a 72 

Mayo Clinic training set, and TBM-SyN scores were computed. The significant correlation was 73 

considered with p-values less than 0.05. The study found significant negative effects of several 74 

lipoproteins on TBM scores in individuals with MCI. Specifically, XL_HDL_P, with an effect size of -75 

0.00145 (p=0.029), and M_HDL_FC_PCT, with an effect size of -0.00199 (p=0.0016), were linked to 76 

lower TBM scores. Similarly, M_HDL_P (-0.00138, p=0.028), M_HDL_C (-0.00140, p=0.025), 77 

M_HDL_CE (-0.00136, p=0.031), and APOA1 (-0.00149, p=0.017) also showed significant associations. 78 

These findings indicate that higher levels of HDL subtype cholesterol are significantly associated with 79 

reduced TBM scores, suggesting that elevated levels are linked to adverse structural brain changes, such 80 

as atrophy, in individuals with MCI, potentially contributing to cognitive decline. 81 

Keywords: High-density Lipoprotein; Cognitive Impairment; Lipoproteins; Brain Structure; Cholesterol; 82 

Cognitive Function. 83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.24312114doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.20.24312114
http://creativecommons.org/licenses/by/4.0/


Page 4 of 17 

 

1. Introduction  91 

High-density lipoprotein (HDL) is a type of lipoprotein that helps transport cholesterol from the 92 

bloodstream and tissues back to the liver for excretion or reuse (1). Often referred to as “good” 93 

cholesterol, HDL plays a key role in cardiovascular health by reducing the risk of atherosclerosis and 94 

other heart-related diseases (2, 3). Structurally, HDL particles are composed of a core of cholesterol and 95 

triglycerides encased in a layer of phospholipids and proteins, primarily apolipoprotein A-I (ApoA-I). 96 

This structure enables HDL to efficiently transport cholesterol from peripheral tissues and arterial walls 97 

back to the liver, a process known as reverse cholesterol transport (4, 5). Notably, HDL subtypes such as 98 

XL_HDL_P, M_HDL_P, M_HDL_C, and M_HDL_CE, indicate different sizes and concentrations of 99 

HDL particles, with larger ones being more effective in cholesterol transport (6, 7).  100 

HDL is well-known for its cardiovascular benefits (8-10), but its importance in brain health is 101 

increasingly recognized. In the brain, cholesterol is not merely a structural component; it is essential for 102 

the formation and maintenance of neuronal membranes, synapses, and myelin sheaths (11-13). Indeed, 103 

HDL plays a crucial role in cholesterol homeostasis within the brain, facilitating its transport across the 104 

blood-brain barrier (BBB) to ensure neurons receive the precise amount needed for optimal function (14-105 

17). Accordingly, by carrying newly synthesized cholesterol from astrocytes to neurons, HDL supports 106 

essential lipid-related physiological functions, synaptic maintenance, and plasticity, which are vital for 107 

learning and memory (14, 18).     108 

In addition to its role in cholesterol transport, HDL exhibited significant anti-inflammatory (19-21) and 109 

antioxidant properties (22, 23) that are instrumental in mitigating neuroinflammation and oxidative 110 

stress—factors commonly associated with neurocognitive diseases such as mild cognitive impairment 111 

(MCI) and Alzheimer’s disease (AD) (24, 25). This means that HDL contributes to neuronal protection 112 

and disease progression attenuation by decreasing pro-inflammatory cytokines, reactive oxygen species, 113 

and potentially reducing amyloid-beta (Aβ) plaque accumulation. Elevated HDL levels are thus correlated 114 

with improved cognitive performance and a diminished risk of cognitive decline (19-23).  115 

Nonetheless, recent research indicated that HDL’s impact on cognitive function is more nuanced than 116 

previously understood. For instance, dysfunctional HDL, resulting from oxidative modifications, can 117 

impair neuronal protection and potentially contribute to neurodegenerative conditions (26). Moreover, 118 

excessively high HDL levels have been associated with cognitive decline in certain studies, possibly due 119 

to intricate interactions with other lipoproteins and inflammatory pathways (27-29). In the context of AD, 120 

