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Abstract  

Genome-wide association studies have identified thousands of variants associated with 
disease risk but the mechanism by which such variants contribute to disease remains largely 
unknown. Indeed, a major challenge is that variants do not act in isolation but rather in the 
framework of highly complex biological networks, such as the human metabolic network, 
which can amplify or buffer the effect of specific risk alleles on disease susceptibility. In our 
previous work, we established that metabolic models can be leveraged to simulate the 
emerging metabolic effects of genetically driven variation in transcript levels and estimate 
personalized metabolic reaction fluxes. Here we use genetically predicted reaction fluxes to 
perform a systematic search for metabolic fluxes acting as buffers or amplifiers of coronary 
artery disease (CAD) risk alleles. Our analysis identifies 30 risk locus - reaction flux pairs 
with significant interaction on CAD susceptibility involving 18 individual reaction fluxes and 
8 independent risk loci. Notably, many of these reactions are linked to processes with 
putative roles in the disease such as the metabolism of inflammatory mediators and fatty 
acids. In summary, this work establishes proof of concept that biochemical reaction fluxes 
can have non-additive effects with risk alleles and provides novel insights into the interplay 
between metabolism and genetic variation on disease susceptibility.  
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Introduction 

Genome-wide association studies (GWAS) have identified tens of thousands of single 
nucleotide polymorphisms (SNPs) associated with disease risk1. However, variant to 
function (V2F) remains largely unsolved limiting the potential to leverage GWAS results to 
uncover the underlying disease biology and identify novel therapeutic targets2,3. Genetic 
variants do not act in isolation but within the context of highly complex biological networks 
that can modulate the effect of specific alleles on disease susceptibility4,5. Therefore, 
unveiling non-additive effects between genetic variants and environment or genetic factors 
is a powerful approach to understanding the functional relationships of genetic variants and 
their role in disease6,7.  

Metabolism is a major biological network comprised of metabolites, enzymes, and 
transmembrane carriers and underlies many processes in health and disease8. One of the 
most direct manifestations of the metabolic phenotype are metabolic fluxes: the rate at which 
substrates are converted to products in biochemical reactions or transported across 
compartments in a metabolic network9,10. Dysregulation of metabolic fluxes can play a major 
role in disease onset and progression11–14. For instance, it is well established that alterations 
in lipid metabolic pathways can disrupt the concentration of lipids in blood and promote the 
formation of atherosclerotic lesions15,16.  

Furthermore, metabolic fluxes are particularly attractive as therapeutic targets for 
perturbation as it has been shown that they can be safely modulated to minimise disease 
risk and progression. For instance, statins, which are widely prescribed to reduce 
cardiovascular disease risk, act by reducing the flux of cholesterol synthesis through the 
inhibition of the enzyme HMG-CoA Reductase17. Statins can be combined with inhibitors of 
bile acid reabsorption, which can further reduce cholesterol levels by increasing the flux of 
bile acid synthesis16,18. Similarly, one of the mechanisms of action of the type 2 diabetes 
drug metformin, which is also reported to have cardioprotective effects19, is the reduction of 
the oxidative phosphorylation flux20. 

Notably, intracellular metabolic fluxes cannot be directly measured and instead must be 
predicted from data integrated into the framework of metabolic networks9,10. We have 
previously demonstrated the feasibility and insights that can be gleaned from using a 
genotyped population-based biobank to estimate metabolic reaction fluxes and perform a 
fluxome-wide association analysis for coronary artery disease (CAD)21. This analysis was 
performed using genetically predicted fluxes derived from the integration of genetically 
imputed transcript abundances22 within the constraints defined by the stoichiometric 
relationships of enzymes and transmembrane carriers in human genome-scale metabolic 
networks23. We found that fluxes through several reactions linked to the metabolism of 
inflammatory mediators (e.g., histamine and prostaglandins) and polyamines were strongly 
associated with CAD risk21.  

Since alterations in metabolic function contribute to disease susceptibility and progression, 
here we set out to test the hypothesis that metabolic fluxes can also act as buffers or 
amplifiers of the effects of risk alleles. We performed a systematic search for interactions 
between genetically personalized organ-specific fluxes and the dosage of risk alleles on 
CAD susceptibility in UK Biobank (UKB)24,25. In doing so, we identified numerous instances 
where reaction fluxes significantly amplify or buffer the effects of genetic variants on CAD 
risk. 
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Results 

Overview of the methods 

We estimated genetically personalized metabolic reaction fluxes for 6,185 organ-specific 
reactions in 459,902 UK Biobank participants24,25 of European genetic ancestries26 
(Methods). From hospital episode statistics and cause of death records for these 
participants, there were 37,941 CAD cases in total (combined prevalent and incident cases) 
using the PheWAS Catalog definition of coronary atherosclerosis27, and 398,282 non-CAD 
controls (N=398,282). Using a published genome-wide association meta-analysis 
performed on over one million participants of European ancestry28, we extracted a set of 
18,348 SNPs associated with CAD risk (P<5x10-8). For downstream analyses, we used the 
subset of 5,852 SNPs which were found significantly associated with CAD in European UKB 
participants (P<5x10-8; Cox regression model; Methods; Figure 1). 

We next assessed the extent to which each of the 6,185 reaction fluxes either buffered (i.e. 
negative interaction) or amplified (i.e. positive interaction) the effects of the 5,852 risk alleles 
on CAD (Methods). To robustly identify such events, we used the intersection of two 
complementary approaches with different statistical assumptions. In the first approach, we 
tested for a significant interaction effect size between risk allele dosage and reaction flux 
value using a Cox proportional-hazards model for CAD events. Before testing for interaction, 
the effect of the risk allele was regressed from reaction flux to control for potential false 
positives arising from dependencies between genetically predicted flux values and risk allele 
dosage29. In the second approach, termed dosage-specific test, we tested the differences in 
reaction flux effect sizes on CAD risk between individuals carrying different risk allele 
dosages (Figure S1; Methods). The P-values from the interaction model and the dosage-
specific test were then adjusted for multiple testing using the Benjamini-Hochberg method 
(i.e. FDR). A buffering or amplification effect of a reaction flux on a risk allele had to be 
significant under both approaches (FDR-adjusted P-value <0.05; Figure 1) to be deemed 
valid. 

