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Abstract 
Assessing illness severity in the ICU is crucial for early prediction of deterioration and prognosis. 
Traditional prognostic scores often treat organ systems separately, overlooking the body's 
interconnected nature. Network physiology offers a new approach to understanding these complex 
interactions. This study used the concept of transfer entropy (TE) to measure information flow 
between heart rate (HR), respiratory rate (RR), and capillary oxygen saturation (SpO2) in critically ill 
sepsis patients, hypothesizing that TE between these signals would correlate with disease outcome. 
The retrospective cohort study utilized the MIMIC III Clinical Database, including patients who met 
Sepsis-3 criteria on admission and had 30 minutes of continuous HR, RR, and SpO2 data. TE between 
the signals was calculated to create physiological network maps. Cox regression assessed the 
relationship between cardiorespiratory network indices and both deterioration (SOFA score increase 
of ≥2 points at 48 hours) and 30-day mortality. Among 164 patients, higher information flow from 
SpO2 to HR [TE(SpO2→HR)] and reciprocal flow between HR and RR [TE(RR→HR) and TE(HR→RR)] 

were linked to reduced mortality, independent of age, mechanical ventilation, SOFA score, and 
comorbidity. Reductions in TE(HR → RR), TE(RR→HR), TE(SpO2→RR), and TE(SpO2→HR) were 

associated with increased risk of 48-hour deterioration. After adjustment for potential confounders, 
only TE(HR→RR) and TE(RR→HR) remained statistically significant. The study confirmed that 

physiological network mapping using routine signals in sepsis patients could indicate illness severity 
and that higher TE values were generally associated with improved outcomes. 
 
New & Noteworthy: This study adopts an integrative approach through physiological network analysis 
to investigate sepsis, with the goal of identifying differences in information transfer between 
physiological signals in sepsis survivors versus non-survivors. We found that greater information flow 
between heart rate, respiratory rate, and capillary oxygen saturation was associated with reduced 
mortality, independent of age, disease severity, and comorbidities. Additionally, reduced information 
transfer was linked to an increased risk of 48-hour deterioration in patients with sepsis. 
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Introduction 
 
Sepsis is a complex disease that causes life-threatening organ dysfunction due to a dysregulated host 
response to infection (Singer et al., 2016). It is one of the most frequent causes of death worldwide, 
requiring patients to be admitted to intensive care units (ICU) for intensive physiological and clinical 
monitoring (Rud et al., 2020). The complexity of its pathophysiology and the heterogeneity of its 
manifestations make sepsis challenging to detect, monitor, and treat. Quantifying illness severity is a 
crucial aspect of any ICU admission, as it allows for timely interventions to improve outcomes, aids in 
decision-making, and helps allocate scarce resources (Zimmerman and Kramer, 2014). However, 
despite the existence of severity scores for almost 40 years, predictions remain imperfect, and they are 
primarily used for hospital-level case-mix adjustment. Novel digital biomarkers for measuring illness 
severity may therefore be useful to ICU staff. 
 
The commonest approaches to date have assigned increasing numerical values for progressive 
dysfunction in each organ system in order to assess their overall association with mortality using 
regression. Well-known examples include the Sequential Organ Failure Assessment (SOFA) (Vincent et 
al., 1996), the Simplified Acute Physiology Score II (SAPS II) (Le Gall et al., 1993), the Acute Physiology 
and Chronic Health Evaluation II (APACHE II) score (Knaus et al., 1985), and the UK’s Intensive Care 
National Audit and Research Centre (ICNARC) model (Harrison et al., 2007). However, these scores are 
usually only calculated at the time of critical care admission, or at most on a daily basis, and they often 
rely on summary measures such as the worst recorded value. Recent machine learning approaches 
using more granular data have managed to improve short-term prognostication for specific outcomes 
(Chen et al., 2017; Davies et al., 2020; Henriques et al., 2019; Subramaniam et al., 2014; Yoon et al., 
2020), but by treating organs as independent parts to be combined, even these techniques may be 
ignoring useful information. 
 
Network physiology is a new way of viewing the problem, focussing not on individual organs, but on 
the degree of interaction between them (Bashan et al., 2012). Various measurable aspects of 
physiology, such as heart rate or respiratory rate, can be conceptualised as “nodes”, with an overall 
network created by functional connections or “edges” between each node pair if they interact. Strong 
networks are those which have multiple edges between multiple nodes, or high quantitative values for 
their connections, as measured by a variety of techniques including simple correlation (Asada et al., 
2016, Tan et al., 2020, Zhang et al., 2022) and information transfer (Bartsch et al., 2015; Derakhshan et 
al., 2019, Jiang et al., 2021). The relevance to illness prediction is that a strong, well-connected network, 
despite significant individual organ system stress, may represent physiological resilience and predict 
survival or response to therapy (Asada et al., 2016, Oyelade et al., 2023).  