HDL’s role is complex: While it aids in the clearance of Aβ plaques (30, 31), some HDL subtypes may 121 
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inadvertently exacerbate disease pathology (32, 33). Consequently, HDL’s effects on brain functions are 122 

contingent upon its functional state and the broader pathological environment. 123 

Tensor-based morphometry (TBM) is a neuroimaging technique that analyzes brain structure by detecting 124 

subtle changes in tissue deformation from MRI scans. TBM is particularly effective in longitudinal 125 

studies, enabling the tracking of structural changes in the brain over time (34). This capability is crucial 126 

for elucidating HDL’s impact on brain health across different stages of aging or disease progression. 127 

Further, TBM provides regional specificity (35), allowing researchers to precisely identify how HDL 128 

affects specific brain regions associated with cognitive functions.  129 

Thus far, and to the best of our knowledge, no research has specifically utilized TBM to investigate the 130 

impact of HDL on brain structure. Indeed, even though TBM has been extensively utilized to study brain 131 

atrophy in neurodegenerative diseases (34, 36-38), it has not yet been used to explore the role of HDL in 132 

this context; not to mention that structural atrophy in the brain often correlates with cognitive decline, yet 133 

it is not a definitive measure of cognitive impairment on its own. 134 

Former research in related areas has utilized neuroimaging techniques like MRI to explore the 135 

relationship between cholesterol levels—including HDL—and brain structure. These studies, albeit with 136 

conflicting findings, have generally focused on how cholesterol affects brain volume, white matter 137 

integrity, and the progression of neurodegenerative diseases like AD. For example, some studies found 138 

correlations between lower HDL levels and reduced gray matter volume in brain regions crucial for 139 

cognitive function (39-41). This suggests that HDL might play a role in maintaining brain structure, 140 

though TBM, which can provide even more detailed structural analysis, has not yet been specifically 141 

employed for this purpose. Meanwhile, research using MRI-DTI pointed out that higher HDL levels are 142 

associated with better white and grey matter integrity, indicating that HDL can ascribe to preserving the 143 

structural health of the brain’s communication pathways (42-45).   144 

The current study primarily aimed to address conflicting findings regarding HDL’s impact on brain 145 

structure among patients with MCI by employing TBM—a method that has not yet been utilized for this 146 

purpose. This study indeed aimed to investigate longitudinal structural changes in the brain and elucidate 147 

how HDL affects specific brain regions associated with neurocognitive disorders.  148 

2. Methods and Materials  149 

The data for this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 150 

database (http://adni.loni.usc.edu), a collaborative project established in 2003 under Dr. Michael W. 151 

Weiner. ADNI’s goal is to assess whether MRI, PET scans, biological markers, and 152 
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clinical/neuropsychological evaluations can effectively track the progression of MCI and early AD. 153 

Participants, aged 55-90, underwent neuroimaging, lumbar punctures, and regular follow-ups, with 154 

detailed inclusion and exclusion criteria outlined elsewhere. Notable exclusions included a Hachinski 155 

Ischemic Score above 4, use of non-approved medications, recent changes in allowed medications, a 156 

Geriatric Depression Scale score of 6 or higher, and less than six years of education or equivalent work 157 

experience. In this study, 93 participants were classified into the MCI group according to ADNI’s clinical 158 

criteria. 159 

2.1. Cognitive Assessment  160 

The cognitive status of participants was evaluated using standardized assessments like the Alzheimer’s 161 

Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) and the Clinical Dementia Rating (CDR) 162 

scale, which are essential tools for monitoring the progression of AD and related conditions. 163 

The ADAS-Cog (46, 47) was specifically designed to measure the severity of cognitive symptoms 164 

associated with AD. It includes a series of cognitive tests that assess various domains such as memory, 165 

language, and praxis (motor coordination). Participants were asked to perform tasks like word recall, 166 

object naming, and copying geometric figures. The total score on the ADAS-Cog can range from 0 to 70, 167 

with higher scores indicating more severe cognitive impairment. This longitudinal tracking was crucial 168 

for understanding how cognitive decline progresses in individuals with MCI or AD (47). 169 