Buffering and amplification of the effect of risk variants by reaction fluxes 

In total, we found 583 pairs of SNP-reaction fluxes which were significant (FDR-adjusted P-
value <0.05) in both the interaction effect size test and the dosage-specific test (separately, 
669 and 595 SNP-reaction flux pairs were significant, respectively) (Supplementary Data 
S1). We observed strong correlations between interaction effect estimates (r= 0.998) and 
the p-values (r=0.713) of both approaches (Figure S2). Indeed, from the 86 pairs significant 
for the interaction effect size test but not the dosage-specific test, 82 were significant with 
an FDR-adjusted P-value<0.25 in the latter. Similarly, 7 out of the 12 pairs significant with 
the dosage-specific test but not the interaction effect size test were also borderline 
significant, with the remaining pairs being instances where the interaction might significantly 
deviate from linearity.  

Of the 583 SNP-reaction flux pairs, 353 displayed buffering (i.e. negative interaction effect 
size) and 230 displayed amplification (i.e. positive interaction effect size) of the effects of the 
risk allele by reaction fluxes(Figure 2). The significant pairs comprised 279 unique SNPs 
mapped to 8 independent risk loci (R2<0.6; Methods) leading to 30 risk locus – reaction flux 
pairs with significant interaction on disease susceptibility. These interactions encompassed 
18 unique reaction fluxes. Notably, only five of these fluxes had a significant effect on CAD 
risk in univariate association analysis, indicating that the majority of the metabolic 
associations here unveiled have their association with CAD masked unless analysed 
together with common risk alleles(Figure S3).  
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Figure 1: Summary of the methods to detect interactions between reaction fluxes and risk alleles on CAD risk.  

 

The genomic region encoding Lp(a) and plasminogen is a major site for amplification 
and buffering 

The majority (530 out of 583) of the SNP-reaction flux pairs with significant interaction on 
CAD risk were mapped to four risk loci in the chromosome 6 genomic region encoding the 
LPA and PLG genes (Figure 2A-E; Figure 3A; Figure S1A-E; Figure S4; Supplementary 
Data S1). LPA codes for apolipoprotein(a) which is the primary constituent of Lp(a) and has 
been established to have a causal role in the formation of atherosclerotic lesions by 
promoting lipid accumulation, inflammation, and calcification in the artery wall30–32. PLG 
encodes plasminogen which can contribute to atherosclerosis by modulating, cell migration, 
extracellular matrix structure, vascular smooth muscle cell (VSMC) function, and 
inflammation33–35.  
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Figure 2: Examples of buffering and amplification of variant effect sizes by reaction fluxes on CAD risk. For 
each reaction, UKB participants of European genetic ancestries were quartile-binned according to the 
personalized reaction flux value, and variant effect sizes (Log(Hazard Ratio)) were estimated within each 
subset using Cox regression. Error bars denote the 95% confidence intervals for variant effect sizes. The 
dashed lines indicate the linear regression of variant effect sizes per flux quartile. Violin plots indicate the 
distribution of variant effect size on CAD risk for all other reaction fluxes. The dotted grey line indicates variant 
effect size in all UKB participants of European genetic ancestries. Genome coordinates correspond to the 
GRCh37 genome assembly. 

The flux of prostaglandin E2 transport in both heart and brain tissues strongly amplifies the 
effect size of a set of risk variants mapped to the risk locus which includes the LPA 
gene(Figure 2A; Figure 3A; Figure S1A; Figure S4). Prostaglandin E2 is an inflammatory 
mediator that plays a role in the pathogenesis of atherosclerosis36. Interestingly, the flux of 
elongation of arachidonoyl-CoA in adipose tissue has the opposite effect and buffers the 
effect size of two SNPs in the same risk locus (Figure 2B; Figure S1B). Arachidonoyl-CoA 
is the CoA-conjugated form of arachidonic acid which is a precursor for prostaglandin 
synthesis23 (Figure 3B). Similarly, variants in the same locus also had their effect size 
amplified by the flux of histamine synthesis in adipose tissue (Figure 2C; Figure S1C) and 
a flux of histamine transport into the liver(Figure S4). Histamine is also an inflammatory 
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mediator that has been linked to atherosclerosis by modulating inflammation, blood lipids, 
and lipoprotein fractions37,38.  

 
Figure 3: Examples of amplification and buffering at the LPA/PLG risk loci. A) Regional association plots 
showing the -log10(P-value) for interaction and variant effect sizes on CAD risk. P-values for interaction and 
variant effect sizes were derived from the interaction effect size test and meta-GWAS summary statistics, 
respectively. Only a representative subset of reactions involved in significant interactions are shown, the 
complete set of interactions for this region is shown in Figure S4. The LD heatmap indicates the pairwise LD 
for SNPs with genome-wide significant effect size on CAD in UKB participants of European genetic ancestries. 
Dashed black lines indicate the limits of LD blocks (R2>0.6) used to define independent risk loci. To facilitate 
visualization, only LD blocks with variants involved in significant interactions are highlighted. Only protein-
coding genes are shown in the gene plot. Genome coordinates correspond to the GRCh37 genome assembly. 
B) Potential mechanism of interaction between reactions of prostaglandin metabolism and LPA. LPA induces 
the expression of the enzyme COX2 which catalyses the formation of prostaglandin E2 from arachidonic acid. 
Conversely, the elongation of arachidonoyl-CoA diverts arachidonic acid away from prostaglandin synthesis. 
C) Potential mechanism of interaction between N-Acetylglucosamine 2-Epimerase and plasminogen. This 
reaction is catalysed by a homodimer of RNBP, which can also form a heterodimer with renin inhibiting the 
renin-angiotensin system. The renin-angiotensin system can suppress plasminogen activation. Solid arrows 
denote metabolic reactions or transport processes and dashed lines other functional relationships.  