According to information theory, the amount of information in a physiological time series (e.g., heart 
rate or capillary oxygen saturation fluctuations) can be measured by computing the degree of 
complexity (i.e., entropy) of the signal (Pincus et al., 1991, Bhogal and Mani, 2017). This idea can be 
extended to quantify the amount of information exchanged between two physiological signals (Lee et 
al., 2012, Faes et al.,2014, Jiang et al., 2021). Transfer entropy (TE) is one measure of information 
transfer between parallel time-series. It is a non-parametric, non-linear extension of the concept of 
entropy (Schreiber, 2000) that can detect the magnitude and direction of information flow between 
physiological time series data. TE increases when future values of one time series can be better 
predicted with knowledge of preceding values from a different time series – suggesting the former is 
influenced by the latter (Figure 1). One advantage of TE is that it can measure the bidirectional 
exchange of information between two nodes. For example, it allows us to separately assess how 
changes in respiratory rate influence capillary oxygen saturation and how changes in oxygen 
saturation affect respiratory rate. This allows for the assessment of directed interactions between 
different physiological time series for network mapping based on available physiological signals. For 
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example, using TE, the strength of the cardiorespiratory network could be assessed in experimental 
hypoxia in healthy participants (Jiang et al., 2021). Assessment of the strength of the 
cardiorespiratory network in critical illnesses is important in critical care as it may shed light on the 
pathophysiology of compensatory mechanisms and help predict deterioration or poor outcomes. This 
is particularly important in complex disorders such as sepsis which is associated with multiorgan 
failure and high mortality (Srdić et al., 2024, Rud et al., 2020). 

This study therefore aimed to understand whether cardiorespiratory transfer entropy, measured from 
bedside monitor data of patients with sepsis in the MIMIC-III database, could be used to assess their 
physiological network strength and its relationship with 48-hour deterioration and mortality.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A schematic diagram to explain the concept of transfer entropy (TE). The transfer of 
information from a physiological time-series A to another parallel time-series B is annotated as TE (A 
→ B) and is defined as how much additional information the past of the A time-series contains about 

the future observation of the B time-series (red arrows) independently of our knowledge of the past 
state of B (black arrow). Such transfer of information can be presented as an edge in a network 
connecting directed information from nodes A to B. tA: time lag in A from present. tB: time lag in B 
from present. As the optimal lag for each node pair is not known a priori, TE in this study is measured 
for a range of time lag values that set equally for both tA and tB, at 1, 5, 10, 15, 20 and 25 seconds. 

 
 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.18.24312167doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312167


5 

 

Materials and methods 
 
This was a retrospective cohort study using the Waveform Database Matched Subset of the Medical 
Information Mart for Intensive Care III (MIMIC-III) Clinical Database (Johnson et al., 2016; Moody et al., 
2017), reported in accordance with the RECORD guidelines (Benchimol et al., 2015).  
 
Ethics statement: The MIMIC-III was anonymized following HIPAA standards and the project received 
approval from the Institutional Review Boards of Beth Israel Deaconess Medical Center and MIT (IRB 
protocol nos. 2001P001699/14 and 0403000206, respectively; Johnson et al., 2016. The authors who 
handled the data underwent required ethics training at MIT and were credentialed (ID 10304625).  
 
Participants and data extraction: Details of patient enrolment flow diagram and data extraction is 
described elsewhere (Gheorghita et al., 2022). In brief, inclusion was limited to patients over 18 years 
of age, with a single ICU stay who met the Sepsis-3 criteria on admission (an increase in SOFA score of 
>= 2 points and suspicion of infection (Singer et al., 2016)). To ensure adequate data for stable 
estimation of TE,  patients were only included if their waveform record contained at least 30 minutes 
continuous and simultaneous time series data when resampled  to 1Hz (Ito et al., 2011; Jiang et al., 
2021). 179 records met these criteria when considering three waveforms - heart rate (HR), respiratory 
rate (RR) and capillary oxygen saturation (SpO2) – and formed the basis of the final cohort.  
Matched information was retrieved from the Clinical Database on patient age, sex, SOFA scores, 
Elixhauser comorbidity index, mechanical ventilation, and date of death. A 30-day survival data was 
missing in 15 patients; therefore, 164 patients were included in the final survival analysis 
 
Definition of deterioration: The SOFA score was extracted for the day when a patient's physiological 
signals record was available and again 48 hours later. Deterioration was defined as SOFA score >= 2 
points at 48 hours. Due to early discharge or death, 55% of 48-hour SOFA scores in this study required 
imputation. To handle missing for data for 48 hour SOFA scores calculation, the maximum score of 24 
was applied if the patient had already died (Lambden et al., 2019), and a score of 1 applied if discharged 
alive from ICU.  
  