The CDR (48) scale was used to assess the overall severity of dementia symptoms across multiple 170 

domains, including memory, orientation, judgment, and personal care. The evaluation process involved a 171 

semi-structured interview with the participant and an interview with an informant, typically a family 172 

member or caregiver. Based on these interviews, a clinician rated each domain on a scale from 0 (no 173 

impairment) to 3 (severe impairment). The ratings from each domain were then combined to produce a 174 

global CDR score, which classifies participants into categories such as no dementia, very mild dementia, 175 

mild dementia, moderate dementia, or severe dementia. The CDR score helps in classifying participants 176 

according to the stage of cognitive decline and is used to monitor changes in dementia severity over time 177 

(49). 178 

2.2.  Neuroimaging Processes  179 

Longitudinal MRI measurements, crucial for detecting neurodegenerative changes in AD and used in 180 

clinical trials, led to the development of a robust, bias-free MRI metric for longitudinal studies. The 181 

Symmetric Diffeomorphic Image Normalization method was applied to normalize serial scans, producing 182 

TBM maps. Summary TBM-Symmetric Normalization (SyN) scores were calculated for each subject at 183 
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follow-up time points by determining the SyN deformations between each follow-up and baseline scan. 184 

The software tools used included MATLAB, ANTs 1.9.x, and SPM5. 185 

2.2.1. Image Preprocessing for Each Individual Image 186 

For each subject, we began with the “N3m” preprocessed datasets and created brain and ventricle masks 187 

for each image set. We generated an initial mean image from all N3m images and used SPM5-based 188 

mutual information co-registration, iteratively registering each N3m image to the mean. This process 189 

continued until the mean image stabilized or reached a maximum of 10 iterations. After the final iteration, 190 

all images were co-registered to the base image to ensure accuracy. We then used dilation, hole filling, 191 

and subtraction on the co-registered masks to isolate voxels dominated by white matter and cerebrospinal 192 

fluid (CSF), fitting Gaussian functions to the intensity spectra and scaling image intensities to standard 193 

values. 194 

Next, using Aladin, we rigidly co-registered each image to the subject’s baseline image, averaged 195 

transformations within the subject, and resampled images and masks into this average space at 1mm 196 

isotropic resolution. We formed a new registration target by averaging the resampled images and masks. 197 

Affine registration between unregistered images and the average image was performed, followed by 198 

resampling into the target space. Finally, we balanced intensities and performed differential bias 199 

correction (DBC). Gaussian fits were used to determine white matter and CSF peak intensities for both 200 

the mean image and resampled images, with a GM-enhanced intensity spectrum calculated for gray 201 

matter. The gray matter, white matter, and CSF intensities were aligned with the mean image using spline-202 

based intensity remapping. DBC was performed using voxels near CSF and white matter peak intensities, 203 

creating a dense field via tri-linear interpolation, smoothing it with a 20mm Gaussian kernel, and applying 204 

the result to achieve the final preprocessed image. 205 

2.2.2. Longitudinal Measure Free of Bias 206 

High accuracy is often prioritized in warping algorithms, but asymmetric registration between serial scans 207 

can introduce bias in longitudinal measurements. We used the SyN algorithm, known for its symmetric 208 

registration and high accuracy, to compute deformations between preprocessed scans for each subject. We 209 

generated “annualized” log Jacobian maps by dividing log Jacobian voxels by the intrascan time interval. 210 

These deformations were applied to create “soft-mean” images, which were then segmented using SPM5, 211 

with ROI masks propagated to obtain mean annualized log Jacobian measurements in various ROIs. 212 

2.2.3. Mayo Clinic Patients for Region Selection 213 
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In developing longitudinal measurements, statistically significant ROIs are typically identified by 214 

analyzing a training set of patients and matched controls to capture neurodegenerative changes. In this 215 

study, we selected a training set of 51 AD subjects and 51 PiB-negative CN subjects matched by age, 216 

gender, and education, all with longitudinal MRI scans from the Mayo Clinic. To maintain a clean dataset, 217 

subjects had to maintain the same clinical diagnosis across both scans, with a baseline age of ≥ 64 years. 218 

