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One Sentence Summary: The percent of lung involved in disease improves prediction of 
unfavorable outcomes in pulmonary tuberculosis when added to clinical characteristics. 
Abstract:  
Radiology may better define tuberculosis (TB) severity and guide duration of treatment. We aimed 
to systematically study baseline chest X-rays (CXR) and their association with TB treatment 
outcome using real-world data. We used logistic regression to associate TB treatment outcomes 
with CXR findings, including percent of lung involved in disease (PLI), cavitation, and Timika 
score, alone or in combination with other clinical characteristics, stratifying by drug resistance 
status and HIV (n = 2,809). We fine-tuned convolutional neural nets (CNN) to automate PLI 
measurement from the CXR DICOM images (n = 5,261). PLI is the only CXR finding associated 
with unfavorable outcome across drug resistance and HIV subgroups [Rifampicin-susceptible 
disease without HIV, adjusted odds ratio (aOR) 1·11 (1·01, 1·22), P-value 0·025]. The most 
informed model of baseline characteristics tested predicts outcome with a validation mean area 
under the curve (AUC) of 0·769. PLI and Timika (AUC 0·656 and 0·655 respectively) predict 
unfavorable outcomes better than cavitary information (best AUC 0·591). The addition of PLI 
improves prediction compared to sex and age alone (AUC 0·680 and 0·627, respectively). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.24311411doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:maha_farhat@hms.harvard.edu
https://doi.org/10.1101/2024.08.19.24311411


PLI>25% provides a better separation of favorable and unfavorable outcomes compared to 
PLI>50%. The best performing ensemble of CNNs has an AUC 0·850 for PLI>25% and mean 
absolute error of 11·7% for the PLI value. PLI is better than cavitation for predicting unfavorable 
treatment outcome in pulmonary TB in non-clinical trial settings and it can be accurately and 
automatically predicted with CNNs. 
 
Main Text: 
INTRODUCTION 
Pulmonary tuberculosis (TB) has a wide spectrum of clinical presentation ranging from 
incidentally-found asymptomatic disease to severe lung destruction with cachexia and multisystem 
organ failure(1). The extent of pulmonary disease and its secondary effects on other organ systems 
is thought to influence short term prognosis, treatment response and long-term sequelae of TB(2, 
3). A standardized and generalizable measure of baseline severity for TB disease can support the 
optimization of treatment regimens, guide care resources for treatment monitoring, and 
prognostication(4, 5). Such a tool can inform clinical trial design and stratified enrollment for TB 
across the drug resistance spectrum. There are now several tools to stratify patients based on 
severity profiles in clinical trials(5–8). In real-world settings, existing tools have shown promising 
results for predicting treatment outcome or culture conversion. However, research on these tools 
has relied often on small patient samples from a single site without external validation, has used 
only one modality of clinical data, or focused on high-cost limited access tools(9–11). Associations 
of chest X-ray (CXR) findings with unfavorable outcomes or severity have commonly focused on 
the presence of lung cavitation(4–8, 12, 13). The Timika or Ralph score sums the percent of lung 
involved in disease (PLI) on CXR with 40 points added if any cavities are present(11). Other 
approaches to assessing radiological severity have included a count of the number of zones affected 
by disease (0-6)(12, 13) and a dichotomization of PLI at a threshold of 50%(7, 14, 15). In addition 
to radiology, multiple clinical variables have been highlighted as associated with unfavorable 
treatment outcomes, including male sex(4), advanced age(4, 16), low BMI(4, 16), alcohol use(16), 
diabetes mellitus(17), malignancy(18), HIV co-infection(4), smear positivity or grade(4), and low 
adherence to treatment(4). It is not clear what the real-world value of CXR findings is for treatment 
response prediction or if radiological variables can improve treatment response prediction when 
combined with non-radiological variables. Here, we systematically study baseline CXR findings 
alone or in combination with other clinical variables and assess their association with TB treatment 
outcome. We used the TB-Portals database(19) that collects multimodal information from drug-
susceptible and drug-resistant TB across geographically diverse real-world treatment settings. In 
conjunction, we aim to automate the measurement of the most predictive CXR findings using 
machine learning to facilitate access to severity assessment in high TB prevalence settings.  
 
