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Abbreviations 

CAHI: central apnea hypopnea index    

EOG: electrooculogram    

EEG: electroencephalography   

IQR: interquartile range    

OLS: ordinary least squares 

OAHI: obstructive apnea hypopnea index 

PSG: polysomnography 

REM: rapid eye movement  

SDB: sleep disordered breathing  

TOST: two one-sided test    
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Abstract 

Study Objectives 

U-Sleep is a publicly-available automated sleep stager, but has not been independently 

validated using pediatric data.  We aimed to a) test the hypothesis that U-Sleep performance 

is equivalent to trained humans, using a concordance dataset of 50 pediatric polysomnogram 

excerpts scored by multiple trained scorers, and b) identify clinical and demographic 

characteristics that impact U-Sleep accuracy, using a clinical dataset of 3114 

polysomnograms from a tertiary center. 

Methods 

Agreement between U-Sleep and ‘gold’ 30-second epoch sleep staging was determined 

across both datasets. Utilizing the concordance dataset, the hypothesis of equivalence 

between human scorers and U-Sleep was tested using a Wilcoxon two one-sided test (TOST). 

Multivariable regression and generalized additive modelling were used on the clinical dataset 

to estimate the effects of age, comorbidities and polysomnographic findings on U-Sleep 

performance.  

Results  

The median (interquartile range) Cohen’s kappa agreement of U-Sleep and individual trained 

humans relative to “gold” scoring for 5-stage sleep staging in the concordance dataset were 

similar, kappa=0.79(0.19) vs 0.78(0.13) respectively, and satisfied statistical equivalence 

(TOST p<0.01). Median (interquartile range) kappa agreement between U-Sleep 2.0 and 

clinical sleep-staging was kappa=0.69(0.22).  Modelling indicated lower performance for 

children <2 years, those with medical comorbidities possibly altering sleep 

electroencephalography (kappa reduction=0.07-0.15) and those with decreased sleep 

efficiency or sleep-disordered breathing (kappa reduction=0.1).  
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Conclusion 

While U-Sleep algorithms showed statistically equivalent performance to trained scorers, 

accuracy was lower in children <2 years and those with sleep-disordered breathing or 

comorbidities affecting electroencephalography. U-Sleep is suitable for pediatric clinical 

utilization provided automated staging is followed by expert clinician review. 

 

Introduction 

Sleep in children is important for growth and learning,1,2 and disorders that disrupt sleep 

during childhood may have significant consequences on neurobehavioral and somatic growth 

functions. Specifically, impaired sleep in childhood is associated with cognitive dysfunction,3 

emotional dysregulation,4,5 behavioral problems,6,7 and metabolic syndromes.8,9,10 Early 

identification of conditions that disrupt sleep in children enables prompt treatment that has 

been shown to remediate behavioral, cognitive and metabolic dysfunction.11,12 Diagnostic 

polysomnography (PSG), involving recording of cardiorespiratory and neurophysiologic 

signals during sleep, is the gold standard test for identifying most sleep disorders in 

children.13,14 Review of PSG data is a laborious process performed by a trained pediatric sleep 

scientist and/or physician. Sleep staging is an important component of the review process, 

which can impact upon the diagnostic conclusions made by the PSG that guide subsequent 

clinical management. Unfortunately, sleep staging is both time-consuming and subject to 

significant human inter-observer variation,15 despite well-defined scoring rules developed to 

standardize scoring between clinicians and centers.16   

 

To address the demands on clinician time and the subjectivity of sleep staging in PSG, 

machine learning algorithms to automate sleep staging have been developed. These include 
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algorithms developed specifically for children of varying ages,17-25 due to differences in 

brainwave morphology at different stages of development,26 and because adult sleep staging 

algorithms are known to be less performant when applied to children.27 However, these 

pediatric-specific sleep staging algorithms are not freely available. U-Sleep provides state-of-

the-art, sleep staging algorithms that offer an automated approach to pediatric sleep staging, 

by leveraging a fully convolutional neural network which is trained on a combination of large 

adult ± pediatric datasets, and is freely available for scientific and non-commercial use.28 

However, to date, U-Sleep’s performance when applied to unseen pediatric datasets has yet to 

be independently tested and evaluated.  

 

The overarching aim of this study was to independently test publicly available versions of U-

Sleep and compare the performance of these models to clinician expert scoring, to determine 

if the algorithm(s) would be suitable for clinical use in pediatric populations. We address this 

aim with two specific objectives:  

1. Compare the performance of the U-Sleep algorithm to individual human inter-scorer 

performance, using a trained expert majority score as the gold standard. This 

objective is addressed using a “concordance dataset” of 50 pediatric PSG excerpts 

each scored by multiple (median 20) trained and in-training human scorers. We 

hypothesized that U-Sleep and trained clinicians would perform equivalently when 

compared to sleep staging determined by expert consensus.  