Using a two-sample t-test, we selected the top 20 regions showing significant differences in GM volumes 219 

and longitudinal annualized log Jacobian data, resulting in 31 unique ROIs. Since 30 were GM ROIs 220 

(indicating shrinkage) and one was the ventricle (indicating expansion), we inverted the ventricle's log 221 

Jacobian determinant before combining it with the GM values. 222 

2.3. Lipoproteins Measurement  223 

In this study, lipoprotein subtypes like HDL were quantified using Nightingale Health’s NMR 224 

metabolomics platform, which measured over 220 metabolic biomarkers from a single blood sample. This 225 

platform provided absolute concentrations of lipids and metabolites, enhancing data interpretability 226 

compared to relative measurements from mass spectrometry. Serum samples were prepared and measured 227 

between May 31st and June 9th. After thawing, the samples were mixed, centrifuged, and prepared using 228 

an automated liquid handler with a specific buffer solution. Measurements were taken with a Bruker 229 

AVANCE III HD 500 MHz spectrometer equipped with advanced NMR technology. The NMR data were 230 

processed and analyzed using Nightingale’s proprietary software, ensuring that metabolite levels were 231 

consistent with general population distributions and indicating high sample quality. 232 

2.4. Statistical Analysis   233 

The study utilized R and Python version 3.11 for statistical analysis. Feature selection was performed 234 

using F-regression analysis to identify significant metabolites related to brain structural changes. 235 

Metabolites with high F-statistics and significant p-values were selected for further analysis. A linear 236 

mixed-effects model, implemented in both R and Python, examined the relationship between selected 237 

metabolites and TBM imaging data, accounting for random effects at the individual level. Additionally, 238 

the study evaluated the association between metabolites and cognitive test scores. Effect sizes were 239 

calculated by comparing the R² values of each metabolite’s model to a baseline model, revealing their 240 

contributions to structural brain alterations observed in TBM findings. 241 

3. Results  242 

The study recruited 93 patients diagnosed with MCI. The cohort had a mean age of 65.23 years (±6.47). 243 

Cognitive function was assessed using the ADAS-Cog and CDR scales, with mean scores of 8.31 (±4.97) 244 
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and 0.42 (±0.30), respectively. Among the participants, 54.8% (n=51) were male and 45.2% (n=42) were 245 

female (Table 1). 246 

Table 1.: Demographic characteristics of the participants. 247 

Number of MCI Subjects Mean age of the patients Mean ADAS-Cog score Mean CDR score 

N= 93 
65.23 years (± 6.47) 8.31 (±4.97) 0.42 (±0.30) 

Male Female 

54.8% (n= 51) 45.2% (n= 42)    

 248 

The TBM analysis revealed several significant relationships between HDL subtypes and brain structural 249 

changes. For instance, XL_HDL_P exhibited a fixed effect estimate of -0.00145 with a p-value of 0.0293, 250 

indicating a significant impact on brain structure with a modest effect size (R² = 0.0132). This suggests 251 

that higher levels of XL_HDL_P are associated with reduced brain tissue volume or alterations in brain 252 

density. Similarly, M_HDL_FC_PCT showed a strong fixed effect estimate of -0.00199 and a highly 253 

significant p-value of 0.0016, reflecting a substantial association with brain structural changes, likely 254 

indicating pronounced atrophy or changes in brain shape, as evidenced by a larger effect size of 0.0292. 255 

M_HDL_P also demonstrated a significant relationship, with a fixed effect estimate of -0.00138 and a p-256 

value of 0.0276, which implies a moderate impact on brain structure, potentially related to localized 257 

atrophy or changes in brain density. Likewise, M_HDL_C had a fixed effect estimate of -0.00140 and a p-258 

value of 0.0254, showing a significant but slightly smaller effect size of 0.0155. M_HDL_CE presented a 259 

fixed effect estimate of -0.00136 with a p-value of 0.0306, indicating a significant association with 260 

modest structural changes or density reductions, with an effect size of 0.0145. Additionally, APOA1 had 261 

a fixed effect estimate of -0.00149 and a p-value of 0.0171, reflecting a notable impact on brain structure, 262 

with an effect size of 0.0181 (Table 2). 263 

Table 2.: Statistical analysis of HDL subtypes associations with brain structural changes using TBM. 264 