Calculation of transfer entropy (TE) 
An existing open-source algorithm (https://www.physionet.org/content/tewp/1.0.0/) was used to 
calculate TE (in bits) for parallel physiological time-series. This algorithm employs an extension of 
Darbellay-Vajda adaptive partitioning (Lee et al., 2012) to estimate a non-linear probability density 
function in a computationally efficient manner. It calculates the probability of event B of a time lag 
window length of tB occurring after the outcome of event A of a time lag of window length of tA was 
observed (Figure 1), where A and B are representations of the physiological parameters (e.g., HR, RR, 
and SpO2). The returned value of transfer entropy represents the amount of directional information 
transferred from a data segment of one physiological time series to the future data segment of another 
time series. In addition to probability density function estimation, TE magnitude also depends on the 
lag chosen between the source and target time series. As the optimal lag for each node pair was not 
known a priori, TE was measured for a range of time lag values that set equally for both tA and tB, at 1, 
5, 10, 15, 20 and 25 seconds (Figure 1). This approach was conducted to ascertain the consistency of 
the results and establish an optimal time lag for future transfer entropy computations.  Based on these 
results, a time lag value of 5 seconds was chosen to calculate the TE estimate for each edge for all 
patients. 
 
Network visualization 
Network maps were constructed for qualitative assessment by conceptualising each physiological signal 
as a node, with edges drawn between nodes showing the strength of any directional information flow. 
TE edge strength was displayed as the average group value. Comparison of directed transfer entropy 
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values between physiological time-series were conducted at a time lag of 5 seconds, with each mean 
transfer entropy calculation being compiled to form an adjacency matrix. This matrix was then used to 
plot a bidirectional network graph in MATLAB. 
 
Centrality measure 
Centrality is a measure of the importance of a node within a network in terms of flow of information. 
Indegree (ID) and outdegree (OD) measure the centrality of a node by calculating the information that 
each node receives (ID) or sends out (OD). Indegree and outdegree centralities of SpO2, HR, and RR 
were calculated for each patient using respective transfer entropy adjacency matrices using MATLAB.  
 
Statistical analysis 
Data are shown as mean ± SD unless stated otherwise. The mean differences in network edges and 
node centralities between the groups (survivors vs non-survivors and deterioration vs no deterioration) 
were calculated using the Student’s t-test or its non-parametric equivalent (Mann-Whitney U-test). 
Cox regression was used for estimation of hazard ratios with 95% confidence intervals.  Multivariate 
Cox regression was performed with covariates of SOFA, mechanical ventilation, Elixhauser comorbidity 
score, and age. ROC curve analysis was used to find optimum cut-off point (Youden’s index) with 
optimum sensitivity and specificity in prediction of 30-day mortality in the intensive care unit and of 
deterioration. To visualise patient survival, the Kaplan Meier curves were applied and analysed using a 
log rank (Mantel-Cox) method. P-value less than 0.05 was used for statistical significance. Two-way 
ANOVA was used for assessment of the effect of time lag on TEs. We also wondered if shorter time-
series (namely, 20, 10, 5, 2 and 1-min) can estimate TE calculated from 30-min time-series and predicts 
poor outcomes (mortality, deterioration) within this patient population. Thus, Bland-Altman plots were 
used to identify bias in TE of time series of 20, 10, 5, 2, and 1 minutes (starting from the beginning of 
recording) compared to the 30-min transfer entropy values. This method is based on the quantification 
of the agreement between two quantitative measurements (short time-series, A versus 30-min, B) by 
studying the relationship between 𝐴 − 𝐵 and (𝐴 + 𝐵)/2 (Bland and Altman, 1999). The linear regression 
analysis was used to test for statistical significance of the bias for the intercept and slope in the Bland-
Altman plots (Giavarina, 2015). 
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Results 
Descriptive characteristics of the participants are shown in Table 1. Overall, 130 patients survived 
after a 30-day follow-up period. The non-survivors (n = 34) were older (65 ± 18 vs.75 ± 12, P=0.003) 
and had higher SOFA scores (4.1 ± 2.3 vs. 6.8 ± 4.1, P<0.001). The comorbidity index (Elixhauser) was 
higher in non-survivors (P=0.027). Changes in SpO2 mean and pattern of fluctuations in this cohort has 
been reported elsewhere (Gheorghita et al., 2022). In brief, the average SpO2 was marginally higher in 
the survivors compared to the non-survivors (97.4 ± 2.2 vs. 96.0 ± 6.3, P = 0.033). Mean HR was higher 
in survivors compared to the non-survivors (83.5 ± 18.3 vs. 94.0 ± 23.8 beats/min, P = 0.0063)). There 
was no statistical difference in RR between survivors and non-survivors (19.7 ± 4.8 vs. 21.2 ± 6.0 
breath/min, P=0.117). There was no difference in distribution of gender of ethnicity between 
survivors and non-survivors. 
 
Table 1. Summary of descriptive results.  