2. Identify key clinical or demographic characteristics that impact the accuracy of U-

Sleep. This objective is addressed using a “clinical dataset” of 3114 diagnostic PSGs 

from a single tertiary hospital. U-Sleep sleep staging is compared to the clinical sleep 

staging performed by pediatric sleep staff, with multivariable regression analysis 
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conducted to assess the influence of demographic and clinical characteristics (age, 

sleep disordered breathing severity, clinical diagnosis associated with abnormal 

electroencephalography (EEG)) on U-Sleep performance. 

 

Methods 

We assessed the performance of U-Sleep algorithms for pediatric sleep staging using two 

datasets. Both were scored using methodology outlined by the American Academy of Sleep 

Medicine.16 

Concordance Dataset 

The concordance dataset included 50 pediatric PSG excerpts (each 95 minutes in length) with 

a total of 9516 (553 Wake, 215 N1, 4080 N2, 2510 N3 and 2158 REM) 30-second epochs 

used for Australian and international concordance exercises, operated by QSleep 

(qsleep.com.au). Sleep staging of each PSG excerpt (from a pediatric patient, with specific 

age unknown and no identifiable information contained within) was performed by varying 

numbers of human scorers from different pediatric sleep centers, with the majority being 

from Australia. Most scorers were clinicians with substantial experience in pediatric sleep 

staging (trained scorers), and a minority were human scorers from the same centers classified 

as in-training scorers. We extracted the number of trained and in-training human scorers who 

contributed to each of the PSG excerpts and summarized these data. The ‘gold’ sleep stage 

for each 30-second epoch was the most frequently selected stage (i.e. mode) by trained 

scorers. For each study, electrooculogram (EOG) and EEG channels were extracted from the 

50 PSG excerpts in European Data Format (EDF) and the corresponding signals were staged 

in 30-second epochs by each of three available U-Sleep algorithms (U-Sleep 1.0 (EEG + 

EOG), U-Sleep 2.0 (EEG + EOG), and U-Sleep 2.0 EEG) via sequential upload at 
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https://sleep.ai.ku.dk. We assessed comparative performance of each of the three EEG leads 

(frontal, central, occipital) by uploading them separately. We assessed agreement between the 

U-Sleep algorithm outputs and the ‘gold’ sleep stages for all available epochs in the dataset 

by calculating percentage simple agreement and Cohen’s kappa when utilizing a five-stage 

approach (Wake, Rapid Eye Movement (REM), N1, N2, N3), three-stage approach (Wake, 

REM, non-REM) and two-stage approach (Wake/Sleep). We similarly assessed agreement 

achieved by trained, in-training, and pooled (i.e. both trained and in-training) human scorers. 

To address our primary hypothesis that U-Sleep algorithm performance for clinical sleep 

staging is equivalent to expert clinicians, we tested for equivalence using a Wilcoxon two 

one-sided test (TOST), with trained scorer interquartile range (IQR) used as the equivalence 

bound. We also determined correct and incorrect sleep stage classification rates for each sleep 

stage by each U-Sleep algorithm and converted these into confusion matrices.  For statistical 

analysis of the concordance dataset, Python v3.10.14 (with pandas v2.1.4 and scikit-learn 

v1.3.0) was used; seaborn v0.12.2 and matplotlib v3.8.4 were utilized to generate figures. 

Clinical Dataset 

The second dataset consisted of 3114 diagnostic PSG studies (with approximately 3.3 million 

epochs) performed at a single tertiary pediatric center (clinical dataset; see Table S1 in 

Supplemental Material).  Sleep staging of each epoch was performed by a pediatric sleep 

nurse overnight during the night of data capture and this was reviewed and revised by a 

pediatric sleep physician; the final revised sleep stage assigned to each epoch was considered 

the ‘gold’ sleep stage for this dataset. Children <3 months of age at the time of PSG were 

excluded given staging is usually performed using active and quiet sleep staging in this 

group.29 When staging the clinical dataset, U-Sleep 2.0 was used, given this has been trained 

on more pediatric data than its predecessor. To enable batch processing of the entire clinical 

dataset, we used the U-Sleep Webserver API and associated Python bindings 
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(https://github.com/perslev/U-Sleep-API-Python-Bindings). We packaged each individual 

data file as de-identified temporary EDF files and, via the U-Sleep Webserver, permitted the 

algorithm to consider all combinations of EEG input channel configurations; the algorithm is 

designed so that each combination will be used for prediction one at a time, and then a 

majority voting is computed across all predictions to produce the final sleep staging. Once 

scored by the algorithm, the U-Sleep scored file was exported and saved and the temporary 

EDF file deleted, with U-Sleep scored labels used for comparison with ‘gold’ labels. This 

process was completed for all 3114 files. We calculated agreement (Cohen’s kappa) between 

the ‘gold’ labels and U-Sleep when utilizing a five-, three- and two-stage approach.  