We also found that fluxes involving polyamine transport in adipose tissue, heart, and skeletal 
muscle can have buffering or amplification effects in a variant- and tissue-specific manner 
across the four adjacent risk loci (Figure 3A; Figure 2D; Figure S1D; Figure S4). 
Polyamines are a family of pleiotropic compounds that regulate cell proliferation, cell 
differentiation, and protein synthesis and have a generally protective effect against 
inflammation and oxidative stress39. Polyamine-rich diets have been established to protect 
against cardiovascular disease by countering the age-related myocyte and vascular 
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endothelial dysfunctions39 while dysregulation of endogenous polyamine metabolism can 
also lead to pathologies such as cardiac hypertrophy40,41. In adipose tissue, polyamine 
synthesis is reported to protect against obesity by promoting vascularization and lipolysis42 
while in skeletal muscle it promotes muscle mass growth and regeneration43. 

A commonality between prostaglandin and polyamine transport is that they are mediated by 
transmembrane carriers coded by genes in the LPA/PLG genomic region. Namely, 
prostaglandin transport can be mediated by either SLC22A1, SLC22A2, or SLC22A3 and 
polyamine transport is mediated by SLC22A123,44. In this regard, expression quantitative 
trait loci (eQTL) variants for these transporters had been used as input for computing 
genetically personalized flux values21,22 (Methods) and are also mapped within this genomic 
region. In addition to regressing out the effect of the individual risk allele when testing for 
interaction, we quantified the linkage disequilibrium (LD) between eQTL variants used in flux 
computation and CAD risk variants, and the contribution of the former to flux values. We 
found that, while some eQTL variants had a strong contribution to reaction fluxes, they were 
not in strong LD with CAD risk variants with significant interaction with reaction fluxes(Figure 
S5). Furthermore, the flux through the elongation of arachidonoyl-CoA was not associated 
with any eQTL variants at the LPA/PLG loci, suggesting that prostaglandin metabolism may 
modulate the effect of risk alleles independently of the activity of the SLC22A1-3 
transporters.  

Finally,  in the risk locus encoding the PLG gene, two intron variants displayed significant 
interaction on disease risk with the flux through N-Acetylglucosamine 2-Epimerase in the 
liver(Figure 3A; Figure 2E; Figure S1E). This reaction is catalysed by a homodimer of the 
renin-binding protein (RNBP)23,45. The formation and stabilization of its catalytically active 
form prevents the formation of a heterocomplex with renin, which sequesters the latter and 
inhibits the renin-angiotensin system45 (Figure 3C). The renin-angiotensin system increases 
blood pressure and has been linked to atherosclerosis46. 

Transport of stearidonoyl-carnitine amplifies the effect size of variants mapped to the 
BCAR1/CFDP1 risk locus 

In the BCAR1/CFDP1 risk locus, there was evidence of risk allele amplification by the flux 
of mitochondrial transport of stearidonoyl-carnitine in skeletal muscle, with 38 risk variants 
showing significant interaction with this flux(Figure 2F; Figure 4A; Figure S1F; 
Supplementary Data S1). Polymorphisms within this region have been associated with 
carotid intima-media thickness (i.e. a marker of subclinical atherosclerosis) and CAD risk 
with BCAR1 identified as the likely causal gene47,48. BCAR1 regulates cell migration, 
proliferation and apoptosis and is essential for cardiovascular development in 
embryogenesis49. In particular, BCAR1 is a major regulator of VSMC function and it has 
been theorized that BCAR1’s contribution to the formation of atherosclerotic lesions arises 
from its role in VSMC migration50.   

Stearidonoyl-carnitine is the carnitine-conjugated form of stearidonic acid (SDA), an omega-
3 polyunsaturated fatty acid that can be efficiently metabolized to eicosapentaenoic acid 
(EPA)51. EPA has well-established anti-inflammatory and cardioprotective effects52,53 and 
has been shown to inhibit the progression of atherosclerotic lesions54.  Likewise, SDA has 
also been found to have anti-inflammatory effects in cell and animal models51,55. However, 
SDA levels in the blood have also been associated with an increased risk of cardiovascular 
pathologies such as hypertension56 or thrombosis57 suggesting a context-specific role in 
disease.  
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Figure 4: Transport of stearidonoyl-carnitine amplifies the effect size of risk variants of the BCAR1/CFDP1 
locus. A) Regional association plots showing the -log10(P-value) for interaction and variant effect sizes on 
CAD risk. P-values for interaction and variant effect sizes were derived from the interaction effect size test and 
meta-GWAS summary statistics, respectively. B) Potential mechanism of interaction between the transport of 
stearidonyl-carnitine and risk variants linked to BCAR1. Solid arrows denote metabolic reactions or transport 
processes and dashed lines other functional relationships, namely activation of the migration of vascular 
smooth muscle cells.  

 

Galactose transport into the brain amplifies the effect size of variants mapped to the 
SMARCA4 risk locus 

A set of 19 variants mapped to a risk locus encoding the SMARCA4 gene, were identified 
as having their effect size amplified by the flux of the sodium-coupled galactose transport in 
the brain(Figure 2H; Figure S1H; Figure S6; Supplementary Data S1). SMARCA4 codes 
for a chromatin-remodelling factor that has a major role in transcriptional regulation, DNA 
repair, and cell proliferation in a wide range of processes and tissues58. The SMARCA4 gene 
is adjacent to LDLR, a well-established risk locus for CAD, but it has LDLR-independent 
roles in CVD risk59. For instance, SMARCA4 has been reported to mediate vascular 
calcification60, inflammation59 and myocardial proliferation61. Indeed, the variants showing 
significant interaction with galactose transport are in a different LD block than those linked 
to LDLR (Figure S6).  