Variable Summary value 

Age (years) (median, Interquartile range) 
 

68 (53-84) 

Male/Female (count, %) 
 

93/71 (57%/43%) 

Ethnicity (count, %) 
 
White 
Black 
Hispanic 
Asian 
Other 
Unknown 

 
 

125 (76%) 
10 (6%) 
5 (3%) 
3 (1%) 
3 (1%) 

18 (11%) 

Hospital admission primary diagnosis (count, %) 
 
Neurological 
Cardiac 
Infective 
Gastrointestinal 
Orthopaedic 
Other 

 
 

46 (28%) 
35 (21%) 
34 (21%) 

9 (5%) 
4 (2%) 

35 (21%) 

Elixhauser index (median, Interquartile range) 
 

3 (0-7) 

Mechanically ventilated during TE measurement 
(count, %) 

45 (27.4%) 

SOFA score on day of TE was measured 
(median, Interquartile range) 

4 (2-6) 

SOFA score 48 hours after TE was measured 
(median, Interquartile range) 

1 (1-5) 

Deterioration in SOFA score >= 2 points at 48 
hours (count, %) 

31 (18.9%) 

30-day mortality (count, %) 34 (20.7%) 
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Association of transfer entropy and network indices with 30-day mortality 
The TE values are subsequently denoted as follows: 
 
From heart rate to respiratory rate:   TE (HR → RR) 

From heart rate to oxygen saturation:   TE (HR → SpO2) 

From respiratory rate to heart rate:    TE (RR → HR) 

From respiratory rate to oxygen saturation:  TE (RR → SpO2) 

From oxygen saturation to heart rate:   TE (SpO2 → HR) 

From oxygen saturation to respiratory rate:  TE (SpO2 → RR) 

 
 
As shown in Table 2, the highest average value of TE was during the transfer of information from SpO2 
to RR. The lowest TE between physiological signals was during the transfer of information from HR to 
SpO2. TE values in most directions were significantly higher in survivors compared to non-survivors 
after 30 days of follow-up (Table 2). 
  
Centrality measures: To assess the importance of each node within the network, centrality indexes 
(indegree and outdegree) were measured and compared between the groups. The results indicate 
that within the HR-RR-SpO2 network, the RR node receives the highest amount of information from 
other nodes (highest indegree), and the SpO2 node sends the highest amount of information to other 
nodes (highest outdegree). Table 3 shows details of the centrality measures between groups. There is 
a significant difference between survivors and non-survivors in centrality measures indicating that all 
nodes have higher centrality in survivors compared with non-survivors. 
 
Survival analysis: Cox regression analysis was conducted to evaluate the risk of 30-day mortality 
associated with TE and centrality measures (Table 4). Reduction in TE or centrality of individual nodes 
were associated with increased chance of mortality in this cohort of patients with sepsis. Since non-
survivors were older and had higher SOFA scores and comorbidities, we considered whether these 
characteristics might confound the association between TE and mortality. Additionally, factors such as 
mechanical ventilation could affect physiological time-series data and potentially influence these 
findings. To address these concerns, we performed multivariate Cox regression analysis to assess the 
dependence of individual network indices on age, SOFA score, comorbidity index (Elixhauser), and 
mechanical ventilation. The results indicated that among network indices, TE (SpO2 → HR), TE (HR → 

RR), TE (RR → HR), Indegree of HR and all outdegrees (HR, RR and SpO2) were independent predictors 

of 30-day mortality (Supplementary material 1). Lower TE values in the group that went on to die, 
suggests reduced connectivity and weakened cardiorespiratory network in non-survivor. Graphical 
visualization of these network edges is shown in Figure 2.  
 
Table 2: Comparison of Transfer Entropy Means between Survivors and Non-survivors:  

 
Survivors Non-Survivors P-value  

TE(SpO2→HR) 0.537 ± 0.144 0.449 ± 0.182 0.003 

TE(HR→SpO2) 0.336 ± 0.187 0.245 ± 0.185 0.013 

TE(HR→RR) 0.532 ± 0.163  0.390 ± 0.195  <0.001 

TE(RR→HR) 0.510 ± 0.143  0.417 ± 0.207 0.083  

TE(SpO2→RR) 0.582 ± 0.168  0.490 ±0.212 0.083 

TE(RR→SpO2) 0.361 ± 0.198 0.272 ± 0.208 0.022 
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Table 3: Comparison of Centrality Indices (Indegree and Outdegree) between Survivors and Non-
Survivors 

 
Survivors Non-Survivors P-value  

Indegree SpO2  0.696 ± 0.380 0.517 ± 0.388 0.016 

Indegree HR 1.046 ± 0.277 0.866 ± 0.382 0.034  

Indegree RR 1.113 ± 0.316 0.880 ± 0.378 <0.001 

Outdegree 
SpO2 

1.118 ± 0.224 0.939 ± 0.248   <0.001 

Outdegree HR 0.868 ± 0.285 0.636 ± 0.283 <0.001 

Outdegree RR 0.870 ± 0.224 0.689 ± 0.249 <0.001 

 
 
Table 4: Monovariate Cox regression analysis to predict 30-day mortality based on Transfer Entropies, 
and Network Centrality Indices (Indegrees and Outdegrees): 