 

As the clinical dataset contained demographic, PSG, and clinical information for most 

patients, we analyzed how agreement (Cohen’s kappa) varied with patient age, primary 

diagnosis grouped into categories, and PSG findings related to sleep disordered breathing 

(SDB) diagnosis and sleep efficiency, using a combination of ordinary least squares (OLS) 

regression and generalized additive modelling. Cohen’s kappa was modelled separately with 

each factor using OLS univariable modelling, and together using an OLS multivariable 

model. Primary diagnosis was categorized into three; Group 1 (n = 13) - diagnosis highly 

likely to manifest with sleep EEG abnormalities (i.e. Rett syndrome, epileptic 

encephalopathy), Group 2 (n = 242) - diagnosis that may cause sleep EEG abnormalities (i.e. 

complex chromosomal or genetic disorder such as Trisomy 21), and Group 3 (n = 2539) - 

remaining children (inclusive of those with autism spectrum disorder). SDB diagnostic 

categories were central (central apnea hypopnea index (CAHI) ≥5; n = 200), moderate-severe 

obstructive (obstructive apnea hypopnea index (OAHI) ≥5, n = 394), mixed (CAHI ≥5 and 

OAHI ≥5, n = 81), and none (n = 2119); each participant belonged to only one of these 

categories. Sleep efficiency was defined as percentage of PSG analysis time spent asleep. R 
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(R Core Foundation) 4.2.3 and MATLAB 2022a (The MathWorks Inc, Natick, MA) was 

used for analyses and data visualization, including estimation of Cohen’s kappa and 

calculation of simple agreement (percent agreement of correct classifications divided by the 

total number of observations).  

 

Results  

Concordance dataset 

The median number of trained scorers who participated in the concordance exercise for each 

of the 50 PSG excerpts (and therefore contributed to the formation of the ‘gold’) was 16 (IQR 

5, range 6-24). The median number of in-training scorers who partook in the concordance 

exercise for each of the PSG excerpts was four (IQR 3.5, range 1-13). Table 1 and Table S2 

(Supplemental Material) show Cohen kappa and percent agreement respectively for trained 

and in-training human scorers as well as for U-Sleep algorithms, relative to the ‘gold’ 

scoring; values for 5, 3 and 2 sleep stage approaches are presented. As expected, the median 

U-Sleep algorithm and human-scorer agreement with ‘gold’ scoring varied depending on 

staging approach, with lower values for five-stage approach compared to three- and two-stage 

approaches.  There was minimal difference in algorithm performance when using differing 

EEG leads.  

 

Wilcoxon TOST to assess for equivalence between trained scorer and U-Sleep algorithm 

performance determined that all tested U-Sleep algorithm variants (regardless of EEG lead 

used) for five sleep staging performed equivalently to trained human scorers, with the 

equivalence bounds set as within trained scorer IQR.  
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U-Sleep 2.0 and human scorer agreement with the ‘gold’ is depicted for each of the 50 

excerpts in Figure 1. This figure shows that whilst there is congruence between trained and 

in-training humans and the U-Sleep algorithm in the majority of instances, there are multiple 

cases where in-training humans perform distinctly lower than trained humans (i.e. 2, 7,8, 16 

and 28), and there are multiple instances where U-Sleep 2.0 algorithms perform distinctly 

worse than human scorers (i.e. 4, 44 and 48). Histograms displaying the number of PSG 

excerpts that fall into Cohen’s kappa agreement ranges when scored by U-Sleep 2.0 (using 

occipital EEG leads) and trained human scorers are shown in Figure 2, with additional 

histograms in Figure S1 (Supplemental Material) displaying algorithmic performance using 

other EEG leads and for humans subdivided into ‘trained’ and ‘in-training’ groups. 

Confusion matrices showing correct and incorrect classification of sleep stages by human 

scorers and U-Sleep algorithms are also shown in the Supplemental Material, in Figure S2. 

 

Clinical Dataset 

Analysis of U-Sleep 2.0 agreement with the ‘gold’ scoring from the clinical dataset showed 

median Cohen’s kappa varied slightly with sleep stage approach, and percent simple 

agreement increased when moving from five stage to three and two stage approaches (Table 2 

& Table S2 in Supplemental Material). We found age is likely to have a substantial, non-

linear impact on the performance of the U-Sleep model, particularly in infancy and early 

childhood (Figure 3). Generalised additive modelling of U-Sleep performance that included 

adjustment for this effect of age showed sleep efficiency, primary diagnosis category (Figure 

4) and significant SDB (Figure 5) impacted further on U-Sleep performance in a linear 

fashion. Multi-variable linear modelling suggests each of these effects are independent of the 
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other (Table 3). Notably, when also adjusted by age, central, moderate-severe obstructive or 

mixed SDB is associated with a 0.10-0.11 reduction in Kappa agreement; and the presence of 

a disorder known to likely impact EEG morphology is associated with a 0.15 reduction in 

Kappa agreement.  

