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Abstract

The introduction of non-pharmaceutical interventions (NPIs) against COVID-19 disrupted
circulation of many respiratory pathogens and eventually caused large, delayed outbreaks,
owing to the build up of the susceptible pool during the intervention period. In contrast to
other common respiratory pathogens that re-emerged soon after the NPIs were lifted, longer
delays (> 3 years) in the outbreaks ofMycoplasma pneumoniae (Mp), a bacterium commonly
responsible for respiratory infections and pneumonia, have been reported in Europe and Asia.
As Mp cases are continuing to increase in the US, predicting the size of an imminent outbreak
is timely for public health agencies and decision makers. Here, we use simple mathematical
models to provide robust predictions about a large upcoming Mp outbreak in the US. Our
model further illustrates that NPIs and waning immunity are important factors in driving
long delays in epidemic resurgence.
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1 Introduction

Mycoplasma pneumoniae (Mp) is the most commonly detected bacterium for lower tract res-
piratory infections in children and adults (Waites and Talkington, 2004; Jain et al., 2015,?;
Bajantri et al., 2018). Mp pneumonia can affect a patient for a long period due to its long
incubation period and long prodromal duration of symptoms, especially among children and
high risk individuals. For instance, outbreaks in schools have resulted in increased hospi-
talization, ventilator-associated pneumonia, severe extrapulmonary disease (e.g. Stevens-
Johnson syndrome) and have been shown to last for several months (Walter et al., 2008;
Olson et al., 2015). Increasing levels of macrolide-resistant Mp strains further highlight the
importance of appropriate diagnosis and treatment (Pereyre et al., 2016).

Multiannual cycles in Mp outbreak patterns have been observed in many countries, with
large outbreaks occurring every 3–7 years (Kim et al., 2009; Brown et al., 2016). Several
potential mechanisms have been proposed to explain the observed epidemic cycles, including
waning immunity (Omori et al., 2015) and strain dynamics (Kenri et al., 2008; Zhang et al.,
2019). More parsimoniously, multiennial epidemic dynamics can also arise from simple,
seasonally-forced immunizing epidemic dynamics, especially given low transmission rates
(Earn et al., 2000; Keeling et al., 2001).

Along with other endemic viruses and bacteria, the circulation of Mp was disrupted in
2020 due to non-pharmaceutical interventions (NPIs) that were introduced to prevent the
transmission of SARS-CoV-2 (Boyanton Jr et al., 2024). The disruption of the expected
epidemiological curve adds challenges to predicting future Mp outbreaks. In contrast to
other common respiratory pathogens that re-emerged within a year after NPIs were lifted,
the re-emergence of Mp outbreaks has been delayed for more than 3 years in Europe and
Asia (Sauteur et al., 2024). A long delay in epidemic resurgence is particularly alarming
because it can allow for a build up of a large susceptible population, increasing the risk of a
large outbreak as the infection resurges (Baker et al., 2020).

As Mp infections are beginning to increase rapidly in the US (Figure 1A), predicting
the size of an impending outbreak is critical for public health agencies and decision makers.
Here, we present a modeling analysis of Mp outbreaks in the US using data from 2015 onward
and predictions for potential upcoming outbreaks and subsequent epidemic dynamics.

2 Methods

2.1 Data

We analyzed over 2.54 million BIOFIRE® Respiratory (RP1.7, RP2, and RP2.1) Panel
(bioMérieux, Salt Lake City, Utah) multiplex PCR test results for positive detections of
Mp (Poritz et al., 2011; Leber et al., 2018; Creager et al., 2020). These deidentified pa-
tient test results were captured from 127 US facilities from January 1, 2015 to June 29,
2024 using BIOFIRE® Syndromic Trends, a cloud-based pathogen surveillance network for
BIOFIRE® instruments (Meyers et al., 2018).
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2.2 Mathematical modeling of Mp outbreaks

To estimate the epidemic dynamics of Mp infections in the US, we fitted a seasonally-forced,
deterministic Susceptible–Infectious–Recovered-Susceptible (SIRS) model (Pons-Salort and
Grassly, 2018) to Mp time series data. The SIRS model considers three compartments,
each representing the current infection status of an individual: Susceptible, Infected, and
Recovered. We assumed a homogeneously mixed population, where infected individuals (I)
transmit infection to susceptible individuals (S) at rate β(t) and recover at rate γ = 1/3weeks
(Omori et al., 2015). Recovered individuals were assumed to return to a susceptible state at
rate ν, which we estimated by fitting the model to data. Birth and death rates µ = 1/80 years
were assumed to be equal to fix the population size. In order to capture epidemic dynamics
before and after NPIs were introduced, we extended the SIRS model by decomposing the
transmission rate β(t) into two separate terms: (1) a periodic term with a period of 1 year
βseas(t) that captures seasonal transmission, reflecting epidemic peaks in summer and fall
(Figure 1A) and (2) a non-periodic, time-varying term that captures changes in contact
patterns after the introduction of COVID-19 NPIs in March, 2020 δ(t):