RESULTS  
Subhead 1: Patient inclusion, baseline characteristics and treatment outcomes 
At the time of access, TB-Portals included data on 11,282 care episodes (11,067 patients) from 13 
countries between 2008-2023. The most well represented countries were Ukraine (n = 3,176), 
Georgia (n = 2,953), Moldova (n = 1,280) (Table S1, Fig. S1). 2,809 patient care episodes fit our 
inclusion criteria (Fig. 1). We stratified patients into three groups based on rifampicin 
susceptibility and HIV: (a) without HIV + rifampicin-susceptible TB: training-validation n = 566 
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(Rif-S1), test n = 285 (Rif-S2), (b) without HIV + rifampicin-resistant TB: training-validation n = 
1,056 (Rif-R1), test n = 530 (Rif-R2), and (c) with HIV + any TB: n = 372. Compared with Rif-
S1, the Rif-R1 and HIV subgroups had a higher frequency of prior TB, anemia, smoking, alcohol 
use, and other comorbidities (Table 1). People with HIV had a higher frequency of extrapulmonary 
disease, low BMI, smoking, alcohol use, and drug use than people without HIV. Pulmonary 
nodules (Rif-S1 81%) and cavities (Rif-S1 37%) were the most common CXR findings across all 
groups. The Rif-R1 group had the highest frequency of cavities (45%), and people with HIV the 
lowest (28%). Cavities were most commonly small (<3 cm) (all groups, Rif-S1 24%). Median PLI 
ranged from 18% to 26%, and Timika from 26 to 45 across the three groups (Table 1). 
Subhead 2: Non-radiological features associated with unfavorable outcomes 
We built logistic regression models of treatment outcomes using 13 demographic, clinical, 
microbiological, and regimen variables for the Rif-S1 (n = 566), Rif-R1 (n = 1,056) and HIV 
subgroups (n = 372) (complete models, Table 2, Table S2). For people with HIV, in addition to 
the 13 variables we included rifampicin resistance and antiretroviral therapy. We identified high 
smear grade (≥ 2+) compared with smear-negative disease [Rif-S1 aOR 3.84 (1.94, 7.59), p-value 
<0.001] to be associated with unfavorable outcome in all three groups. Other features associated 
with unfavorable outcome were low BMI, older age at onset of disease, prior TB, smoking, alcohol 
use, anemia, low smear grade (scanty, or 1+ vs. smear negative disease), rifampicin resistance, and 
the lack of an effective TB regimen (Table 2). 
Subhead 3: Percent lung involved in disease (PLI) is associated with unfavorable TB 
treatment outcome 
We studied ten radiological variables for association with unfavorable outcomes (Table 3). Figure 
2 shows examples of CXR images with low and high PLI, with and without cavitation. We added 
each variable one-by-one to the complete logistic regression models and used the Wald test for 
hypothesis testing of the coefficient (Table 4). PLI was significantly associated with unfavorable 
outcomes in all three groups [Rif-R1 group aOR 1.21 (1.13, 1.30) per 10% increase, p-value 
<0.001]. Timika was associated with unfavorable outcome in the Rif-R and HIV subgroups [Rif-
R1 aOR 1.14 (1.08, 1.20) per ten-point increase, p-value <0.001]. Four cavitation variables were 
associated with unfavorable outcome in the Rif-R1 group (Table 4). The cavitation variable with 
the largest effect size was large cavities aOR 3.21(1.93, 5.33). Cavitation also improved model fit 
when added to a PLI-containing model for the Rif-R1 group (LRT p-value 0.016) (Table S3). 
Subhead 4: PLI improves treatment outcome prediction accuracy 
We combined the Rif-S1 and Rif-R1 groups (n = 1,622) to boost statistical power. We trained 
logistic regression models on 75% of the data (n = 1,216) and assessed their generalizability to the 
remaining 25% (n = 406). We evaluated seven single-variable radiological models (Fig. S2A, D). 
PLI and Timika had the highest accuracy [AUC (PLI) 0.656 (0.595, 0.717)], and the former 
performed significantly better than cavitation [∆AUC (PLI - Cavities (size)) 0.065 (0.000, 0.130), p-value 
0.034]. The addition of cavitary disease to PLI did not improve accuracy [∆AUC (PLI – PLI+Cavities 

(y/n)) -0.001 (-0.023, 0.021), p-value 0.590] indicating that the predictive accuracy of Timika is 
derived predominantly from the PLI component (Fig. S2B, D). The addition of PLI to a sex+age 
model significantly improved accuracy [∆AUC (sex+age+PLI – sex+age) 0.052 (0.011, 0.093), p-value 
0.012] but did not reach the performance of the complete 13 non-radiological variable model (Fig. 
S2C, D). The change in AUC resulting from addition of PLI was similar in magnitude by resistance 
group but was only statistically significant for the Rif-R1 group (Table S4). We repeated the 
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analysis with people with HIV and observed similar improvements in prediction when PLI was 
added to the sex+age model but the increases were not statistically significant [∆AUC (sex+age+PLI – 