 



9 
 

UDP-Diphosphatase amplifies the effect size of variants mapped to the TGF-β-risk 
locus 

In the TGF-β risk locus, there was evidence of risk allele amplification by the flux through 
UDP-diphosphatase (Golgi apparatus) in adipose tissue, with two intron variants of TGFB1 
showing significant interaction on disease risk with this flux (Figure 2G; Figure 5A; Figure 
S1G; Supplementary Data S1). TGFB1 codes for a ligand of the Transforming Growth 
Factor β (TGF-β) family which regulates a wide range of biological processes such as 
morphogenesis, tissue homeostasis, and inflammation in a context-specific manner62. TGF-
β plays a major role in the cardiovascular system by regulating the proliferation, 
differentiation and function of endothelial, smooth muscle, and immune cells, and its 
dysregulation can lead to a wide range of cardiovascular diseases such as atherosclerosis63. 
TGF-β signalling is also linked to adiposity through the regulation of adipocyte differentiation 
and oxidative metabolism64, and TGFB1 is overexpressed in obesity65,66.  

UDP-diphosphatase plays a major role in the Golgi apparatus, which is the primary location 
of protein and lipid glycosylation. Nucleotide sugars (such as UDP-sugars) are transported 
from the cytosol to the Golgi’s lumen where they act as donors for a glycosylation process 
releasing the nucleotide diphosphate (e.g. UDP)67. Notably, the transport of UDP-sugars to 
Golgi involves an antiport with luminal UMP68,69. As such, UDP-Diphosphatase contributes 
to glycosylation by catalysing the hydrolysis of UDP to UMP hence enabling the UMP-
dependent transport of nucleotide sugars67,68. Additionally, the UMP-dependent transport of 
nucleotides-sugars to the Golgi’s lumen is also reported to contribute to the vesicle-based 
release of UDP-sugars to the extracellular space69 (Figure 5B).  
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Figure 5: UDP-diphosphatase amplifies the effect size of CAD risk variants within the TGF-β risk locus. A) 
Regional association plots showing the -log10(P-value) for interaction and variant effect sizes on CAD risk. P-
values for interaction and variant effect sizes were derived from the interaction effect size test and meta-GWAS 
summary statistics, respectively. B) Potential mechanism of interaction between UDP-diphosphatase and risk 
variants linked to TGB1. Solid arrows denote metabolic reactions or transport processes and dashed lines 
other functional relationships.  

 

Amino acid transport amplifies the effect of a risk variant upstream of the EDNRA 
gene 

A significant positive interaction in CAD risk was detected between a risk variant, mapped 
upstream of the EDNRA gene, and the flux of an amino acid transport process in the heart 
(i.e. the sodium-coupled exchange of homoserine and asparagine) (Figure 2I; Figure S1I; 
Figure S7; Supplementary Data S1). EDNRA, which is expressed in VSMC and 
cardiomyocytes, codes for the receptor for endothelin-1. Endothelin-1, acting through the 
activation of EDNRA, is a potent vasoconstrictor with a well-established role in 
cardiovascular diseases70. EDNRA expression in vascular tissue and endothelin-1 levels in 
blood are altered in atherosclerosis71,72 and EDNRA antagonists can attenuate the 
progression of coronary atherosclerosis lesions73. The concentration in blood of both 
asparagine and homoserine have been associated with cardiovascular disease risk74–77, 
however the mechanism of their effect remains largely unknown.  

Buffering and amplification of the risk of myocardial infarction 

Myocardial infarction (MI) is caused by a sudden blockage of blood flow to the myocardium, 
primarily due to coronary atherosclerosis with or without a blood clot78. Given the close 
relationship between MI and CAD and that the metabolic reactions we assess here may not 
a priori be involved in hard outcomes like MI, we investigated the extent to which the 
identified instances of buffering and amplification of risk allele penetrance on CAD risk could 
also be relevant for MI risk.  

On the UKB participants of European genetic ancestries, we identified 36,007 MI cases and 
423,629 controls using an established definition of MI79. As expected, there was a 
substantial overlap of cases and controls between MI and coronary atherosclerosis (Table 
S1). Risk variant and reaction flux effect sizes, estimated using Cox regression, were highly 
correlated between coronary atherosclerosis and MI (Figure S8A-D). However, reaction 
effect sizes for MI risk were on average lower than the equivalent effect sizes derived for 
coronary atherosclerosis.  

We evaluated buffering and amplification effects between risk variants and risk allele dosage 
on MI risk. We tested the same SNP-reaction flux pairs that had been evaluated with 
coronary atherosclerosis to facilitate the comparison of the results. For MI, there were 426 
pairs significant with both interaction effect size and dosage-specific tests (FDR-adjusted P-
value<0.05) (Supplementary Data S1). Taking into account the LD structure of risk SNPS, 
these represented 26 risk locus – reaction flux pairs with evidence of significant amplification 
or buffering of risk alleles by reaction fluxes. Out of the 583 significant SNP-flux pairs for 
coronary atherosclerosis, 360 were also significant in MI (20 risk locus – reaction flux pairs) 
with 91 additional SNP-flux pairs (4 additional risk locus – reaction flux pairs) being 
borderline significant (FDR-adjusted P-value<0.25 for both the interaction effect size test 
and the dosage-specific tests). Overall, interaction effect sizes were also strongly correlated 
between both MI and coronary atherosclerosis (Figure S8E-H).  

 Notably, there were no significant interactions on MI risk between the transport of 
stearidonoyl-carnitine and the risk locus of BCAR1/CFDP1 nor UDP-diphosphatase and the 
TGFB1 risk locus. Effect sizes for variants mapped to these loci estimated with Cox 
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regression were also slightly lower in MI compared to coronary atherosclerosis (Figure S9). 
Conversely, two loci had significant buffering of disease risk alleles by reaction fluxes in MI 
and not in CAD: effect sizes of 15 risk alleles mapped to the PDE5A/MAD2L1 locus, and 13 
risk alleles mapped to the MAP1S/FCHO1 locus were buffered by the flux of orotate 
phosphoribosyltransferase in heart and uracil transport in skeletal muscle, respectively 
(Figure S10). Both reactions are functionally part of pyrimidine metabolism, which has been 
implicated in MI80–82. Notably, PDE5A is also linked to nucleotide metabolism and its 
inhibition is well-established to have cardioprotective effects in MI83,84. 