β(t) = βseas(t)δ(t), (1)

where δ < 1 corresponds to reduction in transmission due to NPI effects. For the period
term, we estimated a separate transmission rate for each of the 52 weeks in a year, while
constraining the smoothness using random-walk priors. For the non-period term, we allowed
δ(t) to vary every 4 weeks from March 2020 and assumed δ(t) = 1 prior to March 2020; we
also assumed δ(t) = 1 for longer-term predictions (for t outside the data range). Both terms
were directly estimated by fitting the model to data using Bayesian framework (Supplemen-
tary materials). Parameter estimation was performed in a Bayesian framework using the
Hamiltonian Monte Carlo algorithm through the R package rstan (Carpenter et al., 2017;
Stan Development Team, 2024). The resulting posterior distribution was used to predict
future Mp outbreaks by projecting the model forward. As a sensitivity analysis, we also
performed the analysis using the SIR model, which assumes that infection provides life-long
immunity.

2.3 Evaluating the impact of NPIs and waning immunity on the
delays in re-emergence of Mp outbreak

To evaluate the potential impact of NPIs on long delays on Mp outbreaks, we performed
sensitivity analyses on how reduction in transmission affect the timing of Mp outbreak resur-
gence. Specifically, we separately varied the strength and duration of NPIs by modulating the
estimated NPI effects δ(t). First, the strength of NPIs were modified by taking fold changes
in transmission δ− 1 and scaling it by a factor of θ such that the resulting transmission rate
corresponds to

β(t) = βseas(t)[1 + θ(δ(t)− 1)]. (2)
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Second, the duration of NPIs were modified by assuming δ = 1 after the end date tend:

β(t) =

{
βseas(t)δ(t) t < tend

βseas(t) tend ≥ tend
. (3)

We varied tend between 2020–2024. We note that we evaluate the effects of strength and
duration of NPIs independently and do not explore their joint effects. Finally, we varied the
duration of immunity 1/ν between 3–12 years to assess how waning immunity contributes
to the timing of Mp outbreak resurgence.

3 Results

Mathematical modeling of past Mp epidemics. The model reproduced the observed
epidemic dynamics for Mp infections, including the seasonal and longer-term (≈ 5 year)
epidemic cycles before NPIs were introduced and the delayed resurgence of the epidemic
(Figure 1A). To capture the response of Mp to the pandemic, the model required a strong
reduction in transmission (δ(t) < 1) in 2020 (Figure 1B). The model further estimated
sustained reduction in transmission for 2021–2023 (Figure 1C). While we did not find a
statistical correlation between the estimated changes in transmission and mean changes in
Google mobility measures (r = −0.06; 95% CI: -0.22, 0.11), the strength of correlation
increased with lags, with strongest correlation occurring at a 5-week lag (r = 0.25; 95% CI:
0.08–0.40; Supplementary Figure S1). The model demonstrated biannual patterns in seasonal
transmission, peaking around weeks 26 and 42 (Figure 1C). The model also estimated the
mean duration of immunity to be 9.3 years (95% CI: 4.4 years–16.4 years). The SIR model
gave nearly identical estimates for the NPI effects but underestimated the peak of the 2015
outbreak, providing support for the SIRS model (Supplementary Figure S2).

Prediction of future Mp outbreaks. In line with other acute, partially immunizing
respiratory pathogens (Baker et al., 2020), the model predicted a large build-up of the
susceptible pool during the NPI period (Figure 2A). This build up of susceptible individuals
could lead to a large Mp outbreak, which appears to have begun (Figure 1A); the model
forecasted that the epidemic would peak around the second half of 2024 and start to decline
towards the end of 2024 (Figure 2B). The estimated peak positivity will be 7.5% (95% CI:
5.6–9.3%), which is 2–3 times larger than the observed peak positivity of 2.8% at the end of
2015. The model further predicted that the outbreak beginning in 2024 would cause a large
depletion of the susceptible pool (Figure 2A), which would lead to another delayed outbreak
after several years (Figure 2B).