sex+age) 0.050 (-0.029, 0.129), p-value 0.080] (Fig. S4). 
Subhead 5: PLI improves prediction accuracy in independent data 
We used a chronologically independent dataset of patients without HIV (Rif-S2: 2020-2023, Rif-
R2: 2021-2023) to validate model accuracy (n = 815). This sample had a similar distribution of 
sex, prior TB, and rifampicin resistance as the training-validation data (Table 1) but was skewed 
geographically (85% from Ukraine) (Fig. S1C), and had a higher frequency of anemia, other 
comorbidities, smoking, alcohol use, and high smear grade. On this independent data, we observed 
a similar increase in model accuracy with the addition of Timika or PLI to sex+age as we observed 
in the training-validation set [∆AUC (sex+age+PLI – sex+age) 0.054 (0.028, 0.080), p-value <0.001] (Fig. 
3). The addition of PLI to a model with sex+age+SG also improved prediction accuracy in the test 
dataset [∆AUC (sex+age+SG+PLI – sex+age+SG) by + 0.028 (0.006, 0.050), p-value 0.004] (Fig. S3). 
Subhead 6: Impact of radiology on the stratification of risk 
To understand the clinical implications of using radiology for baseline TB risk assessment, we 
tuned the probability threshold defining high vs. low risk to maintain sensitivity at >98% for 
predicting unfavorable outcome (Methods, Fig. 4A). This allows for a scenario in which the risk 
assessment focuses on ruling out unfavorable outcomes. We then tested the optimal threshold for 
each model on the independent dataset. Sex+age+PLI specificity increases to 20.0% from 8.6% 
vs. sex+age, and exceeds specificity of the complete model (15.1%), with comparable sensitivity 
(sex+age 99.5%, sex+age+PLI 97.2%, complete 99.1%) (Fig. 4B). In absolute numbers, the 
addition of PLI to sex+age increases the size of the low-risk group from 53 (6.5% of total, n = 1 
unfavorable outcome) to 127 (15.6% of total, n = 6 unfavorable outcome) in the independent data 
(n = 815) (Table S5).  
Subhead 7: Optimal threshold of PLI and Timika score dichotomization 
A PLI cutoff of 50% was previously suggested as a predictor of unfavorable treatment outcome(14, 
15). We studied the optimal threshold on PLI using Monte Carlo cross-validation. Using the 
training-validation set of people without HIV (n = 1,622), we identified the optimal threshold for 
PLI at 25%, and for Timika at 56/140 (Fig. 5A) to maximize the geometric mean of sensitivity and 
specificity. PLI at 25% had higher sensitivity compared with PLI at 50% (sensitivity-specificity of 
59.7-65.3 vs. 25.6-88.9 respectively) and increased the size of the high-severity group by 171% 
(high-risk: 333 vs. 121 out of total n=815 respectively). 
Subhead 8: PLI in external severity scores of unfavorable outcomes 
We benchmarked TB severity scores: A5414/SPECTRA-TB (protocol in development) and 
endTB-Q(6) (ClinicalTrials.gov NCT03896685) as they both incorporate radiological findings and 
are currently being investigated as a guide for shortening TB treatment in two randomized clinical 
trials. We assessed the accuracy of these scores in predicting treatment outcome in real-world TB 
care settings and, assessed how the real-world accuracy of these scores changes with the use of 
PLI 25% or PLI instead of cavitation. A5414/SPECTRA-TB scores severity in drug-susceptible 
TB based on data from S31/A5349(7) (ClinicalTrials.gov NCT02410772) assessing a four-month 
rifapentine-containing treatment regimen for drug-susceptible TB, and includes extent of disease 
at PLI ≥ 50% (SPECTRA50, manuscript under review). We compared this model to a modified 
SPECTRA25 model (PLI ≥ 25%), sex+age+SG+PLI and complete+PLI trained on Rif-S1 (n=566) 
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and tested on the pooled Rif-S data (n=851) (Supplementary Methods). There was no statistically 
significant difference between the AUCs for SPECTRA50, SPECTRA25, and sex+age+SG+PLI, 
but the modified SPECTRA25 score had a slightly higher mean AUC than the SPECTRA50 score 
(AUC 0.689 and 0.678, respectively) (Fig. S5A). endTB-Q uses smear grade and cavity presence 
to predict severity in drug-resistant TB(6). We compared a logistic regression model based on 
endTB-Q to a modified endTB-Q_PLI (replacing cavity presence with PLI (0-100)), 
sex+age+SG+PLI and complete+PLI (Supplementary Methods) trained on Rif-R1 (n = 1,056) 
and tested on Rif-R (n=1,586). endTB-Q_PLI and sex+age+SG+PLI (AUC 0.665 and 0.726, 
respectively) had higher AUCs than endTB-Q (AUC 0.579) (Fig. S5B, Table 2). 
Subhead 9: Artificial intelligence to accurately predict PLI and Timika 
Computer-assisted diagnosis (CAD) uses artificial intelligence (AI) to automate TB diagnosis from 
CXR and has gained rapid clinical adoption globally. CAD is trained to classify TB disease as 
present or absent(20, 21) and has recently been implemented for disease severity(22). We trained 
an AI model to classify TB disease severity from CXR focusing on PLI (both continuous and 
binarized at 25%) and Timika (continuous and binarized at 55). From TB-Portals, 5,261/7,213 
chest X-ray DICOM images passed quality control for use in AI (Supplementary Methods). Of 
these, 2,893 were Rif-S and 2,368 were Rif-R. The ensemble CNN model (DenseNet121-res224-
all) had the highest accuracy for predicting PLI and Timika score, independently and jointly for 
Rif-S and Rif-R data subsets [test MAE 11.7 (95%CI 10.6-12.8) and 15.8 (95%CI 14.6-17.0) 
respectively; test AUC 0.86 (95%CI 0.82-0.88) and 0.78 (95%CI 0.73-0.83) respectively] (Table 
S6).  
 
DISCUSSION  
We show that among ten CXR findings in pulmonary TB, PLI is most consistently associated with 
unfavorable treatment outcome. Cavitation improves model fit for the rifampicin-resistant group, 
but does not improve the prediction of unfavorable outcome when added to PLI. PLI improves 
prediction of unfavorable outcome over demographics with and without smear grade. PLI 
increases the number of low-risk patients compared to demographics alone and may be helpful to 
increase the number of patients successfully treated with a less intense or shorter regimen, when 
such regimens become available (ex. ClinicalTrials.gov NCT02410772)(6, 7, 15, 23).  
Our study is congruent with previous works showing that CXR findings alone are not sufficiently 
accurate for predicting treatment outcome(24). Defining high severity of disease at PLI≥25% 
achieves a higher sum of sensitivity and specificity than the most common current use with 
PLI≥50%, but clinical variables like sex, age, smear grade, and comorbidities are needed for higher 
accuracy. Even then, the best combined models perform at accuracy of ~0.68-0.75. We evaluated 
the A5414/SPECTRA-TB and endTB-Q clinical trial severity scores for predicting outcomes for 
real-world rifampicin-susceptible and rifampicin-resistant TB, respectively. The definitions and 
ascertainment of unfavorable outcomes differ between clinical trial and real-world settings. In the 
former, recurrence of disease and/or complex composite outcomes and adherence are typically 
captured but not in the latter. Despite these differences, the AUCs for outcome prediction are 
comparable across data from these two settings (Yu A et al, unpublished). The performance of 
A5414/SPECTRA-TB may be improved if PLI at 25% is used to replace PLI at 50% and that of 
endTB-Q is improved if PLI is used to replace cavitation. Validation on external data and 
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specifically on data from clinical trials of TB shortening is recommended to confirm these findings 
and better assess their implications.  
Pulmonary cavitation in TB is thought to result from the necrosis and expansion of TB granulomas 
or diseased lung(25). After their formation during or in the recovery phase of active disease, 
cavities often persist in the lung chronically and/or lifelong(3). The presence and size of cavitation 
have been previously linked to unfavorable treatment outcomes, and used to describe severity in 
clinical trial settings(4, 5, 7, 12). PLI describes the proportion of opacified lung parenchyma, a 
process expected to start earlier than cavitation and that subsides recovery and cure(11, 13). We 
observe a stronger association for baseline PLI and outcome than for cavitation and outcome, and 
we identify no added predictive role of cavitation over PLI alone. We speculate that previous 
associations of cavitation with unfavorable outcomes in drug-susceptible disease may have been 
related to a correlation between cavitation and PLI in the subacute setting, i.e. patients with more 
extensive parenchymal disease may be more likely to progress to cavitation. It is also possible that 
patients with a delayed presentation are more likely to have both extensive disease involvement 
and cavitation, as the latter takes more time to develop.  
People living with HIV can have more subtle TB findings on CXR than people without HIV(26). 
This is believed to be due to ineffective recruitment of immune cells to the site of disease. We 
observed lower prevalence of cavitary disease and Timika score in the HIV group compared to the 
non-HIV groups. PLI on the other hand is associated with unfavorable outcomes in the HIV group 
with a similar effect size to that observed for the non-HIV group. This suggests that PLI is an 
appropriate universal measure of radiological TB severity. 
As digital CXR technology is now readily available in most TB treatment settings, the use of AI 
can automate interpretation, potentially improve accuracy and reduce inter-reader variability. We 
were able to accurately automate PLI thresholding at 25% and further work should validate these 
models prospectively across different geographic settings and directly in risk stratification. 
Our study had several limitations including its retrospective nature and lack of prospective 
evaluation of clinical characteristics and treatment. Because we synthesized data across several 
cohorts that may have different data quality and/or entry, we cannot rule out bias or 
mismeasurement. In the complete models of outcome, we couldn’t account for adherence as this 
data is not collected by the programs or TB-Portals. Another limitation is the potential CXR inter-
reader variability, especially given that not all readers were trained radiologists. Such limitations 
are expected in real-world data, and despite their presence in our study, we provide one of largest 
evaluation of radiological predictors treatment outcomes in a multicohort setting. Finally, the use 
of radiological features in severity scoring is dependent on the availability of imaging, and we 
acknowledge that access to imaging can be limited. However, digitalized imaging has been 
increasingly adopted as it becomes less expensive, and the use of automation has further reduced 
costs. 
This work builds on previous analysis of a smaller TB-Portals dataset where PLI was found to be 
associated with unfavorable treatment outcomes(27). We extended this analysis to systematically 
compare ten radiological findings and assessed their added value to clinical and microbiological 
data for predicting treatment outcomes. We provided a range of combined PLI and clinical severity 
models; we evaluate the implications of using PLI and its optimal threshold in severity scores 
currently used in clinical trials, and lastly developed a new accurate AI model for automating 
PLI≥25%. Our work enables the improved use of CXR data in severity assessment in research and 
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clinical trials for shortening treatment. Further we hypothesize that baseline PLI measurement may 
also prove helpful in predicting long term pulmonary sequelae of TB and further study is needed. 
 