 

Discussion 

Here, we used genetically personalized organ-specific metabolic fluxes to study the 
interaction between risk variants and biochemical reactions on disease risk using CAD as a 
case study. Our analysis identified 18 metabolic reaction fluxes that can amplify or buffer 
risk allele effect sizes at 8 well-established CAD risk loci unveiling a total of 30 risk locus - 
reaction flux pairs with significant interaction on disease susceptibility. Most of such 
reactions involved metabolic processes with known roles in atherosclerosis such as 
inflammation or fatty acid metabolism. Furthermore, the majority of the interactions detected 
for CAD were also relevant for MI. 

We identify that the genomic region of LPA/PLG, a well-known locus for CAD risk28,85, is a 
major site of interaction between risk variants and reaction fluxes. For instance, we find that 
a set of variants in the LPA and PLG risk loci have their effect size amplified by the flux of 
reactions involved in the synthesis or transport of histamine and prostaglandin E2, two 
inflammatory mediators that can contribute to the formation of atherosclerotic lesions36,38. In 
our previous work21, we identified that some of those reaction fluxes were associated with 
CAD risk, here we show that this effect can be further amplified or buffered by the dosage 
of specific risk alleles within the LPA/PLG region (Figure S1A,C). Inflammation is one of the 
mediators of pathogenicity of LPA and PLG31–33 and the former has been reported to induce 
the expression of cyclooxygenase-2, which catalyses the first step of prostaglandin E2 
synthesis31. Hence, the identified interactions may reflect a mechanism where LPA or PLG 
variants that increase inflammation have their effect on CAD risk amplified by a high capacity 
to transport prostaglandin E2 or histamine across cellular membranes. Conversely, the flux 
of elongation of arachidonoyl-CoA in adipose tissue would attenuate this effect by diverting 
arachidonic acid away from prostaglandin synthesis (Figure 3B).  

Notably, most interactions were also instances where the effect of a biochemical reaction 
flux on CAD risk only becomes apparent when analysed in conjunction with risk variants. 
For instance, neither the flux through N-Acetylglucosamine 2-Epimerase in the liver, the 
transport of stearidonoyl-carnitine in skeletal muscle nor UDP-diphosphatase in adipose 
tissue have a significant effect on disease risk when analysed in univariate analysis. 
However, the interaction analysis reveals that such fluxes can significantly amplify the effect 
size of risk variants mapped to the PLG, BCAR1 and TGFB1 risk loci, respectively, providing 
insights into their roles in cardiovascular disease. For instance, the reaction N-
Acetylglucosamine 2-Epimerase is mediated by an enzyme that moonlights as an inhibitor 
of renin45 and the formation of its catalytically active form prevents it from inhibiting the renin-
angiotensin system46, a known regulator of plasminogen86,87, suggesting a potential 
mechanism of interaction with variants of the plasminogen risk locus(Figure 3C). 
Concerning the transport of stearidonoyl-carnitine, the transport of acylcarnitines to 
mitochondria is the limiting step for mitochondrial β-oxidation88, and hence this reaction 
might be affecting CAD risk by modulating the bioavailability of SDA and other 
polyunsaturated fatty acids. In this regard, one of the cardioprotective actions of omega-3 
polyunsaturated fatty acids is the inhibition of VSMC proliferation and migration52,89, thus 
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providing a link to BCAR1 which is also reported to modulate VSMC function50 (Figure 4B). 
Similarly, UDP-diphosphatase is reported to play a major role in the transport of nucleotide-
sugars to the Golgi apparatus67,68 and hence can potentially modulate both protein 
glycosylation and the vesicle-based release of UDP-sugars69. The formation of the functional 
form of TGF-β, and many of the other proteins involved in TGF-β signalling, requires 
glycosylation in the Golgi apparatus90,91 suggesting a potential avenue of interaction. 
Additionally, the release of UDP-sugars, acting through the activation of purinergic 
receptors, can modulate adipocyte differentiation, lipolysis, and inflammation within the 
adipose tissue92. Indeed, there is ample evidence of crosstalk between TGF-β signalling and 
purinergic receptors93–95 suggesting a second potential mechanism of interaction (Figure 
5B).  

In conclusion, this work establishes proof of concept that biochemical reaction fluxes can 
modulate the effect of disease risk alleles and highlights the importance of considering the 
burden of risk variants to understand the contribution of metabolism to cardiovascular 
disease susceptibility. Given that disease-associated metabolic processes represent 
potential targets against disease, such findings have important implications for personalized 
medicine as they highlight that the therapeutic efficacy of targeting specific metabolic 
pathways may depend on each individual's genetic background.  

 

Methods 

UK Biobank 

UKB is a cohort of approximately 500,000 participants from the general UK population 
(https://www.ukbiobank.ac.uk/). Participants were between age 40 and 69 at recruitment 
(median 58 years of age; 54% women) and accepted an invitation to attend one of the 
assessment centres that were established across the United Kingdom between 2006 and 
201024. We used the version 3 release of the UK Biobank genotype data25  
(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=263), which had been imputed to the 
UK10K/1000 genomes and haplotype reference consortium (HRC)96 panels.  

Ancestry inference 

Genotyped UKB participants were assigned a genetic ancestry using KING26. Briefly, 
genotyped UKB samples were projected to the 10 main genetic principal components 
computed from samples from the 1000 genome project with known superpopulation groups 
(American, East Asian, European, and South Asian). Using this projection, KING uses a 
support-vector-machine-based method to infer the most likely ancestral group of each 
sample26. UKB participants were assigned to European Ancestry if the probability of 
belonging to that group was estimated to be 95% or higher.  