Lipoprotein 
Fixed effects Effect size 

 (R-squared for Generalized Mixed-Effect models) 

Value P-value Std ERROR T-Value Correlation R2M 

XL_HDL_P -0.001452114 0.0293 0.000655329 -2.2158546 -0.007 0.01316022 

M_HDL_FC_PCT -0.001993988 0.0016 0.000611075 -3.263083 -0.013 0.02916919 

M_HDL_P -0.00138155 0.0276 0.000616871 -2.2396098 -0.013 0.01568961 

M_HDL_C -0.001398362 0.0254 0.000615041 -2.2736066 -0.018 0.01550452 

M_HDL_CE -0.001356311 0.0306 0.000617285 -2.1972199 -0.019 0.01453341 

APOA1 -0.001489386 0.0171 0.000612643 -2.4310835 -0.013 0.01813171 

 265 
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Overall, all the lipoproteins analyzed in the TBM study—XL_HDL_P, M_HDL_FC_PCT, M_HDL_P, 266 

M_HDL_C, M_HDL_CE, and APOA1—were found to be statistically significant, with p-values below 267 

the standard threshold of 0.05. This indicates that each of these lipoproteins has a notable association with 268 

brain structural changes, including reductions in brain volume (atrophy), decreases in tissue density, and 269 

alterations in brain shape, reflecting their potential impact on brain health. 270 

4. Discussion  271 

The current study, based on our knowledge, is the first to report the use of TBM to investigate the role of 272 

HDL subtypes and APOA1 in brain structure and formation. We found that higher levels of XL_HDL_P, 273 

M_HDL_FC_PCT, M_HDL_P, M_HDL_C, and M_HDL_CE, as well as APOA1 are linked to reductions 274 

in brain volume, decreases in tissue density, and alterations in brain shape. These findings suggested that 275 

elevated levels of these lipoproteins may contribute to brain atrophy and other structural changes that are 276 

often associated with cognitive decline and neurodegenerative conditions.  277 

Consistent with our findings, few studies have also reported that elevated HDL levels may be associated 278 

with an increased risk of neurocognitive disorders. For example, a study analyzing data from the ASPREE 279 

trial found that older adults with plasma HDL-C levels above 80 mg/dL had a 27% higher risk of 280 

developing dementia over an average follow-up of 6.3 years, especially in those aged 75 and older. This 281 

association remained significant even after adjusting for factors such as age, sex, and APOE genotype, 282 

suggesting that high HDL-C levels could be a risk factor for dementia in older adults (32). Similarly, a 283 

study from the China Health and Retirement Longitudinal Study (CHARLS) revealed that higher 284 

variability in HDL-C levels was linked to an increased risk of cognitive decline. In a cohort of 5,930 285 

participants, those with the highest HDL-C variability had a greater likelihood of cognitive decline 286 

compared to those with the lowest variability. The findings suggest that reducing HDL-C variability 287 

might help lower the risk of cognitive decline in the general population (28). 288 

In addition, recent studies suggest that very high HDL-C levels may increase the risk of dementia, even in 289 

younger individuals with comorbidities (50). Elevated HDL has also been linked to poorer cognitive 290 

recovery after a stroke, possibly due to metabolic stress (51). In Parkinson’s disease, higher HDL levels 291 

are associated with cognitive decline, particularly in women. These findings indicate that while HDL is 292 

generally considered heart-healthy, its impact on brain health may be more complex and potentially 293 

harmful in certain contexts (27).  294 

The link between high HDL-C and increased dementia risk is not fully understood. While moderately 295 

high HDL-C levels have been associated with better cognitive function, very high HDL-C might be 296 

dysfunctional and not reflect effective lipid transport (52). It is also possible that both high HDL-C and 297 
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dementia could stem from an unrelated pathology. With dementia becoming a growing concern in aging 298 

populations, easily measurable markers like HDL-C could be useful, though they may only apply to a 299 

small subset of individuals. Hence, further research could clarify the role of high HDL-C in dementia, 300 

potentially leading to new insights into its pathogenesis and related health risks. 301 