 
B  SE P-value Exp(B) Confidence Interval 

(95%)  

TE(SpO2→HR) -2.633 0.901 0.003 0.072 0.012 – 0.421 

TE(HR→SpO2) -2.070 0.881 0.019 0.126 0.022 – 0.709 

TE(HR→RR) -3.357 0.789 <0.001 0.035 0.007 – 0.166 

TE(RR→HR) -2.694 0.898 0.003 0.068 0.012– 0.393 

TE(SpO2→RR) -2.122 0.763 0.005 0.120 0.027 – 0.535 

TE(RR→SpO2) -1.765 0.821 0.032 0.171 0.034 – 0.856 

Indegree SpO2 -0.965 0.426 0.023 0.381 0.165 – 0.877 

Indegree HR -1.382 0.453 0.002 0.251 0.103 – 0.610 

Indegree RR -1.421 0.388 <0.001 0.242 0.113 - 0.517 

Outdegree SpO2 -2.476 0.629 <0.001 0.084 0.025 – 0.289 

Outdegree HR -2.015 0.511 <0.001 0.133 0.049 – 0.363 

Outdegree RR -2.629 0.693 <0.001 0.072 0.019 – 0.281 
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Figure 2. Network maps for survivors and non-survivors, showing mean TE values (in bits) for each 
edge. Red: TEs which are significant predictors of mortality, independent of covariates (age, SOFA, 
comorbidity index and mechanical ventilation). Edge weighting correspond to magnitude of 
information flow. HR: heart rate; RR: respiratory rate; SpO2: oxygen saturation. 
 
The effect of time lag on transfer entropy: To ensure that an optimized time lag value is used for TE 
calculation, TE was measured for a range of time lag values at 1, 5, 10, 15, 20 and 25 second. Survivor 
group consistently had higher transfer entropy values at all time lags (Figure 3). It is noteworthy that 
when the calculation was set between a time lag of 5 and 25, the resulting transfer entropy values fell 
within a comparable range, as opposed to when a time lag of 1 was utilized. This substantiates the 
use of time lag 5 seconds in transfer entropy calculation. TE (SpO2 → HR), TE (HR → RR) and TE (RR → 

HR) were chosen for this analysis as they demonstrated a significant predictive power in multivariate 
Cox regression analysis for mortality. 
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Figure 3: Comparison of Transfer Entropies [TE (SpO2 → HR), TE (HR → RR) and TE (RR → HR)] 

between survivors and non-survivors at different time lags.  Data are shown as mean standard error 
or mean. Two-way ANOVA showed that group (Survivors/Non-Survivors) and time lag both 
significantly affect TEs (P<0.001 for all TEs) and there is no interaction between group and time-lag.  
 
Association of transfer entropy and network indices with 48-hours deterioration 
31 (18.9%) patients had an increase in SOFA score >= 2 points at 48 hours. TE values and network 
indices of this group were compared with the rest of the patients who didn’t show 48-hour 
deterioration. As shown in Table 5, TE (SpO2 → HR), TE (HR → RR) and TE (RR → HR) were 

significantly lower in the group that exhibited deterioration. Likewise, the centrality measures of all 
nodes, except for indegree SpO2, were significantly lower in the deteriorating group. 
 
Survival analysis: Cox regression analysis showed that reduction in most TE or centrality of individual 
nodes were associated with increased chance of 48-hour deterioration in this cohort of patients with 
sepsis (Table 7). However, after controlling for age, SOFA, Elixhauser comorbidity index and 
mechanical ventilation, only TE (HR → RR) and TE (RR → HR) remained statistically significant 

suggesting that these edges provide information on 48-hour deterioration independent of other 
clinical covariates. A summary of multivariate Cox regression analysis is shown in Supplementary 
material 2. Graphical visualization of these network edges is shown in Figure 4.  
 
 
Table 5: Comparison of Transfer Entropy Means between Patients with 48-hour Deterioration and 
without Deterioration. 

 
Deterioration No Deterioration  P-value  

TE(SpO2→HR) 0.451 ±  0.173 0.534 ± 0.149  0.007 

TE(HR→SpO2) 0.282 ± 0.180 0.325 ± 0.191 0.247 

TE(HR→RR) 0.391 ± 0.211 0.528 ± 0.161 0.005 

TE(RR→HR) 0.428 ± 0.195  0.505 ±0.151 0.016 

TE(SpO2→RR) 0.479 ± 0.234  0.582 ± 0.161 0.231 

TE(RR→SpO2) 0.325 ± 0.213 0.346 ± 0.200 0.590 
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Table 6: Comparison of Centrality Indices (Indegree and Outdegree) between Patients with 48-hour 
Deterioration and without Deterioration 

