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Abstract: 

Cognitive resilience describes the phenomenon of individuals evading cognitive decline 
despite prominent Alzheimer’s disease neuropathology. Operationalization and measurement 
of this latent construct is non-trivial as it cannot be directly observed. The residual approach 
has been widely applied to estimate CR, where the degree of resilience is estimated through a 
linear model’s residuals. We demonstrate that this approach makes specific, uncontrollable 
assumptions and likely leads to biased and erroneous resilience estimates. We propose an 
alternative strategy which overcomes the standard approach’s limitations using machine 
learning principles. Our proposed approach makes fewer assumptions about the data and 
construct to be measured and achieves better estimation accuracy on simulated ground-truth 
data. 
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Introduction: 

Cognitive decline represents the cardinal clinical symptom of Alzheimer’s disease (AD), its 
manifestation across patients is heterogeneous1,2. Some patients exhibit rapid cognitive 
decline, while others do not show any clinical progression, despite showing similar levels of 
AD pathology3. This phenomenon is termed cognitive resilience (CR)4. CR is described as an 
individual exhibiting less cognitive decline than expected given their individual 
characteristics and pathological burden5. These characteristics can include social 
determinants of health, genetic risk, and AD pathology biomarker levels. The ‘expectation’ 
here references the cognitive performance if it would remain unaltered by CR. Constructs like 
CR cannot be observed or measured directly but manifest as a latent construct that alters an 
observable outcome (here, cognitive performance)6. Given that they potentially offer insights 
into protective mechanisms or intervention opportunities, however, the operationalization of 
latent constructs, such as CR, is paramount. 

Previous studies of CR often circumvented the challenge of direct measurement by focusing 
investigation on the determinants of reduced cognitive decline instead of operationalizing 
resilience itself7,8. Alternatively, many studies considered a threshold on cognitive scores to 
define the point at which individuals are presumed to be resilient9. There are multiple 
disadvantages to the latter approach; for example, it reduces the latent construct of resilience 
to a binary condition even though it likely represents a continuous property that manifests 
over time. 

A well-adopted alternative is the residual approach10–14. Here, a continuous measure of 
resilience is derived by calculating the deviation of an individual’s cognitive performance 
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from the prediction of a linear regression model. The regression model is supposed to predict 
the expectation for an individual, such that positive residuals denote CR as the observed 
outcome is better than their prediction.  Concerns about this standard residual approach have 
been published15 and the necessity for a better understanding of the residual approach was 
argued in a recent comprehensive review about the results achieved with it16. 

In this work, we address the measurement of latent constructs, such as CR, using residual 
approaches. We explore properties and fail states of the standard residual approach and based 
on these limitations propose a novel inverse learning method that expands on the residual 
approach. The presented framework uses inverse supervised learning17 to predict the 
‘expected’ outcomes of individuals and then corrects the prediction error that remains in the 
resulting CR estimates. Besides CR, it can operationalize any construct that can be described 
as a deviation from an expectation, for example, also pathological resistance. When 
compared to the standard residual approach, the inverse learning approach requires 
significantly fewer assumptions about the data to achieve accurate estimates. Using simulated 
data with a known ground-truth, we highlight the differences in the standard and proposed 
residual approaches and assess their limitations and estimation accuracy. 

Methods: 

Problem definition 

The aim of the residual approach is to measure by how much an individual’s cognitive 
function is improved by the latent construct of CR. The only entity that can be directly 
measured in this context is the observed cognition, ������, that is potentially altered by CR: 

Eq. 1: ������ �  ������ � �� 

Here, ������ denotes the expectation, meaning the cognitive function an individual would 
have if they were unaffected by CR. �� represents the shift in cognition caused by CR. The 
residual approach aims to estimate �� given some data matrix � and ������. Notably, the 
same principles apply to any latent construct that can be described as the deviation from an 
expectation. 

Simulating data with a known ground-truth 

As individuals’ true values of CR remain latent in real data, there exists no ground-truth 
against which different methods’ estimation performances can be compared to assess their 
quality. Accordingly, for our experiments, we simulated data and a known ground-truth 
analogous to Eq. 1, by i) simulating the expected cognition of samples and ii) altering it with 
a known CR component. For the remainder of this work, we will still refer to these simulated 
data as (expected) cognition and CR, for simplicity. 