 

Discussion 

Automated pediatric sleep staging tools have been described17-25 and are potentially clinically 

useful, but to date have not been independently tested or integrated into clinical care. The aim 

of this study was to independently test publicly available versions of the U-Sleep sleep 

staging algorithm and compare the performance of these models to clinician expert scoring in 

pediatric data. Our objectives were to: (1) compare the performance of U-Sleep algorithms to 

human inter-scorer performance relative to a trained expert majority-score gold standard; and 

(2) to identify if there are key clinical or demographic characteristics which impact the 

accuracy of the U-Sleep algorithm. Using 50 pediatric PSG excerpts, U-Sleep algorithm 

performance was found by statistical equivalence testing to be similar to that of trained 

scorers, although some outliers were noted.  In a large retrospective clinical dataset, we 

identified that the agreement between clinician sleep staging and a chosen algorithm U-Sleep 

2.0 was adversely impacted by age (particularly age less than two years), the presence of 

significant SDB, and clinical disorders that likely impact EEG morphology (with reductions 

in kappa of ≥0.1). In summary, independent evaluation indicates that U-Sleep performance is 

likely to be adequate for pediatric clinical application for most cases provided there is 

appropriate trained human review. Caution should be applied when considering use for 

younger children, those with significant SDB, and those with medical conditions likely to 

cause EEG abnormality. 
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Our evaluation of the performance of a freely available pediatric sleep staging solution, U-

Sleep, found that algorithm concordance was similar to that of trained human scorers when 

tested against 50 different PSG excerpts, where the ‘gold’ was derived from scoring 

performed by multiple expert pediatric sleep clinicians from different pediatric sleep centers. 

However, in three (6%) instances, U-Sleep algorithm performance, even when using a 

different EEG lead input, was consistently a negative outlier i.e. had notably poorer 

performance than trained humans. The ‘black box’ nature of neural networks such as those 

used in U-Sleep makes it difficult to determine why errors in classification are made by the 

algorithm. Whilst explainable AI approaches for pediatric sleep staging designed to provide 

greater insight into how an algorithm performs its classification tasks have been described,18 

these are not freely available. We therefore explored how demographic, clinical and PSG 

features were associated with poorer U-Sleep performance, using a much larger clinical 

dataset from a single center (>3000 pediatric diagnostic PSGs). Whilst U-Sleep 2.0 

algorithmic concordance with clinician epoch labelling for five-stage sleep scoring was 

substantial (median Cohen’s kappa = 0.69), age less than two years, diagnosis of Rett 

Syndrome or epileptic encephalopathy (conditions highly likely to cause abnormalities in 

sleep EEG), and the presence of ≥5 obstructive or ≥5 central events per hour were associated 

with poorer U-Sleep performance (each associated with decreases in kappa of ≥0.1).  

 

There is biologic plausibility as to why U-Sleep algorithm performance is poorer in younger 

children compared to older ones. As infants and young children’s brains are undergoing rapid 

growth, myelination and expanding connectivity, it is well-recognized that their brainwave 

morphology differs to that of the older child and mature adult.26 Similarly, if a patient has 
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frequent obstructive or central events (leading to cortical arousals observed in EEG) or a 

significant neurologic/genetic disorder, then EEG disruption and deviation of EEG from the 

baseline morphology can be expected, which in turn may impact U-Sleep algorithmic 

performance. This phenomenon may affect other sleep staging algorithms, and indeed a 

recent report of poorer automated sleep staging accuracy for children with drug-resistant 

epilepsy compared to children with well-controlled or no epilepsy using a different algorithm, 

SeqSleepNet, confirms this.30  

 

Performance differences between U-Sleep versions were minor. There was a marginally 

lower median kappa (-0.02) in the 2.0 EEG-only model in comparison to the 2.0 model, with 

misclassification increase for wake epoch detection (Figure 3), suggesting that some value 

with regard to algorithmic performance may be attributable to the EOG signal. 

Unsurprisingly, N1 was the sleep stage with the poorest agreement, a phenomenon well-

described in the existing literature,31 with markedly better U-Sleep agreement with the ‘gold’ 

for other stages.  

 

A particular strength of our research is that the accuracy of U-Sleep algorithms for 

determining sleep stages in young children and in those with medical conditions that might 

impact their neural sleep architecture was specifically investigated. Undertaking such testing 

is advisable prior to any clinical implementation to minimize the risk of bias in health care.32 

However, there are also limitations to our research. Our clinical dataset is limited to that 

performed at a single center. Agreement in sleep staging between expert scorers from 

different centers can vary, which means results may not be generalizable to sleep staging 

performed at all other sites.33 This limitation is mitigated by our analysis of the concordance 
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dataset, in which the ‘gold’ is determined by a larger number of scorers who, by participating 

in a benchmarking exercise, are likely to be paying closer attention to sleep staging accuracy, 

which improves their performance.34 We speculate that this is the reason why U-Sleep 

performance is better in the context of the concordance dataset in comparison to the clinical 

dataset. 