 
Deterioration No Deterioration  P-value  

Indegree SpO2  0.606 ± 0.388 0.672 ± 0.388 0.398 

Indegree HR 0.878 ± 0.365 1.0395 ± 0.288 0.009 

Indegree RR 0.870 ± 0.426 1.11 ± 0.304 0.017 

Outdegree SpO2 0.929 ± 0.268  1.116 ± 0.220 <0.001 

Outdegree HR 0.673 ± 0.312 0.854 ± 0.286 0.002 

Outdegree RR 0.752 ± 0.241  0.852 ± 0.237 0.038 

 
 
Table 7: Monovariate Cox regression analysis to predict 48-hour Deterioration based on Transfer 
Entropies, and Network Centrality Indices (Indegrees and Outdegrees) 

 
B  SE P-value Exp(B) Confidence Interval 

(95%)  

TE(SpO2→HR) -2.267 0.955 0.018 0.104 0.016 – 0.674 

TE(HR→SpO2) -0.969 0.928 0.296 0.380 0.062 – 2.340 

TE(HR→RR) -2.842 0.842 0.001 0.058 0.011 – 0.304 

TE(RR→HR) -2.032 0.950 0.032 0.131 0.020 – 0.843 

TE(SpO2→RR) -1.998 0.788 0.011 0.136 0.029 – 0.635  

TE(RR→SpO2) -0.427 0.876 0.626 0.652 0.117 – 3.631  

Indegree SpO2 -0.347  0.453  0.444 0.707 0.291 – 1.718 

Indegree HR -1.115 0.481 0.020 0.328 0.128 – 0.842 

Indegree RR -1.267 0.409 0.002 0.282 0.126 – 0.628 

Outdegree SpO2 -2.247 0.657 <0.001 0.106 0.029 – 0.383 

Outdegree HR -1.478  0.549 <0.007 0.228 0.078 – 0.669 

Outdegree RR -1.330 0.714 0.062 0.264 0.065 – 1.071 

 
 
 
. 
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Figure 4. Network maps for patients with 48-hour deterioration and no deterioration, showing mean 
TE values (in bits) for each edge. Edge weighting correspond to magnitude of information flow. HR: 
heart rate; RR: respiratory rate; SpO2: oxygen saturation. 
 
 

Diagnostic performance of network indices for 30-day mortality 
ROC curve analysis was performed to evaluate diagnostic performance of TEs and centrality measures 
for mortality (Figure 5), where TE (HR → RR) and outdegree HR showed the highest accuracy for 

sensitivity and specificity than the other classifiers (AUC > 0.5, P<0.01 for all variables).  
 

 
Figure 5. ROC Curves for Prediction of 30-day mortality based on Transfer Entropies (A) and Centrality 
Indices (B) 
 

Kaplan-Meier survival plots were constructed to compare survival between different directional TE 
groups and between outdegrees of TE, categorised based on the Youden index threshold of ROC for 
30-day mortality. Kaplan-Meier plots (Figure 6 and 7) showed separation of these groups’ survival 
curves based on the thresholds for TE (SpO2 → HR), TE (HR → RR), TE (RR → HR) and all outdegrees 

with statistical significance assessed using the log rank test (p < 0.001). Indegree of HR is also a 
significant predictor of mortality in the log rank test. Data not shown.   
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Figure 6: Kaplan Meier Graphs for Visualization of Prediction of Mortality based on Transfer Entropies. 
ROC curves were used to obtain optimum cut-off points. 
 

 
Figure 7: Kaplan Meier Graphs for Visualization of Prediction of Mortality based on Centrality Indices. 
ROC curves were used to obtain optimum cut-off points.  
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Discussion 

 
This study takes an integrative approach through network analysis to investigate sepsis and aims to 
identify differences in the information transfer and connectivity of organ systems between sepsis 
survivors and non-survivors. To optimize the mapping method's network analysis, we investigated the 
suitable range of time lag for transfer entropy calculation. Transfer entropy has rarely been applied in 
sepsis prognosis or organ deterioration assessment, even though HR, RR, and SpO2 signals are closely 
monitored in clinical settings, and transfer entropy calculation has a well-established algorithm. Using 
HR, RR, and SpO2 as clinical variables to represent the cardio-respiratory system, the study investigated 
the transfer entropy values of 164 sepsis patients in the ICU. 
 