We generated a data matrix �, � 	  
����	
�, where the rows of � contained the samples 
and columns contained variables. We chose to simulate 27 variables because this allowed us 
to have sufficiently many expectation-associated, CR-associated, and uninformative variables 
that we could alter in our experiments outlined below. Next, we split � into a set of samples 
that were not resilient (i.e., resembled the expected outcome), ����, and another set which 
was resilient, ��
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Analogous to Eq. 1, the observed cognition, ������ and ����
 , corresponding to the samples 
in ���� and ��
, respectively, can be simulated as 

������ � ������
 

����
 � ����

  � ����

 

where � models the relationship between variables in � and ������ in Eq. 1 and � models the 
effect of variables in � on ��. � and � can be any linear or non-linear transformation. We 
parameterized � and � with two disjoint sets of nine variables of the 27 variables in �, 
respectively. A third set of nine variables remained unrelated to both transformations. 

Unless stated otherwise, we used the following parameters to simulate data for our 
experiments: We simulated one third of the samples in � (i.e., 333 samples) to resemble the 
expectation (i.e., not adding a CR component to their outcome). This fraction was chosen to 
allow for meaningful simulations and the effect of altering it is explored in our experiments 
outlined below. Variables were generated to be uncorrelated. For simplicity, we assumed a 
linear relationship between � and both, ������ and ��, respectively. In this case, both � and 
� computed the dot product of their respective nine informative variables in � with a vector 
of coefficients, where all informative variables were assigned the same non-zero coefficient.  

Simulation experiments 

We compared the standard residual approach to our proposed inverse learning approach 
across different experimental settings, where we independently altered the a) available 
predictors, b) correlation between predictors, c) prevalence of CR in the samples, d) and the 
relationship between predictors, cognition, and CR. 

We evaluated how the selection of predictor variables affected the standard approach and our 
proposed approach. Successively, we include one third of the variables that were either 
informative for the expectation (������ in Eq. 1) or CR (�� in Eq. 1) as predictors to the 
model. We then applied both residual approaches using all combinations of removed 
predictors.  

In real cohort data, variables are often correlated, for example age and pathology, or 
education-level and cognition. We therefore evaluated how varying degrees of correlation 
between expectation-informative variables and CR-related variables affected the estimation 
of CR. To allow for precisely tuning the correlation between variables, we sampled the data 
matrix from a multivariate standard Gaussian distribution for this experiment. The 
corresponding covariance matrix was constructed such that simulated correlation ranged from 
uncorrelated to perfect collinearity. 

In real AD data, the relationship between variables, cognition, and CR are probably non-
linear18. We therefore assessed the estimation performance of the residual approach when 
modelling � and � as non-linear functions. To obtain a non-linear relationship between � and 
the expectation, we simulated data following Friedman et al. as implemented in scikit-learn 
19. The explicit non-linear forms are presented in the Supplementary Material. A non-linear 
CR function � was simulated using an artificial neural network with random weights where 
the first layer was adjusted to ensure only select predictors were informative. 
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Implementing the standard approach 

We implemented the standard residual approach as in previous studies10–14: The linear 
regression model was fit on all the samples in �. The predictors changed depending on the 
experimental set-up described above. CR estimates were achieved by subtracting the 
prediction made by the linear model from the simulated observed value. We assessed the 
model fit using either the explained variance or coefficient of determination (R2). 

Training the predictive models of the inverse learning approach 

In our inverse learning approach, any regression algorithm is viable for building the 
‘expectation’ model that predicts the expectation component of the observed cognition 
(������ in Eq.1). In our experiments, we used multivariable linear regression and extreme 
gradient boosting (xgboost), a non-linear approach based on an ensemble of decision trees. 
While any algorithm could be used here, we opted for xgboost because it is known to perform 
well on tabular data20. All models were trained to predict the observed cognition ������, of 
the samples unaffected by CR, ����. To test the expectation model’s predictive performance, 
we conducted 5 times repeated 5-fold cross-validation. For details about hyperparameter 
tuning for the xgboost models see the Supplementary Material. 

While any regression algorithm could be used for the ‘error correction’ model, in our 
experiments, we used a linear regression. The same predictors and samples as in the 
expectation model were used for model fitting. The training targets were the prediction errors 
of the expectation model for each sample gained during its cross-validation. 