MATERIALS AND METHODS 
Study population  
We used the TB-Portals multi-cohort database curated by the National Institute of Allergy and 
Infectious Diseases (NIAID) (accessed on September 19th, 2023; see Data and Code 
Availability)(Table S1). Inclusion criteria are summarized in Figure 1. Table 3 summarizes the 
processing of radiological and treatment outcome variables. For each CXR, findings were coded 
by one clinician. Multiple clinicians provide these readings to avoid biasing the data to a single 
observer's image reading practices.  
 
Data preprocessing. We split the data into three groups based on drug resistance and HIV co-
infection: (a) without HIV + rifampicin-susceptible (Rif-S), (b) without HIV + rifampicin-resistant 
(Rif-R) and (c) with HIV (HIV). We split the Rif-S and Rif-R groups into training-validation (Rif-
S1 and Rif-R1) and test (Rif-S2 and Rif-R2) datasets. To accomplish this, we split patient records 
based on date of registration for training-validation and testing. For Rif-S, we assigned all cases 
between 2008-2019 and 2021-2023 to the training-validation and test datasets, respectively, and 
randomly assigned the cases from 2020 using the train_test_split function from the SciKit-
Learn(28) model selection toolkit (v1.1.3) to generate the final 1,622:815 (66:33) data split. For 
Rif-R, we assigned all cases between 2008-2020 and 2022-2023 to the training-validation and test 
datasets, respectively, and randomly assigned the cases from 2021 to create the final 1,622:815 
data split. We used Rif-S1, Rif-R1 and HIV in parallel to build logistic regression models for 
association studies and model fit analyses. We used Rif-S1 and Rif-R1 with Monte-Carlo cross-
validation (75:25) to test the predictive accuracy of logistic regression models. We used Rif-
S2+Rif-R2 with resampling with replacement to validate the predictive accuracy findings.  
 
Outcome definition 
Treatment outcomes were concordant with the 2013 WHO criteria.(29) Death (during the course 
of treatment), treatment failure (treatment termination or need for permanent regimen change of at 
least two drugs), and palliative care were considered unfavorable outcomes, while cure (treatment 
completion + bacteriological proof of conversion in three consecutive cultures at least 30 days 
apart) and treatment completion (treatment completion with no signs/symptoms of TB disease) 
were considered favorable outcomes (Table S2). 
 
Regression 
We fit univariable and multivariable logistic regression models using the Logit tool from 
Statsmodels(30) Python library (v0.13.2) and the Newton-Raphson method. We built a complete 
non-radiological logistic regression model using available demographic, medical, social, 
microbiological, and treatment variables selecting variables based on their suspected or known 
association with treatment outcomes based on literature evidence(4, 16, 17). We built a reduced 
model composed of sex and age at onset of disease (sex+age) to model clinical scenarios in which 
other characteristics are unavailable, excluding features that are difficult (e.g. extrapulmonary 
disease) or impossible (e.g. effective treatment) to collect at baseline, and that may be missing 
(e.g. BMI or comorbidities). We tested a second version of the reduced model with smear grade 
(sex+age+SG) given its strong association with outcomes(4, 18). We used the same logistic 
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regression approach for radiological models. We compared the goodness of fit of nested models 
using likelihood ratio tests (LRT) and performed hypothesis testing with a chi-squared test, false 
discovery rate (FDR)-correcting P-values for multiple testing. For training-validation predictive 
accuracy, we conducted Monte Carlo cross-validation with 1,000 iterations. Specifically, for each 
iteration, we trained the logistic regression models on 75% of the data, and predicted on the 
remaining 25%. For testing, we trained the models on Rif-S1+Rif-R1, predicted on Rif-S2+Rif-
R2 and applied resampling with replacement at 1,000 iterations to generate AUC distributions.  
 