Summary of results and interpretation 
This study demonstrated several important new findings: 
Firstly, the study found that the group means of all transfer entropy values were significantly higher in 
survivors than in non-survivors, indicating more active physiological systems and greater information 
transfer in patients with better prognoses. This supports the hypothesis that decreased homeostatic 
interorgan connectivity is associated with poor prognosis in critically ill sepsis patients, which is also 
consistent with previous studies on organ systemic dysfunction in critically ill patients (Asada et al., 
2016) and patients with cirrhosis (Tan et al., 2020). In normal health, heart rate, cardiac output, blood 
pressure, respiratory rate, tidal volume and many other measurable aspects of cardiorespiratory 
physiology are intricately linked via positive and negative feedback systems. Exactly how mutual effects 
are mediated is still not perfectly understood (Guyenet, 2014), but increases in blood pressure 
stimulate arterial baroreceptors, leading to slowing of respiration (West and Luks, 2020), and changes 
in arterial oxygen saturation can similarly be precipitated by changes in the cardiovascular system, as 
these affect arterial oxygen tension via altered ventilation-perfusion matching in the lung. The 
mechanism and benefits of respiratory sinus arrhythmia (changes in HR in each respiratory cycle) is well 
documented (Ben-Tal et al., 2012). The effect of RR on HR and blood pressure, via changes in 
intrathoracic pressure, is already used widely in anaesthesia and intensive care medicine to understand 
intravascular volume status (Vistisen et al., 2019). There is also a wealth of evidence showing that heart 
rate variability (HRV) is lower in patients with worse ICU outcomes (Karmali et al., 2017), something 
which would be consistent with partial uncoupling of organ-systems and reduced TE in pairs that 
included heart rate. Likewise, reduced oxygen saturation entropy has recently been reported in non-
surviving patients with sepsis (Gheorghita et al, 2022) which is line with reduced transfer of information 
between nodes that included SpO2 in patients with poor prognosis. Reduced transfer of information 
between physiological signals may represent uncoupling of organ systems during a pathologic challenge 
(e.g. infection). While it is expected that compensatory mechanisms lead to enhanced coupling of 
physiological subsystems during physiologic challenges, in the group of patients who have uncoupled 
physiological networks, this may lead to deterioration and death (Figure 8). The reason behind the 
uncoupling of organ systems in life-threatening sepsis is not well understood. Experimental reports 
suggest end-organ hypo-responsiveness to autonomic neural stimulation (Hajiasgharzadeh et al., 2011; 
Gholami et al., 2012), decreased controllability of the cardiac pacemaker (Mazloom et al., 2014), and/or 
impaired neural processing within the brainstem autonomic regulatory centres (e.g., the Nucleus of the 
Solitary Tract) (Eftekhari et al., 2020) during experimental sepsis. 
 
Secondly, the study demonstrated that directed transfer entropy from physiological time-series can 
predict mortality and 48-hour organ function deterioration in critically ill patients with sepsis, 
independent of SOFA score, comorbidity and ventilation status. These findings highlight the potential 
of transfer entropy in filling the gap in foreseeing the potential underlying dysfunctional connections 
between organ systems of complex diseases. Measurement of HR, RR, and SpO2 is easy both at the ICU 
bedside and during fieldwork (e.g., in poorly resourced or extreme environment settings using wearable 
devices). TE-based network measures can be added to ICU digital monitors or portable devices. The 
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current survival prediction and analysis score in the ICU leaves room for foreseeing the potential 
underlying dysfunctional connections between organ systems in complex diseases. In this case, TE and 
network indices can be continuously calculated and monitored as a digital value for tracking individuals 
who require more attention and for making important clinical decisions during patient care. The 
independence of TEs from SOFA in predicting deterioration and outcomes means that network indices 
have the potential to be used in conjunction with SOFA and other clinical/laboratory measures in 
patient care. The independence of TE-based network indices in predicting poor outcomes also provides 
insight into the pathophysiology of sepsis and emphasizes the importance of an integrated network 
approach in understanding the mechanisms of dysregulated host responses to infection. Organ system 
connectivity probably plays an important role in the regulated host physiological response to infection, 
a concept that is not typically assessed in most cellular/molecular studies, which are carried out using 
a reductionistic approach (Oyelade et al., 2024). 
 
Thirdly, the findings in Figure 3 optimized the transfer entropy calculation by demonstrating that TE 
(SpO2 → HR), TE (HR → RR) and TE (RR → HR) reaches a plateau at a time lag of approximately 5 

seconds and remains stable afterward. This finding is interesting and aligns with previous reports that 
attempted to estimate the memory length within the cardiorespiratory system (Shirazi et al., 2013). In 
the context of physiological time-series, memory is a statistical feature that persists for a period and 
distinguishes the time-series from a random, or memory-less, process (Shirazi et al., 2013). Shirazi et 
al. developed a method for quantifying memory in physiological time-series and reported that the 
memory length is estimated to be around 5 to 25 seconds in the cardiorespiratory system in both health 
and disease (Shirazi et al., 2013). This means any intrinsic perturbation within the physiological system 
would affect the system for a limited time before the effect dissipates. This limited memory length 
makes the system more controllable, as prolonged memory can impair the adaptability of the 
physiological system (Mazloom et al., 2014; Taghipour et al., 2016). Furthermore, a time lag of 5 
seconds also represents approximately two respiratory cycles, which aligns with the known 
physiological interaction between RR and HR within this time frame (e.g., respiratory sinus arrhythmia). 
  