Results: 

The inverse learning approach 

Our proposed inverse learning approach expands on the concept of the residual approach. 
Accordingly, CR is still operationalized as a residual of a sample’s observed cognition with 
respect to a predicted ‘expected’ cognition (from here only referred to as expectation). Our 
proposed approach works as follows: We first build a training dataset by selecting samples 
that follow a predefined definition of the expectation, deliberately aiming to exclude samples 
from the training data that could represent cognitive resilience. Based on this training dataset, 
we then build an expectation model that predicts the corresponding observed cognition which 
is, by definition, reflecting the expectation (Figure 1A). This expectation model can now be 
applied to all remaining samples, which may or may not be cognitively resilient, to extract 
their residuals (Figure 1B). Further, we introduce an ’error correction’ model that aims to 
improve the accuracy of achieved CR estimates by removing the expectation model’s innate 
error from the calculated residuals (Figure 1C).  
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Figure 1: The proposed inverse learning approach for measuring cognitive resilience (CR) or 
other latent constructs that can be defined as a deviation from an ‘expectation’. A: Training a 
model to predict the expectation for a sample and evaluate the predictive accuracy. For this, 
only samples are used that follow a definition of what is ‘expected’. B: Applying the trained 
expectation model to samples that could be affected by the construct of interest to estimate it 
using the calculated residuals. C: An ‘error correction’ model that learns to remove the 
expectation models innate prediction error based on the errors in A and is subsequently 
applied to remove the error from the residuals obtained in B. 

Investigating the performance and fail states of the approaches 

Effect of predictor selection 

Variables used as predictors in residual approaches can be tied to both, CR, and the 
expectation component of a sample’s observed cognition (i.e., informative for both  and  in 
Eq. 3). We evaluated the effect of incorporating different predictors into our expectation 
model and the standard approach for estimating the sought-after simulated CR.  

Including predictors informative for the expectation component of the observed outcome 
improved CR estimation accuracy of both approaches and better predicted the expectation 
(Figure 2A & B). Investigating the effect of including variables explaining the CR 
component of the observed cognition, we observed disparate results in each approach. For the 
standard approach, the achieved residuals became increasingly biased with the inclusion of 
more CR-informative predictors (Figure 2C; the bias is indicated by a systematic deviation 
from the diagonal line in the figure). Only when none of the included predictors were 
associated with CR, the standard approach’s residuals placed close to the simulated CR 
ground-truth (i.e., the optimal outcome). By contrast, the estimation accuracy remained stable 
for the inverse learning approach, irrespective of the number of CR associated predictors 
included (Figure 2D). In conclusion, the standard approach requires all predictors explaining 
the expectation component of the observed cognition but none of the CR associated variables 
to achieve the best CR estimates. The inverse learning approach, on the other hand, solely 
depends on the inclusion of variables tied to the expectation component, while being 
unaffected by the inclusion of other variables.   
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Figure 2: Estimation of CR using the standard and inverse learning approach while including 
varying proportions of informative predictors for either the CR or ‘expectation’ component of 
the observed cognition. A, B: Estimation without including any CR-informative predictors 
and varying proportions of ‘expectation’-informative predictors for the standard approach (A) 
and inverse learning approach (B). C, D: Estimation while including all ‘expectation’-
informative predictors and varying proportions of CR-informative predictors for the standard 
approach (C) and inverse learning approach (D). MSE: Mean squared error between the 
simulated CR ground-truth and estimated CR. 

Effect of correlation between ‘expectation’-informative and CR-informative predictors 

To investigate the effect of variable correlation on the residual approaches, we simulated data 
with varying degrees of linear dependency across variables linked to both components. In this 
analysis, both the standard approach and inverse learning approach only included expectation 
predictors. 

Despite not having access to CR associated variables, the standard approach still extracted 
biased residuals for increasing levels of variable correlation (Figure 3A, the bias is again 
indicated by a systematic shift of form the diagonal). In presence of correlation with CR-
informative predictors, the inclusion of expectation associated predictors alone sufficed to 
reproduce patterns similar to those observed when directly including CR predictors in the 
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standard approach (Figure 2C). The estimates for the inverse learning approach remained 
unchanged irrespective of the induced correlation (Figure 3B).  

 

Figure 3: The effect of correlation between ‘expectation’-informative predictors and CR-
informative predictors on the accuracy of CR estimates. 0% correlation means variables were 
entirely uncorrelated and 100% denotes perfect collinearity. All ‘expectation’-informative 
predictors were included in the models while CR predictors were omitted. Different from 
other plots in this article, the data values shown here differed across columns as simulating 
different correlations led to changing values. A: Estimation using the standard approach. B: 
Estimation using the inverse learning approach. R2: Coefficient of determination. 

Effect of CR prevalence 

In the standard approach, we found that higher prevalence of CR among the samples led to 
less accurate CR estimates (Figure 4). In the presence of variable correlation or when CR-
informative predictors were included in the approach, higher prevalence led to vanishing 
residuals and, consequently, systematic underestimation of CR (Figure 4A). Even when no 
information about CR was accessible to the model, a systematic shift in the estimations 
occurred, biasing the achieved estimates (Figure 4B). The inverse learning approach, on the 
other hand, cannot be affected by the CR prevalence due to the exclusion of CR-affected 
samples from the expectation model training (assuming enough samples to train a reliable 
model remain).  
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Figure 4: The effect of the CR prevalence in the dataset onto residual estimates achieved via 
the standard approach. A: All ‘expectation’-informative variables and CR-informative 
variables were included as predictors. B: Only ‘expectation’-informative predictors were 
included. R2: Coefficient of determination. 

