Abstract
Purpose This study aims to reduce Diffusion Tensor MRI (DT-MRI) scan time by minimizing diffusion-weighted measurements. Using machine learning, DT-MRI parameters are accurately estimated with just four tetrahedrally-arranged diffusion-encoded measurements, instead of the usual six or more. This significantly shortens scan duration and is particularly useful in ultra-low field (ULF) MRI studies and for non-compliant populations (e.g., children, the elderly, or those with movement disorders) where long scan times are impractical.
Methods To improve upon a previous tetrahedral encoding approach, this study used a deep learning (DL) model to predict parallel and radial diffusivities and the principal eigenvector of the diffusion tensor with four tetrahedrally-arranged diffusion-weighted measurements. Synthetic data were generated for model training, covering a range of diffusion tensors with uniformly distributed eigenvectors and eigenvalues. Separate DL models were trained to predict diffusivities and principal eigenvectors, then evaluated on a digital phantom and in vivo data collected at 64 mT.
Results The DL models outperformed the previous tetrahedral encoding method in estimating diffusivities, fractional anisotropy, and principal eigenvectors, with significant improvements in ULF experiments, confirming the DL approach’s feasibility in low SNR scenarios. However, the models had limitations when the tensor’s principal eigenvector aligned with the scanner’s axes
Conclusion The study demonstrates the potential of using DL to perform DT-MRI with only four directions in ULF environments, effectively reducing scan durations and addressing numerical instability seen in previous methods. These findings open new possibilities for ULF DT-MRI applications in research and clinical settings, particularly in pediatric neuroimaging
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by the Bill and Melinda Gates Foundation under the UNITY project, grant number: INV-047888, PI: Prof. Steven Williams. Funding was also received from the Wellcome Investigator Award:96646/Z/11/Z and Wellcome Strategic Award: 104943/Z/14/Z
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee of Cardiff University School of Psychology gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Submitted to Magnetic Resonance in Medicine
Data Availability
All data produced in the present study are available upon reasonable request to the authors
Data Availability
The code for the data generation and training of the model, as well as pretrained models can be found at https://github.com/jmametepe/tetrahedral_DTI