 

 
Figure 8. Graphical representation of possible underlying relationship between physiological 
stress and TE 
 

 
In the analysis of mortality and deterioration prediction, we found that only two directed transfer 
entropy values showed a consistent pattern of significance for all statistical analyse were HR → RR 

and RR → HR. In the context of HR → RR and RR → HR, a study of directional coupling between the 

cardio-respiratory system may explain the clinical significance of transfer entropy. In a recent study, 
Borovkova et al. revealed the presence of bidirectional couplings between cardiac and respiratory 
cycles across all age groups in healthy participants (Borovkova et al., 2022). Their findings showed 
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that the coupling from respiration to the parasympathetic control of HR is stronger than the coupling 
in the opposite direction in health. They also suggested that the directed interaction between RR and 
HR may be disrupted in complex diseases such as sleep apnoea, leading to an increase in the 
directional coupling from the main heart rhythm to respiration (Borovkova et al., 2022). This 
interpretation may also apply to sepsis, where the information transfer is disrupted from RR to HR in 
patients with poor prognoses due to the loss of directional coupling. Our study indicates that both TE 
(HR → RR) and TE (RR → HR) are reduced in non-surviving patients with sepsis compared to survivors. 

However, a full interpretation of these findings awaits further research involving physiological 
network mapping in health as well as transition from health to disease. We wondered if TE (RR → HR) 

shows any correlation with the degree of respiratory sinus arrhythmia and thus measured short-term 
HRV in this cohort using the Poincaré plot, where SD1 is commonly used as a measure of respiratory 
sinus arrhythmia (Bhogal et al., 2019). We observed that SD1 exhibits a statistically significant 
correlation with TE (RR → HR) (data not shown). Further studies are required to elucidate the exact 

interpretation of TE (HR → RR) and its interaction with TE (RR → HR) in health and disease. 

 
Limitations 
There were important limitations to this study. The principal ones were the small cohort size and the 
use of only three physiological signals. These related issues were due to the relatively low proportion 
of patients in MIMIC-III with waveform data; the relatively demanding requirement of 30 minutes 
simultaneous signals with no missing data; and the a priori choice to limit inclusion to a Sepsis-3 
cohort to reduce the heterogeneity seen in ICU patients. This lack of appropriate data in MIMIC-III 
may portend issues with TE measurement in the real world: as probes are removed for toileting or 
other transfers, it may be difficult to obtain unbroken waveform records of sufficient duration for 
stable estimation of TE and this may limit its potential as a monitor of health.  We wondered if shorter 
time-series can estimate TE calculated from 30-minute time-series and predict poor outcomes 
(mortality, deterioration) within this patient population. Therefore, we analysed 20-, 10-, 5-, and 1-
minute time-series for the calculation of TEs (see Supplementary material 3). Using Bland-Altman 
analysis, the results showed that different TEs are subject to varying degrees of bias when shorter 
time-series are used. The most robust TEs were TE (HR → RR) and TE (RR → HR), where 10- and 20-

minute time-series could estimate TEs calculated from 30-minute time-series (Supplementary 
material 3-B2 and B3). Survival analysis also indicated that TE (HR → RR) and TE (RR → HR) calculated 

from 20-minute time-series could predict mortality and 48-hour deterioration independently of age, 
SOFA, mechanical ventilation, and comorbidity (Supplementary material 3C). This finding is promising 
as it shows that shorter time-series can be used for network mapping, which facilitates clinical 
translation. 
 
It should also be noted that due to early discharge or death, 55% of 48-hour SOFA scores in this study 
required imputation. While we used a reasonable method imputation of 48-hour SOFA, our findings 
on prediction of deterioration may be subject to bias and a larger sample size in future studies could 
provide more solid evidence for the value to TE-based network mapping in prediction of deterioration 
in sepsis.  
 
Further limitations were the impact of mechanical ventilation and of excessive supplemental oxygen 
on the measurement of TE. Both of these factors are partially under the control of the clinician, 
meaning that measured TE may not always directly reflect the patient’s own physiology. In this study, 
“mechanical ventilation” was defined as both patients undergoing positive pressure ventilation and 
those using spontaneous breathing modes. Those who were positive pressure ventilated, and in 
particular paralysed, may have had very low TE values, even if this ventilation was temporary for 
patients with relatively normal lung function (for example, postoperatively). Supra-normal oxygen 
saturation levels were also sometimes seen due to excessive supplemental oxygen, both in ventilated 
and non-ventilated patients. Accidental excessive oxygen administration is common in real world 
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clinical practice (Palmer et al., 2019), but it may have major effect on TE calculation, as it can result in 
ceiling oxygen saturation (100%) being recorded for every value in the waveform record. These 
patients then have low or zero TE edge estimates – as target values can be predicted using past 
information from the target alone. While our results showed that the prognostic value of TEs was 
independent of mechanical ventilation, future studies can investigate the effect of respiratory support 
on TEs further. 
 
Conclusion 
This work has confirmed the potential of transfer entropy measurement as a novel digital biomarker in 
intensive care. Extension of the current methodology to larger datasets is needed to fully understand 
the interactions of individual TE edges and the impact of patient confounders and mechanical 
ventilation on its predictive ability. 
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