 

Addressing poorer automated sleep staging accuracy affecting particular pediatric subgroups 

is a challenge our research has identified.  Whilst additional training data or customized 

models might improve algorithmic performance for some groups (e.g. those <2 years who 

may be poorly represented in existing training datasets), this approach may be less effective 

for increasing accuracy for others, such as those with significant SDB or underlying 

neurological conditions, because these conditions are inherently linked to EEG signal 

disruption/abnormality. Indeed, increasing frequency of apnea, hypopnea and arousal events 

has been shown to adversely affect inter-clinician concordance,33 not just algorithmic sleep 

staging concordance. Therefore, if algorithmic pediatric sleep staging was to be adopted into 

clinical use, we would recommend a) review of all automated staging by a trained human 

expert, and b) particular caution be applied to use for children <2 years old, with frequent 

obstructive and/or central events, or with medical conditions that predispose to abnormal 

sleep EEG. 

 

For most children, the accuracy of automated sleep staging using U-Sleep algorithms is 

comparable to human scorers. Barriers to adoption in pediatric sleep medicine can now be 

considered less attributable to poor algorithmic performance alone and include 

implementation hurdles such as licensing requirements, challenges integrating with existing 
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software, pediatric clinician perception of the acceptability of artificial intelligence-backed 

algorithms being used in their field, and ensuring use that takes into account variability in 

pediatric patients. For specific groups, such as infants/young children and children with 

conditions affecting brainwave morphology, algorithm performance is poorer. Therefore, 

development of tailored algorithms may be justified for specific groups, and at this stage 

expert clinician review of automated pediatric sleep staging is recommended if it is to be used 

clinically. Implementation of automated sleep staging for pediatric patients will need to 

consider the needs of end users i.e., clinicians and the patients in their care.35 Integration with 

commonly-used existing user interfaces alongside the development of adjustable, explainable 

models that suit a wide variety of children and allow for a degree of algorithm transparency 

and customization to aid a clinician decision-support approach is perhaps more likely to 

garner widespread acceptance and clinical uptake.  

 

Reference List 

1. Zhou Y, Aris IM, Tan SS, et al. Sleep duration and growth outcomes across the first 

two years of life in the GUSTO study. Sleep Med. 2015; 16(10), 1281–1286. 

2. Gómez RL, Edgin JO. Sleep as a window into early neural development: Shifts in 

sleep-dependent learning effects across early childhood. Child Dev Perspect. 2015 

Sep;9(3):183-189.  

3. de Bruin EJ, van Run C, Staaks J, Meijer AM. Effects of sleep manipulation on 

cognitive functioning of adolescents: a systematic review. Sleep Med Rev. 2017; 

32:45-57. 

4. Williams KE, Berthelsen D, Walker S, Nicholson JM. A developmental cascade 

model of behavioral sleep problems and emotional and attentional self-regulation 

across early childhood. Behav Sleep Med. 2017;15(1):1-21. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.18.24312174doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312174
http://creativecommons.org/licenses/by-nc-nd/4.0/


5. Raniti MB, Allen NB, Schwartz O, et al. Sleep duration and sleep quality: 

associations with depressive symptoms across adolescence. Behav Sleep Med. 

2017;15(3), 198–215. 

6. Perfect MM, Archbold K, Goodwin JL, Levine-Donnerstein D, Quan AF. Risk of 

behavioral and adaptive functioning difficulties in youth with previous and current 

sleep disordered breathing. Sleep. Vol. 36, Issue 4, 1 April 2013, Pages 517–525.  

7. Hochadel J, Frölich J, Wiater A, Lehmkuhl G, Fricke-Oerkermann L. Prevalence of 

sleep problems and relationship between sleep problems and school refusal behavior 

in school-aged children in children’s and parents’ ratings. Psychopathology. 2014; 

47(2), 119–126. 

8. Mi SJ, Kelly NR, Brychta RJ, et al. Associations of sleep patterns with metabolic 

syndrome indices, body composition, and energy intake in children and adolescents. 

Pediatr Obes. 2019 Jun;14(6):e12507.  

9. Dutil C, Chaput JP. Inadequate sleep as a contributor to type 2 diabetes in children 

and adolescents. Nutr Diabetes. 2017 May 8;7(5):e266.  

10. Miller AL, Lumeng JC, LeBourgeois MK. Sleep patterns and obesity in childhood. 

Curr Opin Endocrinol Diabetes Obes. 2015 Feb;22(1):41-7.  

11. Di Mauro P, Cocuzza S, Maniaci A, et al. The Effect of Adenotonsillectomy on 

Children’s Behavior and Cognitive Performance with Obstructive Sleep Apnea 

Syndrome: State of the Art. Children, 2021; 8(10):921. 

12. Alonso-Álvarez ML, Terán-Santos J, Gonzalez Martinez M, et al. Metabolic 

biomarkers in community obese children: effect of obstructive sleep apnea and its 

treatment. Sleep Med. 2017 Sep;37:1-9.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.18.24312174doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312174
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Marcus CL, Brooks LJ, Draper KA, et al; American Academy of Pediatrics. 