Genetically personalized organ-specific fluxes 

Genetically personalized organ-specific fluxes were computed as previously described21. 
Briefly, organ-specific metabolic models for adipose tissue, brain, heart, liver and skeletal 
muscle were extracted from Harvey/Harvetta whole body models97 and ported to 
HUMAN198, the latest reconstruction of human metabolism. The GIM3E99 algorithm was 
then used to compute an average reaction flux distribution for each organ consistent with 
average organ-specific transcript abundances obtained from GTEx100. In parallel, genotype 
data was used to impute personalized organ-specific transcript abundances for UKB 
participants using the elastic net models from PredictDB22. Finally, the quadratic metabolic 
transformation algorithm (qMTA) was used to integrate the individual-level organ-specific 
transcript abundances and the average reaction flux distribution and compute genetically 
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personalised organ-specific reaction flux values for each analysed organ. Flux values for 
each reaction were log2-transformed and standardized to zero-mean and unit variance.  

 

Definition of coronary artery disease 

Cases of CAD were identified using the definition of coronary atherosclerosis (Phecode 
411.4) of the PheWAS Catalog (version 1.2)27. Namely, cases were defined by the presence 
of any of the constitutive ICD9 (411.81, 414.0, 414.01, 414.02, 414.03, 414.04, 414.05, 
414.2, 414.3, 414.4, 996.03 or V45.81, V45.82) and ICD10 (I24.0, I25.1, Z95.1 or Z95.5) 
codes in hospital episode statistics or death records. Additionally, non-cases with any of the 
constitutive ICD codes of ischemic heart disease (Phecode 410-414.99) were excluded from 
the controls27. We identified 37,941 CAD cases and 398,282 controls in genotyped UKB 
participants of European ancestry. The earliest coded or reported date for disease was 
converted to the age of phenotype onset. Controls were censored according to the maximum 
follow-up of the health linkage data (October 31, 2022) or the date of death.  

 

Definition of myocardial infarction 

MI was defined as evidence of a fatal or nonfatal myocardial infarction or major coronary 
surgery in hospital episode statistics, death records, or self-reported during the verbal 
interview at UKB enrolment79. More in detail, myocardial infarction was defined as the 
presence of ICD-9 codes 410-412, ICD-10 codes I21–I24 or I25.2 in hospital episode 
statistics or cause of death records or reporting a heart attack during the verbal interview at 
UKB enrolment (Self-report field 6150 and Self-report field 20002). Major coronary surgery 
was defined by ICD-9 code V45.81, ICD-10 code Z95.1, OPCS-3 codes 309.4 or 884, 
OPSC-4 codes K40–K46 or reporting a coronary angioplasty, coronary artery bypass grafts 
or triple heart bypass at the verbal interview (Self-report field 20004)79. We identified 36,007 
cases and 423,629 controls in genotyped UKB participants of European ancestry. The 
earliest coded or reported date for disease was converted to the age of phenotype onset. 
Controls were censored according to the maximum follow-up of the health linkage data 
(October 31, 2022) or the date of death. 

 

Risk variant selection 

A set of variants associated with CAD risk was obtained from a published genome-wide 
association meta-analysis performed on over one million participants of European 
ancestry28. Summary statistics from this study were downloaded from the GWAS catalog 
(GCST90132314)1 and they identified 18,348 biallelic SNPs with genome-wide significance 
(P<5x10-8).  

We anticipated that only a subset of these variants might have significant effects in our 
cohort. As such, we tested the effect of these variants on CAD risk in the European subset 
of UKB. For this, we used a similar model and assumptions that we would subsequently use 
for the amplification and buffering analysis (i.e., Cox proportional-hazards model using age 
as a time scale stratifying by sex and genotyping array and using the first 10 genetic principal 
components as covariates). We selected the 5,852 variants that had genome-wide 
significance in our cohort as candidate variants to test for amplification and buffering of 
disease risk by reaction fluxes.  
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Identifying interactions between reaction fluxes and risk variants on disease risk 

To robustly identify instances of buffering/amplification between reaction fluxes and risk 
variants we used two complementary methods to detect interaction: an interaction effect 
size test and a dosage-specific test.  

In the interaction effect size test, for each pair of reaction flux values and risk allele dosages, 
we test for a significant interaction term using a Cox proportional-hazards model with age 
as a time scale for CAD risk:  

 ℎ(𝑡) = ℎ0(𝑡) ∙ 𝑒𝑥𝑝(𝛽 ∙ 𝑆𝑁𝑃 + 𝛽 ∙ 𝐹𝑙𝑢𝑥 + 𝛽 ∙ 𝑆𝑁𝑃 + 𝛽 ∙ 𝐹𝑙𝑢𝑥 + 𝛽 : ∙ 𝑆𝑁𝑃 ∙ 𝐹𝑙𝑢𝑥) 

where,  

ℎ(𝑡) is the hazard function defining the risk of CAD at age t 

ℎ0 is the baseline hazard  

𝑆𝑁𝑃 is the dosage of the risk allele 

𝐹𝑙𝑢𝑥 is the adjusted reaction flux value. Before testing for interaction, flux values are adjusted with 
linear regression to remove any potential effects of 𝑆𝑁𝑃 over the reaction flux value.   

𝛽 , 𝛽 , 𝛽 , 𝛽  are the first and second-order effect sizes for SNP dosage and Flux value 

𝛽 : 𝑆𝑁𝑃 ∙ 𝐹𝑙𝑢𝑥 is the interaction effect size between SNP dosage and Flux value  

The first ten genetic principal components were also used as covariates but have been 
omitted from this equation for clarity. Additionally, this analysis was stratified by sex and 
genotyping array. The model was fitted using the CoxPHFitter function from the lifelines 
python package101. The significant interaction effect on CAD risk was evaluated with a two-
tailed Wald test for the interaction effect size. 