Statistical analysis for testing model prediction on independent data 
We used bootstrapping to generate AUC distributions for each tested logistic regression model to 
test predictive accuracy. For the training-validation dataset, the bootstrapping was in the form 
Monte Carlo cross-validation, splitting the dataset 75:25 at each iteration for 1,000 iterations. For 
the test dataset, the bootstrapping was done through resampling with replacement for 1,000 
iterations. At every iteration, we computed the difference between model AUCs (ΔAUC), and the 
number of observed differences that were ≤ 0 were divided by the total number of observations to 
assess statistical significance using a one-tailed empirical p-value approach [p-value = (#ΔAUC)
≤0/1,000]. We corrected for multiple hypothesis testing by controlling the Benjamini-Hochberg 
false discovery rate to <0.05. 
 
Rule-out risk assessment.  
We tuned the logit probability thresholds on training-validation data to predict unfavorable 
outcome with maximal geometric mean sensitivity and specificity while sensitivity ≥ 0.98. We 
tested the specificity and true negative rate of this threshold and models on the test dataset. 
 
Optimal prediction threshold for PLI and Timika.  
Using Rif-S1 and Rif-R1, we built a logistic regression model using PLI or Timika dichotomized 
at every integer value between 5 and 95 with 1000x Monte-Carlo cross-validation (75:25). For 
each model, we calculated the sensitivity and specificity, and assigned the best threshold to the 
model that has the highest geometric mean of sensitivity and specificity. We then computed the 
median of the 1000 best thresholds for PLI and Timika to generate the final optimal threshold, and 
validated the model compared to 50% PLI on independent data. 
 
External severity scores used in this study. 
SPECTRA50 is a model that includes age, BMI, diabetes, smear grade and extent of disease on 
CXR (PLI ≥50% vs. <50%). This model is a version of the original model generated from the 
S31/A5349(7) clinical trial (manuscript in review) that was pretrained and modified to fit our data 
structure. endTB-Q(6) is a simple classfier that uses smear grade with cavity. We used pretrained 
models with pre-defined coefficients (SPECTRA50) or trained logistic regression models (endTB-
Q, sex+age+SG+PLI, complete+PLI) on the training-validation dataset of interest (Rif-S1 or Rif-
R1 separately). We also tested modified versions of these scores based on findings from our 
analysis (SPECTRA25 and endTB-Q_PLI). SPECTRA25 is identical to SPECTRA50 with extent 
of disease (≥25% vs. <25%) and endTBQ_PLI is smear grade with extent of disease (0-100). We 
tested performance on the full TB-Portals whole dataset divided by drug resistance (Rif-S or Rif-
R separately). We compared these models based on their AUCs. We also tested endTB-Q and 
endTB-Q_PLI as simple classifiers to mimic the use of endTB-Q in the original manuscript (using 
PLI ≥25% as a cutoff for endTB-Q_PLI instead of cavity presence). 
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Convolutional Neural Networks 
We used pretrained CNN models from the TorchXRayVision(31) Python library 
(https://github.com/mlmed/torchxrayvision/) to perform patient-level regression and classification 
on quality-controlled CXR DICOM data from TB-Portals. We used DenseNet121-based 
regression on the whole lung in concordance with recent work demonstrating this approach as 
more effective than applying regression on a pre-segmented image(22). We split the dataset 
80:10:10 across training-validation-test sets. We pretrained The CNNs on one or multiple 
benchmark datasets available through TorchXRayVision. We used the training dataset to fine-tune 
the pretrained CNN models on the prediction of PLI and Timika. We chose the best performing 
model from the validation set for generalizability assessment on the test set. We computed 
distributions for the AUC and mean absolute error (MAE) with bootstrapping. Further details are 
available in the Supplementary Materials.  
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Fig. 1. Inclusion criteria. We queried TB Portals for patients with lung involvement, 

microbiologically-confirmed disease, first registration to TB Portals, Age at onset ≥15 
years, and all data available for features of interest and outcomes. *Baseline rifampicin 
resistance: between 90 days pre-treatment initiation and 30 days post-treatment initiation, 
inclusive. Rifampicin susceptibility testing is done through one or more of the following 
tests: BACTEC MGIT 960, Lowenstein-Jensen, Line-Probe Assay, Truenat, or GeneXpert. 
**Removal of missing data for variables of interest was done in a stepwise manner: final 
outcome (“cured”, “completed”, “failure”, “died” and “palliative care” as non-missing final 
outcome), BMI and comorbidities, smear-grade and culture data, chest X-ray data. 
***Rifampicin resistance includes isolates that tested as resistant or intermediate on drug 
susceptibility testing (phenotypic or genotypic). 
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Fig. 2. Examples of monochrome chest x-ray images present in the dataset. (A) low percent 

of lung involved in disease (PLI) and no cavitation, Timika score = PLI, (B) low PLI and 
cavitation, Timika score = PLI+40, (C) high PLI  and no cavitation (Timika score = PLI) 
and (D) high PLI and cavitation, Timika score = PLI+40. 
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Fig. 3. Prediction of unfavorable outcomes for radiological features (validation). We trained 

the logistic regression models on Rif-S1 + Rif-R1 (n = 1,622) and predicted outcomes on 
Rif-S2 + Rif-R2 (n = 815). We used sampling with replacement (1,000 iterations) on Rif-
S2+Rif-R2 to generate a mean AUC and confidence intervals. The data represents the mean 
AUC of the 1,000 iterations and the 95% CI. At every iteration, we computed the difference 
between model AUCs (ΔAUC), and the number of observed differences that were ≤ 0 were 
divided by the total number of observations to assess statistical significance using a one-
tailed empirical p-value approach [P-value = (#ΔAUC) ≤0/1,000]. We corrected for 
multiple hypothesis testing by controlling the Benjamini-Hochberg false discovery rate to 
<0.05. ΔAUC and P-values were computed by comparing each model to the sex+age 
model. The KDE plots are visual representations of the mean AUC and 95% confidence 
interval for the reduced model +/- PLI or Timika. 
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Fig. 4. Finding the optimal model threshold to separate low- and high-risk groups. (A) ROC 
for sex+age (black), reduced+PLI (purple) and complete (gray) logistic regression models for 
unfavorable outcomes. Filled red circles represent the optimal threshold for a sensitivity ≥ 0.98 
with the maximum geometric mean for sensitivity and specificity. (B) Breakdown of statistics for 
each model’s optimal threshold when applied on the training (n = 1,622) and validation (n = 815) 
datasets. * Values are represented as the difference from values in the sex+age column. 
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Fig. 5. Optimal threshold for binarizing PLI. We built PLI-only and Timika-only logistic 