Diagnosis and management of childhood obstructive sleep apnea 

syndrome. Pediatrics. 2012;130(3):e714-e755.  

14. DelRosso LM, Mogavero MP, Ferri R. Restless sleep disorder, restless legs 

syndrome, and periodic limb movement disorder-Sleep in motion! Pediatr Pulmonol. 

2022 Aug;57(8):1879-1886.  

15. Lee, YJ, Lee, JY, Cho, JH, and Choi, JH. Interrater reliability of sleep stage scoring: a 

meta-analysis. J Clin Sleep Med. 2022; 18:193-202.  

16. Berry R, Quan S, Abreu A. The AASM Manual for the Scoring of Sleep and 

Associated Events: Rules, Terminology and Technical Specifications, Version 2.6, 

2022. American Academy of Sleep Medicine, Darien. 

17. van Twist E, Hiemstra FW, Cramer ABG, et al. An EEG-based sleep index and 

supervised machine learning as a suitable tool for automated sleep classification in 

children. J Clin Sleep Med. 2023 Oct 23  

18. Vaquerizo-Villar F, Gutiérrez-Tobal GC, Calvo E, et al. An explainable deep-learning 

model to stage sleep states in children and propose novel EEG-related patterns in 

sleep apnea. Comput Biol Med. 2023 Oct;165:107419.  

19. Jeon Y, Kim S, Choi HS, et al. Pediatric sleep stage classification using multi-domain 

hybrid neural networks. IEEE Access. 2019; 7:96495–505.  

20. Huang, X, Shirahama, K, Li, F, Grzegorzek, M. Sleep stage classification for child 

patients using DeConvolutional neural network. Artif Intell Med. 2020; 110:101981.  

21. de Goederen R, Pu S, Silos Viu M, et al. Radar-based sleep stage classification in 

children undergoing polysomnography: a pilot-study. Sleep Med. 2021; 82:1–8. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.18.24312174doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312174
http://creativecommons.org/licenses/by-nc-nd/4.0/


22. Phan H, Mertins A, Baumert M. Pediatric Automatic Sleep Staging: A Comparative 

Study of State-of-the-Art Deep Learning Methods. IEEE Trans Biomed Eng. 2022 

Dec;69(12):3612-3622.  

23. Wan H, Lin G, Li Y, et al. Automatic sleep stage classification of children with sleep-

disordered breathing using the modularized network. J Nat Sci Sleep. 2021; 13:2101–

12.  

24. Dehkordi P, Garde A, Karlen W, Wensley D, Ansermino JM, Dumont GA. Sleep 

stage classification in children using photoplethysmogram pulse rate variability. 

Comput Cardiol IEEE. 2014; 41:297–300.  

25. Somaskandhan P, Leppänen T, Terrill PI, et al. Deep learning-based algorithm 

accurately classifies sleep stages in preadolescent children with sleep-disordered 

breathing symptoms and age-matched controls. Front Neurol. 2023 Apr 

14;14:1162998.  

26. A. Kaminska, M. Eisermann, P. Plouin. Chapter 8 - Child EEG (and maturation) in 

Handbook of Clinical Neurology (Editors: Kerry H. Levin, Patrick Chauvel), Elsevier, 

Volume 160, 2019; p125-142. 

27. Baumert M, Hartmann S, Phan H. Automatic sleep staging for the young and the old - 

Evaluating age bias in deep learning. Sleep Med. 2023 Jul;107:18-25. 

28. Perslev M, Darkner S, Kempfner L, Nikolic M, Jennum PJ, Igel C. U-Sleep: resilient 

high-frequency sleep staging. NPJ Digit Med. (2021) 4:1–12.  

29. Grigg-Damberger M, Gozal D, Marcus CL, et al. The visual scoring of sleep and 

arousal in infants and children. J Clin Sleep Med. 2007 Mar 15;3(2):201-40. 

30. Proost R, Heremans E, Lagae L, Van Paesschen W, De Vos M, Jansen K. Automated 

sleep staging on reduced channels in children with epilepsy. Front Neurol. 2024 May 

10;15:1390465.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.18.24312174doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312174
http://creativecommons.org/licenses/by-nc-nd/4.0/


31. Lee YJ, Lee JY, Cho JH, Choi JH. Interrater reliability of sleep stage scoring: a meta-

analysis. J Clin Sleep Med. 2022;18(1):193–202. 

32. Abràmoff MD, Tarver ME, Loyo-Berrios N, Trujillo S, Char D, Obermeyer Z, 

Eydelman MB. Foundational Principles of Ophthalmic Imaging and Algorithmic 

Interpretation Working Group of the Collaborative Community for Ophthalmic 

Imaging Foundation, Washington, D.C.; Maisel WH. Considerations for addressing 

bias in artificial intelligence for health equity. NPJ Digit Med. 2023 Sep 12;6(1):170.  

33. Zhang X, Dong X, Kantelhardt JW, et al. Process and outcome for international 

reliability in sleep scoring. Sleep Breath. 2015 Mar;19(1):191-5. 