Impact of NPIs and waning immunity on the timing of Mp outbreak resur-
gence. The model predicted that a strong reduction in transmission due to NPIs is critical
to explaining long delays in the Mp outbreak resurgence. A smaller reduction in transmis-
sion (Figure 3A) would have led to more persistent epidemics as well as earlier resurgence of
Mp outbreaks (Figure 3B). Interestingly, the model still predicted a large outbreak in 2024
even when we assumed that NPI effects were 25% weaker than what we originally estimated,
demonstrating the risk of a susceptible build up. Similarly, assuming shorter duration of
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Figure 1: Summary of model fits to Mycoplasma pneumoniae positivity in the US,
2015–2024. (A) Comparisons of observed (points) and fitted (line) trajectories of weekly
test positivity for Mp infections. (B) Estimated non-periodic, time-varying transmission
term, representing relative transmission δ following the introduction of NPIs; for example,
0.5 corresponds to a 50% reduction in transmission. (C) Estimated periodic transmission
term βseas(t), representing seasonal transmission rate. Red lines and shaded regions represent
the estimated posterior median and corresponding 95% and 50% credible intervals.

NPIs (Figure 3C) led to earlier resurgence (Figure 3D). However, even if transmission rates
were to return to pre-pandemic values by the end of 2020, the model predicted that the resur-
gence would not be observed until 2022 (Figure 3D). Finally, we found that the duration of
immunity was also a key factor in determining the delays in Mp outbreak resurgences. Faster
waning of immunity would have caused a faster build up of the susceptible pool, leading to
an earlier Mp outbreak.
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Figure 2: Predictions of future Mycoplasma pneumoniae outbreaks. (A) Predicted
changes in the proportion of susceptible individuals. (B) Predicted changes in weekly test
positivity for Mp infections. Red lines and shaded regions represent the estimated posterior
median and corresponding 95% and 50% credible intervals.

4 Discussion

In this study, we investigated the impact of NPIs on future Mp outbreaks in the US. By
fitting a mathematical model to syndromic surveillance data, we predicted that a large Mp
outbreak is imminent with a peak expected before the end of 2024. The upcoming outbreak
is expected to be much larger than past outbreaks and may last until the end of 2025;
note, however, that there is currently substantial uncertainty associated with longer-term
dynamics, including the duration of 2024–2025 outbreak and the timing of the subsequent
outbreaks. We can already observe what seems to be the beginning of this outbreak with
an increasing rate of Mp detections throughout May and June 2024. Nonetheless, this
prediction should alert clinicians and health care systems to be prepared for an increase in
cases of pneumonia and potentially more rare presentations of Mp, such as reactive infectious
mucocutaneous eruption (RIME) and encephalitis.

Our analysis highlighted the importance of strong reduction in transmission in explaining
the delayed resurgence of Mp outbreaks. Specifically, we estimated ≈ 50% reduction in
transmission in 2020, which is considerably larger than reduction in transmission estimated
for other respiratory pathogens. For example, Baker et al. (2020) estimated a 20% reduction
in RSV transmission in the beginning of 2020. Future studies should explore whether the
epidemiology and life history of Mp infections cause its transmission to be more susceptible
to behavioral changes.

There are several limitations to our study. For example, we did not account for het-
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Figure 3: Impact of strength and duration of NPIs on the timing of Mp out-
break resurgence. (A, C) Assumed values for the relative transmission term δ following
the introduction of NPIs by varying the strength (A) and duration (C) of NPIs. (B, D) Re-
sulting epidemic dynamics across different assumptions about NPIs. (E) Resulting epidemic
dynamics across different assumptions about the duration of immunity.

erogeneity in Mp dynamics across states as the quantity of data did not allow for reliable
model-fitting at a regional scale. We did not include age structure in the model as it would
require more data. We also did not account for Mp strain dynamics, which have been hy-
pothesized as another major driver of epidemic cycles (Kenri et al., 2008; Zhang et al., 2019).
Finally, our estimate of NPI effects need to be interpreted with care, especially during a pe-
riod with very little case data; the advantage of relying on a Bayesian framework is that
these uncertainties can be captured and constrained using sensible priors. Despite these
limitations, our prediction that a build up of a susceptible pool over the past 4 years will
cause a large Mp outbreak is likely qualitatively robust.

So far, there have been limited modeling studies analyzing epidemic dynamics of Mp
infections (Omori et al., 2015; Zhang et al., 2019). Our study reinforces recent work on the
importance of understanding susceptible dynamics to predict the impact of perturbations
to transmission (Baker et al., 2020; Park et al., 2024). As such, our analysis underlines the
importance of serological surveillance data to capture the build up of the susceptible pool
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to foresee future outbreaks (Mina et al., 2020; Nguyen-Tran et al., 2022). Our study also
underlines the potential of BIOFIRE® Syndromic Trends network as a powerful surveillance
measure.