regression models and estimated the prediction accuracy for unfavorable outcomes using 
Rif-S1 + Rif-R1 (n = 1,622). We used a Monte Carlo cross-validation approach with 1000 
iterations of resampling (75:25). (A) The KDE plots are visual representations of the mean 
AUC and 95% confidence interval. Optimal thresholds for raw values of PLI and Timika 
score based on optimal trade-off between sensitivity and specificity (maximal geometric 
mean) for the individual radiological feature models for PLI or Timika (red dashed line = 
median for optimal threshold). (B) Breakdown of statistics for thresholding at PLI 25% vs. 
50% when models are trained on training-validation dataset (Rif-S1+Rif-R1, n = 1,622) 
and tested on test data (Rif-S2+Rif-R2, n=815).  
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Table 1. Baseline patient characteristics and final outcome. Frequencies are shown as No. (%) 
and continuous variables are shown as median (IQR). *Other comorbidity includes hepatic or renal 
disease, diabetes mellitus, immunosuppression, pneumoconiosis or other diseases. **Effective TB 
drugs include 4+ regimen RIPE or equivalent for ≥60 days or until death, or 4+ second-line 
regimen for ≥150 days or until death. ***unfavorable outcomes include treatment failure, death or 
palliative care. Rif-S1 = people living without HIV + rifampicin-susceptible TB, Rif-R1 = people 
living without HIV + rifampicin-resistant TB, PLI = percent of lung involved in disease, 
lymphadenopathy = mediastinal lymphadenopathy 
 

Features 
Living without HIV (n = 2,437) 

Living with HIV 
(n = 372) Rif-S1  

(n = 566) 
Rif-R1  
(n = 1,056) 

Test dataset  
(n = 815) 

Baseline characteristics 

Female 140 (25%) 291 (28%) 210 (26%) 100 (27%) 

Age at onset (years) 44 (34, 54) 42 (32, 52) 44 (35, 56) 41 (36, 46) 

BMI ≤ 18 kg/m2 169 (30%) 329 (31%) 304 (37%) 147 (40%) 

Prior TB 88 (16%) 403 (38%) 260 (32%) 137 (37%) 
Country 
  Most common Moldova (48%) Ukraine (46%) Ukraine (85%) Ukraine (68%) 

  Second most common Ukraine (29%) Belarus (17%) Belarus (8%) Moldova (15%) 

  Other Other (23%) Other (37%) Other (7%) Other (17%) 

Extrapulmonary 16 (3%) 55 (5%) 12 (1%) 32 (9%) 
Comorbidity 
Anemia 20 (4%) 104 (10%) 141 (17%) 75 (20%) 

Other 151 (27%) 464 (44%) 397 (49%) 151 (41%) 

Smoking 148 (26%) 544 (52%) 521 (64%) 256 (69%) 

Alcohol use 86 (15%) 253 (24%) 294 (36%) 141 (38%) 

Drug use 6 (1%) 31 (3%) 36 (4%) 86 (23%) 

Smear grade     

  Scanty (vs. 0) 89 (16%) 135 (13%) 134 (16%) 63 (17%) 

  1+ (vs. 0) 109 (19%) 231 (22%) 181 (22%) 69 (19%) 

  ≥2+ (vs. 0) 143 (26%) 281 (27%) 259 (32%) 97 (26%) 

Rifampin resistance 0 (0%) 1,056 (100%) 530 (65%) 298 (80%) 
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Antiretrovirals 0 (0%) 0 (0%) 0 (0%) 65 (17%) 

Effective TB regimen** 481 (85%) 728 (69%) 689 (85%) 289 (78%) 

Baseline radiological features 

Timika 45 (15, 80) 45 (12, 69) 40 (10, 68) 26 (8, 60) 

Percent of lung involved in 
disease (PLI) 26 (11, 54) 19 (9, 38) 19 (10, 38) 18 (8, 40) 

Cavities     

  Presence 212 (37%) 471 (45%) 352 (43%) 106 (28%) 

  Small 138 (24%) 375 (34%) 301 (37%) 91 (24%) 

  Medium 89 (16%) 164 (16%) 73 (9%) 24 (6%) 

  Large 52 (9%) 93 (9%) 42 (5%) 8 (2%) 

  Multiple 90 (16%) 171 (16%) 120 (15%) 40 (11%)  

Lymphadenopathy 153 (27%) 181 (17%) 275 (34%) 108 (29%) 

Nodules (presence) 461 (81%) 920 (87%) 749 (92%) 334 (90%) 

Pleural effusion 105 (19%) 121 (11%) 74 (9%) 71 (19%) 

Treatment outcomes 

Unfavorable outcome*** 85 (15%) 205 (19%) 211 (26%) 149 (40%) 
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Table 2. Baseline non-radiological features and their association with unfavorable outcomes. 
Unadjusted = univariate logit model, Adjusted = multivariate logit model adjusted for the 
following characteristics: female (male as referent), age at onset of disease (continuous), BMI ≤ 
18 kg/m2  (>18 kg/m2 as referent), extrapulmonary involvement, prior TB disease, anemia, other 
comorbidities (includes hepatic or renal disease, diabetes mellitus, immunosuppression, 
pneumoconiosis or other diseases), smoking, alcohol use, smear grade (scanty, 1+ or ≥ 2+ with 
negative microscopy as a referent), and effective drug therapy, i.e. RIPE or equivalent ≥ 60 days 
or second-line 4+ antimicrobials ≥ 150 days without known resistance to any of the components. 
Rifampicin resistance and antiretroviral use are added to the adjustment for people living with 
HIV. 
 