34. Ruehland WR, Rochford PD, Pierce RJ, Singh P, Thornton AT. External proficiency 

testing improves inter-scorer reliability of polysomnography scoring. Sleep Breath. 

2023 Jun;27(3):923-932.  

35. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for 

delivering clinical impact with artificial intelligence. BMC Med. 2019 Oct 

29;17(1):195.  

 

 

Figures 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.18.24312174doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312174
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1: U-Sleep 2.0 and human scorer performance for five-stage pediatric sleep staging 

across PSG excerpts from concordance dataset.  
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Figure 2: Histograms showing number of PSG excerpts with particular Cohen’s kappa values 

obtained by U-Sleep 2.0 (left) and trained scorers with weighting* (right) for five-stage sleep 

staging 

* As a variable number of human scorers partook in the scoring of each PSG excerpt, the 

weighting system compensates for this by proportionally increasing the weighting of a human 

scoring a PSG excerpt with less human scorers compared to another with more, in order for 

each of the 50 PSG excerpts to contribute equally to the histogram. 

Note: gold standard was defined as trained expert majority score. 
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Figure 3: Generalized additive modelling of Cohen’s kappa using a P-spline of age (3 

months-18 years). 
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 Figure 4: Generalized additive modelling of Cohen’s kappa using a P-spline of age for 

children grouped by comorbid diagnosis category 

Group 1: comorbid diagnosis highly likely to manifest with sleep EEG abnormalities 

Group 2: comorbid diagnosis that may cause sleep EEG abnormalities  

Group 3: remaining children  
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Figure 5: Generalized additive modelling of Cohen’s kappa using a P-spline of age for 

children with central, moderate-severe obstructive, or mixed sleep disordered breathing. 
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Tables 

Table 1: Median (inter-quartile range) sleep staging agreement (assessed by Cohen’s kappa) 

of U-Sleep algorithms and human scorers with the gold standard for the concordance dataset 

of 50 PSG excerpts 

 
Five stage 

approach 

Three stage 

approach 

Two stage 

approach* 

Trained Humans  0.78 (0.13) 0.82 (0.11) 0.86 (0.16) 

In Training Humans  0.73 (0.22) 0.75 (0.17) 0.78 (0.18) 

Pooled (all) Humans 0.77 (0.14) 0.79 (0.10) 0.82 (0.16) 

U-Sleep (F4) 0.76 (0.18) 0.81 (0.34) 0.87 (0.19) 

U-Sleep (C4)  0.78 (0.17) 0.83 (0.19) 0.89 (0.16) 

U-Sleep (O2)  0.76 (0.19) 0.79 (0.26) 0.89 (0.19) 

U-Sleep 2.0 (F4)  0.75 (0.20) 0.77 (0.21) 0.76 (0.19) 

U-Sleep 2.0 (C4)  0.77 (0.20) 0.79 (0.25) 0.77 (0.25) 

U-Sleep 2.0 (O2) 0.79 (0.19) 0.79 (0.22) 0.75 (0.26) 

U-Sleep 2.0 EEG (F4) 0.74 (0.16) 0.75 (0.23) 0.75 (0.25) 

U-Sleep 2.0 EEG (C4) 0.76 (0.17) 0.76 (0.25) 0.74 (0.24) 

U-Sleep 2.0 EEG (O2) 0.74 (0.23) 0.79 (0.25) 0.74 (0.42) 

Note: Numbers presented are median (interquartile range), as the underlying 

distribution of Cohen’s kappa values represented by each number does not appear to be 

normally distributed according to Shapiro Wilk test 

* 29/50 excerpts were excluded from the two-stage approach analysis as they had <5% 

wake epochs 
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Table 2: Sleep staging agreement (assessed by Cohen’s kappa) of U-Sleep 2.0 with the ‘gold 

standard’ epoch labels for the clinical dataset by patient age group. 

Age group 
Five stage 

approach 

Three stage 

approach 

Two stage 

approach 

Three months to one year 

of age 
0.50 (0.25) 0.63 (0.17) 0.61 (0.20) 

One to two years of age 0.59 (0.20) 0.66 (0.17) 0.63 (0.21) 

Two to five years of age 0.67 (0.22) 0.71 (0.20) 0.65 (0.24) 

Five to twelve years of age 0.73 (0.16) 0.75 (0.18) 0.73 (0.21) 

Twelve to eighteen years of 

age 
0.69 (0.21) 0.72 (0.17) 0.69 (0.19) 

All 0.69 (0.22) 0.72 (0.18) 0.69 (0.22) 

* data are presented as median (interquartile range) 
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Table 3: Univariable and multivariable modelling of factors affecting U-Sleep 2.0 5-stage 

performance. 