In the dosage-specific effect size test, for each pair of reaction flux values and risk alleles, 
we split the analysed UKB participants based on risk allele dosage (0, 1 or 2) and estimated 
the effect of reaction flux value on CAD risk within each allele dosage using a Cox 
proportional hazards model with age as time scale.  

ℎ (𝑡) = ℎ0 (𝑡) ∙ 𝑒𝑥𝑝(𝛽 , ∙ 𝐹𝑙𝑢𝑥 ) 

where,  

ℎ (𝑡) is the hazard function defining the risk of developing CAD at age t in individuals with dosage 
i of the risk allele 

ℎ0  is the baseline hazard in individuals with dosage i of the risk allele 

𝛽 ,  is flux effect size in individuals with dosage i of the risk allele. 

𝐹𝑙𝑢𝑥 is the reaction flux value. Adjusting flux values to regress out any potential effects of 𝑆𝑁𝑃 
dosage has no effect in this analysis as the dosage of the risk allele is constant for each test.   

As with the interaction model, the first ten genetic principal components are also used as 
covariates and the analysis is stratified by sex and genotyping array. 

The CoxPHFitter function from the lifelines python package101 was used to estimate the 
effect size of reaction flux values and its standard error (SE) for each dosage of the risk 
allele. A Welch's ANOVA test (i.e. a variant of ANOVA that does not assume homogeneity of 
variance)102 was used to evaluate if there were significant differences between reaction 
effect sizes across risk allele dosages. To facilitate comparing these results with the 
interaction effect size, effect size variation per dosage of risk allele were computed with a 
linear regression of flux effect size per dosage weighted by the standard error of effect sizes 
estimates at each dosage (1/SE2). 



15 
 

Reaction selection and pruning 

In the HUMAN1-derived organ-specific models21,23, some reactions lack gene annotation. 
This can occur because they are spontaneous processes, but more often than not this arises 
because the gene(s) mediating the reaction are unknown or because they are artificial 
reactions needed to balance the models (e.g., exchange reactions). As such, we decided to 
focus the amplification/buffering analysis only on the fluxes of reactions with annotated 
genes (adipose tissue: 721, brain: 1116, heart: 1314, liver: 1956, skeletal muscle: 1078). 

Additionally, in any metabolic network, many reaction fluxes have a significant degree of flux 
correlation. This can arise from stochiometric coupling between reactions (e.g., the product 
of the first reaction is the substrate of the second reaction) and from proteins that mediate 
multiple reactions (e.g. some transmembrane carriers can transport a wide range of 
substrates). To account for this and facilitate the interpretation of the results, for each 
analyzed organ metabolic network, we pruned reaction fluxes with more than 50% 
correlation from the interaction results. Briefly, Pearson correlation coefficients were 
computed between all reaction fluxes from each organ. Next, all SNP-reaction fluxes pairs 
were ranked based on the maximum P-value between the interaction effect size test and the 
dosage-specific test. Then, starting from the reaction flux in the most significant reaction-
SNP pair, reactions with more than 0.5 flux correlation (r) to this reaction were identified and 
all pairs involving these reactions were removed. The process was subsequently repeated 
for all ranked reaction-SNP pairs until no pairs involving reactions from the same organ-
metabolic network with more than 0.5 flux correlation remained. In total 1,670 reactions 
remained (adipose tissue: 280, brain: 417, heart: 360, liver: 263, skeletal muscle: 350) 

The interaction effect size test and the dosage-specific test P-values were adjusted for 
multiple testing against all remaining SNP-reaction flux pairs using the Benjamini and 
Hochberg (i.e., FDR) method. 

Additionally, the univariate effect of the uncorrelated reactions on disease risk was also 
evaluated using a Cox model stratifying by sex and genotyping array and using the first 10 
genetic principal components as covariates. The resulting p-values were FDR-adjusted for 
all uncorrelated reactions within each disease definition. 

Linkage disequilibrium estimation and variant annotation 

LD between risk SNPs or SNPs used in flux prediction was measured using the genotype 
data from the UKB subset of inferred European ancestry using Plink 1.9103. LD blocks used 
to delimitate independent risk loci were defined using hierarchical clustering with the single 
linkage method (“friends of friends” clustering) using 1-R2 between risk variants as a 
distance metric. The resulting hierarchical tree was cut at a height of 0.4, identifying LD 
blocks such that each risk SNP had an R² > 0.6 with at least one other risk SNP within the 
block and an R² < 0.6 with all risk SNPs outside the block.  

Ensembl Variant Effect Predictor was used to annotate the effect of risk variants involved in 
interactions104. Similarly, known eQTL and sQTL variants and their target genes were 
obtained from GTEx Portal (https://gtexportal.org/home/)100 and the INTERVAL RNA-SEQ 
Portal (https://www.intervalrna.org.uk/)105 and were used to further annotate the risk variants 
involved in interactions.  

Gene features shown in plots were extracted from the 
TxDb.Hsapiens.UCSC.hg19.knownGene package with the makeGenesDataFromTxDb 
function from the karyoploteR package106.  
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Supplementary Figures and Tables 

Table S1: Cases and controls under the definition of coronary atherosclerosis or myocardial infarction in the 
inferred European ancestry subset of UKB. Under the definition of coronary atherosclerosis, individuals with 
any of the constitutive ICD codes of ischemic heart disease were excluded from the controls.  