Effect of non-linear associations between ‘expectation’, CR, and predictors 

Even with a non-linear relationship between predictors and CR, the standard approach 
produced biased CR estimates since the model still learned to explain some of CR and thus 
removed it from the residual (Figure 5A). As expected, in this scenario, a linear expectation 
model outperformed a non-linear one in the inverse learning approach, as the simulated 
expectation was linearly dependent on the predictors. When we tested the approaches on a 
non-linear expectation and a linear CR relationship, the standard approach failed to predict a 
reliable expectation and achieved poor CR estimates (Figure 5B). The non-linear inverse 
learning approach (Figure 5B XGBoost) performed best, after its estimates were corrected 
using the ‘error correction’ model. 
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Figure 5: Comparing the residual approaches under different functional forms underlying the 
relationship between ‘expectation’ predictors, CR predictors and the observed outcome, 
respectively. Both approaches had access to all predictors. A: The ‘expectation’ component 
depended linearly on the predictors and CR component was simulated under a non-linear 
relationship. B: A non-linear relationship between predictors and the ‘expectation’ 
component was simulated and a linear relationship for CR component. Corrected: Estimates 
after running the ‘error correction’ model. IL: Inverse learning. MSE: Mean squared error. 

In summary, when challenged across all the tested scenarios, the inverse learning approach 
achieved lower estimation error compared to the standard approach. The additional ‘error 
correction’ model substantially improved the predictive performance of non-linear 
expectation models (Figure 5) but did not aid linear expectation models.  

Discussion: 

Our proposed inverse learning strategy represents a framework for measuring CR and any 
latent construct that can be described as a deviation from an unobservable ‘expected’ 
outcome via a predictive model’s residual. It makes fewer assumptions that the standard 
residual approach about the data and relationships between predictors and CR. Consequently, 
this will lead to more accurate, individual estimates of CR in most scenarios. The conceptual 
differences between the standard approach and our inverse learning approach are graphically 
explained in Figure S1.  

The main challenge in applying the standard residual approach appropriately is retaining CR 
information in the residual of a predictive model while simultaneously minimizing model 
error21. Our results show that, to achieve accurate estimates, the standard approach requires 
the following strong assumptions: 1) that the linear model accurately predicts the expectation, 
2) that no CR-informative predictors are used, 3) that used predictors are uncorrelated with 
CR-informative variables, and 4) that the prevalence of CR among the investigated samples is 
low. Navigating these assumptions is challenging as they cannot be observed in real data. 
Often, there is no a priori knowledge about the relationship between variables, the observed 
outcome, and CR. It further remains unknown how many samples are affected by CR before 
estimating it. In contrast to the standard approach, the inverse learning approach only requires 
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assembling a training dataset containing samples that resemble the expectation and an 
optimization of the expectation model adhering to machine learning best practices. 

In both discussed residual approaches, the predicted expectation represents a crucial reference 
point to calculate the achieved residual. Predicting it inaccurately will add error to the 
residual and limit its reliability as a CR estimate. Therefore, it is vital that the models used in 
either approach achieve high predictive accuracy. Optimizing the performance of the linear 
regression in the standard approach, however, is non-trivial. To achieve the best predictions, 
meaningful predictors are required and all variables that can potentially improve the 
predictive accuracy should be incorporated. However, CR estimates made by the standard 
approach become severely biased if predictors are included that explain the CR component of 
the observed cognition. This is because the model learns to explain the effect on cognition 
caused by CR and, thus, CR information will be ‘learned out’ of the achieved residual. This 
poses a dilemma, as valuable predictors must be excluded from the model to retain CR 
information in the residual, at expense of predictive accuracy. One such example would be 
education which is relevant for both, the expected cognitive performance and cognitive 
resilience8. Consequently, the achieved residuals will be erroneous and inaccurate estimates 
of CR in most real-world applications. Our proposed inverse learning approach is not subject 
to this restriction. Due to building the expectation model only on samples reflecting the 
expectation, it is unable to learn associations between its predictors and CR. Consequently, 
all variables can be included into the model to maximize its predictive performance without 
fearing a loss of CR information in the residual. Additionally, more complex predictive 
models than a linear regression could be utilized to achieve the best predictive performance.  