Feature 
Unadjusted 
OR 
(95% CI) 

P-value 
(OR) 

Adjusted OR 
(95% CI) 

P-value 
(aOR) 

People living without HIV + rifampin-susceptible TB (Rif-S1, n = 566) 
Female 0.45 (0.24, 0.86) 0.016 0.51 (0.25, 1.04) 0.064 
Age at onset (years) 1.03 (1.01, 1.04) 0.002 1.04 (1.02, 1.06) <0.001 
BMI ≤ 18 kg/m2  1.52 (0.94, 2.45) 0.090 1.40 (0.82, 2.37) 0.217 
Prior TB 2.03 (1.16, 3.54) 0.013 1.65 (0.88, 3.07) 0.117 
Extrapulmonary 1.32 (0.37, 4.72) 0.673 1.92 (0.46, 7.99) 0.372 
Smoking 1.90 (1.17, 3.09) 0.010 1.25 (0.70, 2.26) 0.452 
Alcohol use 1.93 (1.10, 3.40) 0.022 1.47 (0.78, 2.79) 0.233 
Anemia 3.23 (1.25, 8.35) 0.015 2.45 (0.78, 7.66) 0.125 
Other comorbidity 1.34 (0.81, 2.21) 0.251 0.92 (0.51, 1.67) 0.792 
Smear grade (vs. none)     

  Scanty 1.07 (0.57, 1.99) 0.838 2.30 (1.03, 5.12) 0.041 
  1+ 1.70 (1.00, 2.90) 0.050 3.37 (1.62, 7.01) 0.001 
  ≥ 2+ 2.14 (1.32, 3.48) 0.002 3.84 (1.94, 7.59) <0.001 
Effective TB regimen 0.60 (0.34, 1.08) 0.087 0.59 (0.31, 1.11) 0.103 
People living without HIV + rifampin-resistant TB (Rif-R1, n = 1,056) 
Female 0.37 (0.24, 0.56) <0.001 0.62 (0.39, 1.00) 0.051 
Age at onset (years) 1.04 (1.03, 1.05) <0.001 1.04 (1.02, 1.05) <0.001 
BMI ≤ 18 kg/m2 1.67 (1.22, 2.29) 0.001 1.56 (1.08, 2.24) 0.017 
Prior TB 2.10 (1.54, 2.86) <0.001 1.59 (1.14, 2.24) 0.007 
Extrapulmonary 1.30 (0.69, 2.48) 0.417 1.03 (0.50, 2.14) 0.932 
Smoking 2.20 (1.60, 3.03) <0.001 1.15 (0.77, 1.70) 0.497 
Alcohol use 2.96 (2.14, 4.10) <0.001 1.70 (1.15, 2.51) 0.008 
Anemia 4.76 (3.12, 7.26) <0.001 2.85 (1.73, 4.69) <0.001 
Other comorbidity 1.67 (1.23, 2.26) 0.001 1.33 (0.94, 1.88) 0.113 
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Smear grade (vs. none)     

  Scanty 0.94 (0.59, 1.49) 0.778 1.50 (0.86, 2.61) 0.153 
  1+ 0.97 (0.67, 1.41) 0.874 1.25 (0.79, 1.99) 0.346 
  ≥ 2+ 1.86 (1.34, 2.57) <0.001 1.62 (1.05, 2.48) 0.028 
Effective TB regimen 0.47 (0.34, 0.64) <0.001 0.44 (0.31, 0.63) <0.001 
People living with HIV + any TB (HIV, n = 372) 
Female 0.79 (0.49, 1.27) 0.334 0.78 (0.45, 1.34) 0.367 
Age at onset (years) 1.01 (0.99, 1.04) 0.266 1.02 (0.99, 1.05) 0.170 
BMI ≤ 18 kg/m2 2.34 (1.52, 3.59) <0.001 2.47 (1.50, 4.08) <0.001 
Prior TB 1.34 (0.87, 2.06) 0.179 1.03 (0.62, 1.70) 0.920 
Extrapulmonary 2.36 (1.13, 4.94) 0.023 2.05 (0.85, 4.92) 0.109 
Smoking 1.08 (0.69, 1.69) 0.738 0.56 (0.31, 0.98) 0.043 
Alcohol use 2.19 (1.43, 3.36) <0.001 2.56 (1.51, 4.34) 0.001 
Anemia 2.26 (1.35, 3.78) 0.002 2.11 (1.12, 3.96) 0.020 
Other comorbidity 1.07 (0.70, 1.64) 0.743 0.81 (0.49, 1.33) 0.397 
Smear grade (vs. none)     

  Scanty 0.77 (0.44, 1.35) 0.362 1.06 (0.53, 2.14) 0.869 
  1+ 0.88 (0.52, 1.52) 0.656 0.81 (0.41, 1.61) 0.554 
  ≥ 2+ 2.38 (1.49, 3.81) <0.001 2.17 (1.20, 3.92) 0.011 
Rifampin resistance 2.44 (1.37, 4.35) 0.002 2.13 (1.08, 4.18) 0.028 
Antiretrovirals 0.92 (0.53, 1.60) 0.773 0.58 (0.29, 1.14) 0.116 
Effective TB regimen 0.32 (0.19, 0.53) <0.001 0.31 (0.17, 0.53) <0.001 
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Table 3. Data dictionary. Adapted from the TB-Portals Depot 
(https://depot.tbportals.niaid.nih.gov/); a description of the ten radiological characteristics of 
interest, the outcome of interest, and the way we processed each of these characteristics. For 
information on non-radiological characteristics that went into our analyses, as well as pre-
processed data formats for all the features, please visit the Online Data Supplement (Table S2). 
 

Characteristic Description Processed data format 
Radiological characteristics 
Percent of lung 
involved in disease 
(PLI) 

Extent of lung parenchymal 
abnormality, based on 
professional judgement 

Continuous (0-100%) describing 
the percentage of the whole lung 
parenchymal volume affected by 
disease. 