Data availability

All code is stored in a publicly available GitHub repository (https://github.com/parksw3/
mycoplasma_pred).
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Supplementary Text

Mathematical details

Here, we used the standard SIRS model to capture the dynamics of Mp epidemics. The
dynamics of the model is governed by the following set of ordinary differential equations:

dS

dt
= µ+ νR− (β(t)I + µ)S (S1)

dI

dt
= β(t)SI − (γ + µ)I (S2)

dR

dt
= γI − (ν + µ)R (S3)

where S, I, and R represents the proportion of individuals in a susceptible, infected, and
recovered compartment; β(t) represents time-varying transmission rate; γ represents the
recovery rate; ν represents the immunity waning rate; and µ represents the birth and death
rates, which are assumed to equal to keep the population size fixed. For simplicity, we
assumed a population size of S + I +R = 1.

We discretized the model using the Euler scheme outlined in He et al. (2010) at a weekly
time scale ∆t = 1week:

∆S(t) = [1− exp(−(β(t)I(t) + µ)∆t)]S(t−∆t) (S4)

NSI(t) =
β(t)I(t)∆S(t)

β(t)I(t) + µ
(S5)

∆I(t) = [1− exp(−(γ + µ)∆t)] I(t−∆t) (S6)

NIR(t) =
γI(t)

γ + µ
(S7)

∆R(t) = [1− exp(−(ν + µ)∆t)]R(t−∆t) (S8)

NRS(t) =
νR(t)

ν + µ
(S9)

S(t) = S(t−∆t) + µS −∆S(t) +NRS(t) (S10)

I(t) = I(t−∆t)−∆I(t) +NSI(t) (S11)

R(t) = R(t−∆t)−∆R(t) +NIR(t) (S12)

(S13)

where ∆X(t) represents the total number of individuals leaving the compartment X at time
t, and NXY (t) represents the number of individuals leaving the compartment X to enter the
compartment Y at time t. As explained in the main text, the transmission function was
further decomposed into a periodic term βseas(t) and a non-periodic, time-varying term δ(t):

β(t) = βseas(t)[1 + θ(δ(t)− 1)]. (S14)
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Here, the periodic term βseas(t) was modeled by estimating a weekly transmission rate for each
of 52 weeks, which was modeled using cyclical, random-walk priors to allow for smoothing:

βseas(t) ∼ Normal(βseas(t− 1), σ) t = 2 . . . 52 (S15)

βseas(1) ∼ Normal(βseas(52), σ) (S16)

A half-normal prior was used for the standard deviation in smoothing σ:

σ ∼ Half − Normal(0, 0.2). (S17)

The non-periodic term was modeled by estimating a separate δ for every four weeks with a
normal prior centered around 1:

δ(t) ∼ Normal(1, 0.2). (S18)

Finally, we assumed a lognormal error model to fit the model to observed positivity P (t):

logP (t) ∼ Normal(log(ρI(t)), σobs), (S19)

Here, ρ represents the scaling factor and σobs represents the residual standard deviation. For
both terms, we used weakly informative half-normal priors to constrain the parameter space:

ρ ∼ Half − Normal(0, 2) (S20)

σobs ∼ Half − Normal(0, 0.5) (S21)

We also used weakly informative half-normal priors for the duration of immunity τ = 1/ν:

τ ∼ Half − Normal(0, 400). (S22)

Finally, we assumed a uniform prior for the initial proportion susceptible S(0) and a half-
normal prior for the initial proportion infected I(0):

S(0) ∼ Unif(0, 1) (S23)

I(0) ∼ Half − Normal(0, 0.001) (S24)

The model was fitted using rstan (Carpenter et al., 2017; Stan Development Team, 2024)
with 4 chains, each containing 8000 iterations. Convergence was assessed based on the
lack of warning signs from rstan, indicating: no divergent chains; no iterations exceeding
maximum tree depth; sufficiently high Bayesian Fraction of Missing Information; sufficiently
high effective samples sizes; and sufficiently low Rhat.
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Supplementary Figures
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Figure S1: Comparisons of estimated changes in transmission (red) and mean
Google mobility measures (blue). See Park et al. (2024) for the details of processing
Google mobility data.
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Figure S2: Comparisons of SIRS (red) and SIR (blue) model fits to Mycoplasma
pneumoniae positivity in the US, 2015–2024. (A) Comparisons of observed (points)
and fitted (line) changes in weekly test positivity for Mp infections. (B) Estimated non-
periodic, time-varying transmission term, representing relative transmission δ following the
introduction of NPIs. These changes are relative to the seasonal transmission rate shown in
panel C; for example, 0.5 corresponds to a 50% reduction in transmission. (C) Estimated
periodic transmission term βseas(t), representing seasonal transmission rate. Lines and shaded
regions represent the estimated posterior median and corresponding 95% and 50% credible
intervals.
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