With the standard approach, the reliability of the predicted expectation cannot be directly 
assessed. Although the fit of the regression line can be measured (commonly done by looking 
at the explained variance of the observed outcome), in many real-world applications, the 
model likely incorporates information about CR through either correlation or inclusion of 
CR-informative predictors. Consequently, the model fit does not reflect how well the true 
expectation is predicted for an individual but how well it fitted the overall cognition. In our 
proposed inverse learning approach, a direct evaluation of the expectation model’s predictive 
performance is conducted via cross-validation. Additionally, an external validation can be 
performed to assess generalizability. While the linear models in the standard approach could 
be validated in theory, the resulting model performance would still not reflect its ability to 
predict the expectation of an individual but the overall observed cognition.  

Despite the evident problems in the standard residual approach, many of its findings in CR 
research seem sensible from a neurological perspective16. While it is probable that many of 
these studies have been affected by some of the conceptual problems in the standard 
approach, it highlights the general robustness of the standard approach. Our experiments 
show that, even when it achieved very poor performance in predicting the expectation and 
included no informative predictors, the general trend of the residuals (higher residual equals 
greater resilience) remained true. This implies that the achieved residuals can provide some 
degree of insight related to associations between variables and CR, despite being inaccurate 
estimators of the actual resilience. Exact effect size estimates such as regression coefficients, 
however, are more uncertain.  

When using real data of patients with neurodegenerative diseases, it is unlikely that a model 
will achieve perfect performance when predicting the expectation component of an 
individual’s observed outcome. This means that residuals gained from the expectation model 
will contain prediction error, depending on the model’s accuracy. The ‘error correction’ 
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model allows us to estimate the prediction error for each sample (i.e., the proportion of an 
achieved residual that is unrelated to CR) and subtract it from the residual (similar to 
boosting algorithms 22).  The ‘error correction’ model requires an association between its 
predictors and the expectation model’s error to predict it. This explains why it did not correct 
error when we used a linear regression to explain the expectation, as model errors should be 
normally distributed. By contrast, when using a non-linear model, the error correction 
improved the achieved CR estimates. Generally, CR estimates made with the inverse learning 
approach were significantly more accurate and less biased compared to the standard approach 
across all experiments.  

As with any statistical/machine learning approach, sufficient training examples that reflect 
the expected dynamics must be available to achieve a reliable expectation model. The exact 
required sample size will depend on the complexity of the data and prediction task. This 
limitation can be assessed via model validation and managing the bias/variance trade-off23. 
Despite our introduced ‘error correction’ model, achieved CR estimates will likely never be 
completely error free. The ‘error correction’ model has its own prediction error that will 
impact the corrected residual, however, as with any predictive model, the reliability of this 
model can be assessed via validation. Depending on the data and definition what the 
expectation is, selecting training samples representing this expectation might introduce 
distribution shifts between the expectation model’s training and application data. Statistical 
matching could be one approach to mitigate potential distribution shifts24. 

The inverse learning approach for estimating a CR requires the identification of samples who 
represent the expected disease dynamics. In the context of estimating CR in AD, this implies 
that researchers must define the phenotype of ‘non-resilience’. While this is a non-trivial task 
given the complexity of AD, it also presents a major strength of the inverse learning 
approach. Employing different definitions of the expectation phenotype provides ample 
flexibility to investigate specific forms of resilience and requires dedicated thought about the 
phenotype one aims to describe. For example, individuals following the expectation could be 
selected based on their clinical progression over time, extracted slopes of cognitive outcomes, 
cross-sectional cut-offs along several cognitive assessments at different time points, 
biomarker status and progression, and postmortem pathology. It also allows for splitting 
based on demographic factors, some of which have been found to influence resilience25,26, 
such as biological sex, race, and ethnicity to derive subpopulation-specific phenotypes of CR. 
Also, data-driven phenotypes can be leveraged, for example, by using clustering algorithms 
that partition the data 2. 

The inverse learning approach will provide more accurate estimates of individual-level 
resilience under most circumstances. More accurate estimates of CR allow researchers to 
draw better insights into associations between exposures and CR, their exact effect sizes, and 
underlying biological mechanisms. These mechanisms are of great interests as they could 
potentially reveal targets for medical interventions to improve resilience in non-resilient 
individuals.  Also, with respect to personalized medicine, more accurate estimates of an 
individual’s forecasted resilience could prove beneficial to time the treatment using the newly 
approved AD drugs27–29.  Conclusively, understanding resilience and measuring it accurately 
benefits both, bringing light into the complexity of AD and supporting its management and 
treatment. 
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The used data was fully simulated. The code for both the method and data simulation can be 
found at https://github.com/Cojabi/inverse_learning. 
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