Small, medium 
and large cavities 

Presence of ≥1 cavities of this 
size (small: < 3cm, medium: 3-
5cm, large > 5cm). Cavities of 
different sizes can be present 
within one CXR image and 
these categories are not mutually 
exclusive 

Binary (if any cavities of this 
size are present = 1, otherwise = 
0) 

Cavity presence Presence of ≥1 cavities, adapted 
from ‘small cavity’, ‘medium 
cavity’ and ‘large cavity’ 

Binary (if sum of all cavity sizes 
>0 = 1, otherwise = 0) 

Multiple cavities The presence of >1 cavity in 
each lung sextant 

Binary (if >1 cavity seen = 1, 
otherwise = 0) 

Timika score Established severity score 
calculated for each image 

Continuous (0-140) = ‘overall 
percent of abnormal volume’ + 
add 40 if ‘any cavity’ variable = 
1, otherwise add 0 

Mediastinal 
lymphadenopathy 

Presence of enlarged mediastinal 
lymph nodes 

Binary (present = 1, otherwise = 
0) 

Nodule presence Presence of ≥1 nodules of any 
size 

Binary (if sum of all nodule sizes 
>0 = 1, otherwise = 0) 

Pleural effusion Presence of effusion in the 
pleural space 

Binary (if >0% hemithorax 
involved = 1, otherwise = 0) 

Treatment outcomes 
Unfavorable 
outcome 

Outcome at the end of treatment. 
Loss to follow-up and patients 
currently being treated are 
excluded. 

Binary (‘died’ or ‘treatment 
failure’ or ‘palliative care’ = 1, 
‘completed’ or ‘cured’ = 0, 
otherwise = N/A) 
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Table 4. Baseline radiological features association with unfavorable outcomes. Unadjusted = 
univariate logit model, adjusted = multivariate logit model adjusted for the following 
characteristics: female (male as referent), age at onset of disease (continuous), BMI ≤ 18 kg/m2  

(>18 kg/m2 as referent), extrapulmonary involvement, prior TB disease, anemia, other 
comorbidities (includes hepatic or renal disease, diabetes mellitus, immunosuppression, 
pneumoconiosis or other diseases), smoking, alcohol use, smear grade (scanty, 1+ or ≥ 2+ with 
negative microscopy as a referent), and effective drug therapy, i.e. RIPE or equivalent ≥ 60 days 
or second-line 4+ antimicrobials ≥ 150 days without known resistance to any of the components. 
Rifampicin resistance and antiretroviral use are added to the adjustment for people living with 
HIV. * The ORs for the Ralph/Timika score and percent of lung involved in disease are per 10-
point increase. 
 

Feature Unadjusted OR 
(95% CI) 

P-value 
(OR) 

Adjusted OR 
(95% CI) P-value (aOR) 

People living without HIV + rifampin-susceptible TB (Rif-S1, n = 566) 
Timika* 1.12 (1.06, 1.19) <0.001 1.07 (1.00, 1.14) 0.066 
PLI* 1.16 (1.08, 1.26) <0.001 1.11 (1.01, 1.22) 0.025 
Cavities (vs. none)     

  Presence 1.69 (1.06, 2.69) 0.027 1.12 (0.65, 1.91) 0.688 
  Small 1.45 (0.87, 2.41) 0.150 1.02 (0.57, 1.81) 0.954 
  Medium 1.69 (0.96, 2.99) 0.071 1.35 (0.72, 2.52) 0.353 
  Large 1.21 (0.56, 2.58) 0.628 0.94 (0.42, 2.10) 0.875 
  Multiple 1.28 (0.70, 2.32) 0.425 0.89 (0.46, 1.72) 0.733 
Lymphadenopathy 0.75 (0.43, 1.29) 0.293 0.74 (0.41, 1.35) 0.331 
Nodules (presence) 2.43 (1.14, 5.21) 0.022 2.05 (0.91, 4.62) 0.082 
Pleural effusion 0.93 (0.51, 1.70) 0.816 1.06 (0.54, 2.06) 0.872 
People living without HIV + rifampin-resistant TB (Rif-R1, n = 1,056) 
Timika* 1.19 (1.14, 1.24) <0.001 1.14 (1.08, 1.20) <0.001 
PLI* 1.28 (1.21, 1.36) <0.001 1.21 (1.13, 1.30) <0.001 
Cavities (vs. none)     

  Presence 2.01 (1.48, 2.74) <0.001 1.55 (1.09, 2.21) 0.015 
  Small 1.72 (1.26, 2.34) 0.001 1.41 (1.00, 2.01) 0.053 
  Medium 1.94 (1.33, 2.83) 0.001 1.65 (1.08, 2.52) 0.020 
  Large 3.47 (2.22, 5.41) <0.001 3.21 (1.93, 5.33) <0.001 
  Multiple 2.85 (1.99, 4.09) <0.001 2.49 (1.65, 3.75) <0.001 
Lymphadenopathy 1.42 (0.97, 2.08) 0.068 1.36 (0.89, 2.08) 0.154 
Nodules (presence) 1.21 (0.75, 1.95) 0.430 0.94 (0.56, 1.58) 0.814 
Pleural effusion 1.36 (0.87, 2.13) 0.180 1.15 (0.70, 1.91) 0.580 
People living with HIV + any TB (HIV, n = 372) 
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Timika* 1.09 (1.03, 1.16) 0.003 1.08 (1.01, 1.16) 0.016 
PLI* 1.10 (1.02, 1.20) 0.014 1.11 (1.01, 1.21) 0.027 
Cavities (vs. none)     

  Presence 1.77 (1.12, 2.79) 0.014 1.55 (0.92, 2.63) 0.103 
  Small 1.57 (0.97, 2.53) 0.064 1.42 (0.82, 2.46) 0.216 
  Medium 3.23 (1.35, 7.76) 0.009 2.69 (0.99, 7.33) 0.053 
  Large 2.55 (0.6, 10.82) 0.205 1.72 (0.30, 9.93) 0.546 
  Multiple 2.21 (1.14, 4.30) 0.019 1.80 (0.84, 3.83) 0.129 
Lymphadenopathy 0.93 (0.59, 1.48) 0.769 1.08 (0.64, 1.81) 0.778 
Nodules (presence) 1.32 (0.65, 2.67) 0.439 0.84 (0.38, 1.86) 0.661 
Pleural effusion 1.12 (0.66, 1.89) 0.674 1.02 (0.56, 1.86) 0.951 
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