  Myocardial Infarction 

  Control Case Excluded 

Coronary Atherosclerosis 

Control 397254 970 58 

Case 10220 27682 39 

Excluded 16155 7355 0 

 

 
Figure S1: Examples of risk allele dosage-specific reaction effect sizes for a representative set of SNP-reaction 
flux pairs with significant interaction. Reaction flux effect sizes (i.e. log(Hazard ratio)) on CAD risk were 
estimated using Cox regression in European UKB participants carrying different risk allele dosages. Error bars 
denote the 95% confidence intervals for reaction effect sizes. The dashed line indicates the linear regression 
of flux effect size per dosage weighted by the standard error of effect size estimates (1/SE2). Violin plots 
indicate the distribution of all other risk reaction flux effect sizes for the same risk allele and the dotted line is 
the linear regression for these effect sizes. Genome coordinates correspond to the GRCh37 genome assembly. 
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Figure S2: Comparison of interaction effect size and dosage-specific tests. A) Comparison of interaction effect 
sizes estimates. B) Comparison of interaction effect significance (-log10(P-values). The dashed grey line 
indicates the nominal P-value significance threshold estimated after Benjamini-Hochberg multiple testing 
correction (i.e., FDR<0.05).  

 

 

 

Figure S3: Variants and reaction fluxes with significant interaction. A) Organ metabolic network and 
chromosome of the reaction fluxes and variants, respectively, with significant interaction on CAD risk. B) and 
C) Manhattan plots of reaction fluxes and variants effects on CAD risk when analysed in univariate analysis. 
Variant effect sizes P-values were obtained from a published GWAS meta-analysis28. P-values for reaction 
effect size were computed for uncorrelated reaction fluxes with a Cox proportional hazard model in the inferred 
European ancestry subset of UKB. The dashed grey line indicates the P-value threshold to consider a variant 
or reaction effect size significant.  
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Figure S4: Significant SNP-Flux Interactions in the LPA/PLG risk loci. The regional association plots show the 
-log10(P value) for interaction and variant effect sizes on CAD risk. P-values for interaction and variant effect 
sizes were derived from the interaction effect size test and meta-GWAS summary statistics, respectively. The 
LD heatmap indicates the pairwise LD for SNPs with genome-wide significant effect size on CAD in UKB 
participants of European genetic ancestries. Dashed black lines indicate the limits of LD blocks (R2>0.6) used 
to define independent risk loci. To facilitate visualization, only LD blocks with variants involved in significant 
interactions are highlighted. Only protein-coding genes are shown in the gene plot. Genome coordinates 
correspond to the GRCh37 genome assembly.  
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Figure S5: Linkage disequilibrium between risk variants and eQTL variants used as input for flux simulation 
and their correlation to the reaction flux value for each pair of risk-variant and reaction flux with significant 
interaction in CAD risk. For each pair, the effect of the risk variant has been regressed out of the flux (Methods). 
Linkage disequilibrium under 0.04 are plotted as 0. Data is coloured based on the interaction effect size P-
value for each risk-variant reaction flux pair.  



27 
 

 
Figure S6: Interaction between galactose transport in brain and variants in the SMARCA4 risk locus. The 
regional association plots show the -log10(P-value) for interaction and variant effect sizes on CAD risk. P-
values for interaction and variant effect sizes were derived from the interaction effect size test and meta-GWAS 
summary statistics, respectively.  

 

 
Figure S7: Amino acid transport amplifies the effect of a risk variant at the EDNRA locus. The regional 
association plots show the -log10(P-value) for interaction and variant effect sizes on CAD risk. P-values for 
interaction and variant effect sizes were derived from the interaction effect size test and meta-GWAS summary 
statistics, respectively.  
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Figure S8: Effect sizes for the risk of coronary atherosclerosis and myocardial infarction. Effect sizes and Z 
scores for effect sizes for risk variants (A,B), reaction fluxes (C,B), interaction between reaction fluxes and risk 
variants (E,F), and reaction effect size variation and F-statistic for the dosage-specific test (G,H) using two 
alternative disease definitions: coronary atherosclerosis and myocardial infarction. The set of evaluated risk 
variants was obtained from a published GWAS meta-analysis28. The reaction flux effect size was evaluated for 
1,670 uncorrelated reaction fluxes (Methods). Effect sizes were evaluated with a Cox proportional hazard 
model in the inferred European ancestry subset of UKB. The dosage-specific test evaluated the variation of 
reaction flux effect size per each risk allele dosage in the same UKB subset (Methods). The dashed black line 
indicates the linear regression for the plotted values.   

 
Figure S9: Example of interactions that are attenuated in myocardial infarction. The regional association plots 
show the -log10(P-value) for interaction and variant effect sizes on disease risk. P-values for interaction effect 
sizes and variant effect (Cox Regression) were derived from the interaction and variant effect size test, 
respectively, in the European subset of UKB for coronary atherosclerosis or myocardial infarction events. As a 
reference, the variant effects for the meta-GWAS on CAD risk are also plotted.  
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Figure S10: Example of interactions that are specific to myocardial infarction. The regional association plots 
show the -log10(P-value) for interaction and variant effect sizes on disease risk. P-values for interaction effect 
sizes and Variant Effect(Cox Regression) were derived from the interaction and variant effect size test, 
respectively, in the European subset of UKB for coronary atherosclerosis or myocardial infarction events. As a 
reference, the variant effects for the meta-GWAS on CAD risk are also plotted. 

Supplementary Data S1: Table providing the reaction and variant annotation, and summary stats for pairs of 
risk alleles and reaction fluxes with significant interaction in either CAD or MI risk. Human1 and Recon3D 
Reaction IDs indicate the identifiers of the reactions in the HUMAN1 and Recon3D genome-scale models of 
human metabolism. Reaction organ indicates the organ-specific metabolic network where the flux is located. 
Genes mapped to reaction indicate the enzymes or transmembrane carriers mediating the reactions as defined 
in the gene-reaction rules of HUMAN1. eGene(s) and sGene(s) indicate the genes whose expression and 
splicing, respectively, are associated with the risk alleles. Variant risk locus indicates the LD block(R2>0.6) of 
risk variants where interacting risk alleles are mapped. The interaction between risk alleles and reaction fluxes 
is measured with two complementary approaches: an interaction effect size test and a dosage-specific test 
(Methods). Genome coordinates correspond to the GRCh37 genome assembly.  

 