Nonetheless, our findings contrast with those of a recently published meta-analysis of data from 100 302 

studies suggesting that HDL-C levels were unrelated to dementia (53). Likewise, several studies 303 

collectively highlighted the significant role of HDL-C in cognitive function across various populations, 304 

including aging women (54), nonagenarians (55), centenarians (56), and patients with bipolar disorder 305 

(57), diabetes mellitus (58), and Parkinson’s disease (59). Higher HDL-C levels were consistently 306 

associated with better cognitive performance, particularly in areas like memory and learning in such 307 

studies. In some cases, low-normal total cholesterol (TC) levels were linked to reduced cognitive function 308 

and brain atrophy, suggesting a complex relationship between lipid levels and brain health (60). These 309 

findings underscore the protective effects of HDL-C on cognitive function and support further research 310 

into its potential as a therapeutic target for neurodegenerative diseases. 311 

While the link between high HDL and increased dementia risk remains unclear, several mechanisms may 312 

be involved. Dysfunctional HDL at elevated levels could disrupt lipid transport, compromising neuronal 313 

membrane integrity and BBB function, which may lead to neuroinflammation and oxidative stress. 314 

Additionally, abnormal HDL could impair the clearance of Aβ peptides, promoting amyloid plaque 315 

accumulation in the brain. In short, these processes might contribute to structural brain changes associated 316 

with cognitive decline and dementia (26-29, 32, 33). 317 

One of the main strengths of this study was its detailed analysis of HDL subtypes, which offered a more 318 

nuanced understanding of the relationship between specific lipoproteins and brain structure than studies 319 

that only considered overall HDL-C levels. This focus on subtypes allowed the research to explore the 320 

intricate ways in which different forms of HDL might influence brain health. Another significant strength 321 

was the use of advanced imaging techniques, specifically TBM with the Mayo TBM-SyN pipeline. This 322 

approach enabled precise measurement of structural brain changes, which enhanced the reliability and 323 

accuracy of the findings. Additionally, the study utilized longitudinal data, with serial MRI scans over 324 

time, which strengthened its ability to observe changes in brain structure in relation to HDL levels, 325 

providing a more dynamic view of how these factors interplayed over time. The relevance of the study to 326 

cognitive decline, particularly in individuals with MCI, was also notable, as it directly addressed a critical 327 

area in the understanding of AD progression. 328 
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However, the study also had some limitations. As an observational study, it could not establish a causal 329 

relationship between HDL subtypes and brain atrophy, meaning that the observed associations might have 330 

been influenced by other confounding factors. Another limitation was the potential lack of 331 

generalizability. Moreover, the study primarily focused on structural brain changes without directly 332 

assessing how these changes translated into cognitive or functional outcomes. This left an incomplete 333 

picture of the clinical relevance of the findings. Finally, although advanced imaging techniques were 334 

used, there was the potential for measurement variability. Differences in MRI scanners, protocols, or 335 

image processing methods could have introduced inconsistencies in the TBM scores across participants, 336 

potentially affecting the study’s results. 337 

5. Conclusion  338 

The study aimed to examine the impact of various HDL subtypes on brain structure in individuals with 339 

MCI using TBM. We found that higher levels of specific HDL subtypes, such as XL_HDL_P, 340 

M_HDL_FC_PCT, M_HDL_P, M_HDL_C, and M_HDL_CE, as well as APOA1, are significantly 341 

associated with lower TBM scores, indicating adverse structural changes like brain atrophy. These 342 

findings suggest that elevated levels of these HDL subtypes may contribute to cognitive decline by 343 

negatively affecting brain structure in MCI patients. 344 
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Abbreviations  358 

HDL: High-density lipoprotein; BBB: blood-brain barrier; MCI: mild cognitive impairment; AD: 359 

Alzheimer’s disease; Aβ: amyloid-beta; TBM: Tensor-based morphometry; ADAS-Cog: Alzheimer's 360 

Disease Assessment Scale-Cognitive Subscale; CDR: Clinical Dementia Rating; CSF: cerebrospinal 361 

fluid; DBC: differential bias correction.   362 
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