Factor Univariable models Multivariable model* 

 β (Cohen’s kappa) 

Age (per 3 years) 0.03 (0.02, 0.03) 0.03 (0.02, 0.03) 

Sleep efficiency (per 10%) 0.03 (0.03, 0.04) 0.04 (0.03, 0.04) 

Sleep disordered breathing   

None Reference Reference 

Obstructive (OAHI ≥5) -0.11 (-0.13, -0.09) -0.10 (-0.12, -0.08) 

Central (CAHI ≥5) -0.14 (-0.17, -0.11) -0.11 (-0.14, -0.09) 

Mixed (OAHI & CAHI ≥5) -0.14 (-0.18, -0.10) -0.10 (-0.14, -0.06) 

Patient Diagnosis Group   

Group 3 Reference Reference 

Group 2 -0.08 (-0.11, -0.06) -0.07 (-0.09, -0.04) 

Group 1 -0.13 (-0.24, -0.03) -0.15 (-0.24, -0.05) 

Group 1: diagnosis highly likely to manifest with sleep EEG abnormalities: Rett 

syndrome, epileptic encephalopathy 

Group 2: diagnosis that may cause sleep EEG abnormalities (i.e. complex 

chromosomal or genetic disorder) 

Group 3: remaining children 
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Supplemental Material 

Table S1: Number and type of epochs available in the clinical dataset by patient age 

Age REM N1 N2 N3 Wake 

3m - 1y 39787 3572 85953 45410 34440 

1-2y 42530 3642 76072 48244 39039 

2-5y 150849 9701 290417 154732 136047 

5-12y 330327 21587 626213 347144 39039 

12-18y 148342 8851 272557 153253 124341 

Total 729256 48214 1371568 763010 387511 
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Table S2: Median (inter-quartile range) sleep staging concordance (assessed by simple 

agreement) of A) U-Sleep algorithms and human scorers with the gold standard for the 

concordance dataset of 50 PSG excerpts and B) U-Sleep 2.0 with the ‘gold standard’ epoch 

labels for the clinical dataset by patient age group 

 
Five stage 

approach 

Three stage 

approach 

Two stage 

approach* 

A. Concordance Dataset 

Trained Human Average 0.87 (0.08) 0.94 (0.05) 0.98 (0.02) 

In Training Human Average 0.83 (0.14) 0.92 (0.08) 0.97 (0.04) 

Pooled (all) Human Average 0.85 (0.08) 0.94 (0.05) 0.97 (0.02) 

U-Sleep (F4) 0.86 (0.09) 0.92 (0.09) 0.98 (0.03) 

U-Sleep (C4) 0.87 (0.09) 0.93 (0.10) 0.98 (0.03) 

U-Sleep (O2) 0.86 (0.12) 0.92 (0.11) 0.97 (0.04) 

U-Sleep 2.0 (F4) 0.86 (0.11) 0.91 (0.08) 0.96 (0.05) 

U-Sleep 2.0 (C4) 0.86 (0.13) 0.93 (0.10) 0.96 (0.04) 

U-Sleep 2.0 (O2) 0.88 (0.11) 0.93 (0.07) 0.96 (0.04) 

U-Sleep 2.0 EEG (F4) 0.84 (0.09) 0.92 (0.11) 0.96 (0.05) 

U-Sleep 2.0 EEG (C4) 0.85 (0.10) 0.93 (0.11) 0.96 (0.05) 

U-Sleep 2.0 EEG (O2) 0.86 (0.15) 0.92 (0.13) 0.97 (0.06) 

BA. Clinical Dataset 

Age three months to one year  0.69 (0.15) 0.78 (0.11) 0.91 (0.07) 

Age one to two years  0.73 (0.12) 0.82 (0.09) 0.92 (0.07) 

Age two to five years 0.77 (0.13) 0.85 (0.10) 0.93 (0.06) 

Age five to twelve years 0.80 (0.10) 0.87 (0.07) 0.94 (0.05) 

Age twelve to eighteen years 0.78 (0.12) 0.86 (0.09) 0.93 (0.07) 

Total (all ages pooled) 0.78 (0.13) 0.86 (0.10) 0.93 (0.06) 

Note: Numbers presented are median (interquartile range), as the underlying 

distribution of simple agreement values represented by each number did not appear to be 

normally distributed according to Shapiro Wilk test    

* 29/50 excerpts from concordance dataset only were excluded from two-stage approach 

analysis as they had <5% wake epochs 
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Figure S1: Histograms showing number of PSG excerpts from the concordance dataset with 

particular Cohen’s kappa values obtained, when scored by U-sleep 2.0 on different EEG 

leads (top), and in-training and trained human scorers with a weighting applied* (bottom) for 

the task of five-stage sleep staging; gold standard defined as trained expert majority-score. 

* As a variable number of human scorers partook in the scoring of each PSG excerpt, the 

weighting system compensates for this by proportionally increasing the weighting of a human 

scoring a PSG excerpt with less human scorers compared to another with more, in order for 

each of the 50 PSG excerpts to contribute equally to the histogram. 
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Figure S2: Confusion matrices showing correct and incorrect classification of sleep stages by 

U-Sleep algorithms and human scorers 
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