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ABSTRACT 

Background 

Multi-cancer early detection (MCED) through a single blood test significantly advances cancer 

diagnosis. However, most MCED tests rely on a single type of biomarkers, leading to limited 

sensitivity, particularly for early-stage cancers. We previously developed SPOT-MAS, a 

multimodal ctDNA-based assay analyzing methylation and fragmentomic profiles to detect five 

common cancers. Despite its potential, SPOT-MAS exhibited moderate sensitivities for early-

stage cancers. This study investigated whether integrating hotspot mutations into SPOT-MAS 

could enhance its detection rates.  

Method 

A targeted amplicon sequencing approach was developed to profile 700 hotspot mutations in cell-

free DNA and integrated into the SPOT-MAS assay, creating a single-blood draw workflow. This 

workflow, namely SPOT-MAS Plus was retrospectively validated in a cohort of 255 non-

metastatic cancer patients (breast, colorectal, gastric, liver, and lung) and 304 healthy individuals.  

Results 

Hotspot mutations were detected in 131 of 255 (51.4%) cancer patients, with the highest rates in 

liver cancer (96.5%), followed by colorectal (59.3%) and lung cancer (53.7%). Lower detection 

rates were found for cancers with low tumor mutational burden, such as breast (31.3%) and gastric 

(41.9%) cancers. In contrast, SPOT-MAS demonstrated higher sensitivities for these cancers 

(51.6% for breast and 62.9% for gastric). The combination of hotspot mutations with SPOT-MAS 

predictions improved early-stage cancer detection, achieving an overall sensitivity of 78.5% at a 

specificity of 97.7%. Enhanced sensitivities were observed for colorectal (81.36%) and lung cancer 

(82.9%).  
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Conclusion 

The integration of genetic and epigenetic alterations into a multimodal assay significantly 

enhances the early detection of various cancers. Further validation in larger cohorts is necessary 

to support broader clinical applications. 
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INTRODUCTION  

Multi-cancer early detection (MCED) utilizing circulating tumor DNA (ctDNA) in the 

bloodstream is a significant breakthrough in cancer screening. By employing a multimodal 

approach to capture various ctDNA molecular signatures, several MCED tests have demonstrated 

effectiveness in detecting multiple cancer types at early stages, thereby facilitating timely 

treatment and significantly improving patient outcomes. Liu et al. developed the Galleri test, an 

MCED assay designed to screen for over 50 types of early-stage cancers by detecting specific 

methylation patterns in ctDNA. In a retrospective study, the Galleri test achieved a specificity of 

99.5%, an overall sensitivity of 51.5%, and a sensitivity of 76.3% for 12 particularly lethal cancers 

(1-3). The recent PATHFINDER prospective validation study further validated the clinical utility 

of the Galleri test, reporting a positive predictive value of 38% and a negative predictive value of 

98.6% (2). These results highlight the promise of the ctDNA-based MCED method in clinical 

practice. 

Despite the promising outcomes, ctDNA detection for early-stage cancers remains challenging due 

to its low abundance and molecular heterogeneity across different cancer types and histological 

subtypes (4). For instance, breast cancers are known to release lower concentrations of ctDNA 

compared to cancers with a higher mutational burden, such as lung and colorectal cancers (5). 

Notably, different breast cancer subtypes exhibit varying levels of ctDNA shedding; luminal 

subtypes tend to have lower ctDNA levels compared to HER2+ and triple-negative breast cancer 

(TNBC) subtypes (6, 7). Similarly, in non-small cell lung cancer (NSCLC), lung adenocarcinomas 

generally present with lower ctDNA levels, while centrally located squamous cell carcinomas often 

show higher levels of ctDNA. These differences underscore the complexity of ctDNA dynamics 

across cancer types and highlight the necessity of a multimodal approach that captures a broad 
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spectrum of molecular signatures to enhance ctDNA detection and improve the performance of 

MCED assays.  

We previously developed a multimodal assay, Screening for the Presence Of Tumor by 

Methylation And Size (SPOT-MAS), which integrates multiple ctDNA signatures, including 

methylomics and fragmentomics, to detect the five most common cancers in Vietnam: liver, breast, 

colorectal, gastric, and lung. While SPOT-MAS has demonstrated promising results in both 

retrospective and prospective validations, its detection sensitivities varied across different cancer 

types and stages, with the lowest rates observed for breast cancer (49.3%) and early-stage tumors 

(62.3% to 73.9% for stages I and II) (8). Tumor-derived genetic variants, along with changes in 

methylation, play a significant role in driving carcinogenesis in certain cancer types and have been 

leveraged in numerous studies to detect ctDNA in plasma (9-12). One prominent example is the 

CancerSeek test, developed by Ludwig Cancer Research at Johns Hopkins University, which 

employed a panel of mutations at 2,001 locations across 16 cancer-associated genes (TP53, GNAS, 

PPP2R1A, HRAS, KRAS, AKT1, PTEN, FGFR2, CDKN2A, BRAF, EGFR, APC, FBXW7, PIK3CA, 

CTNNB1, and NRAS) to detect eight cancer types (13).  

It is thought that genetic mutations and epigenetic changes can occur either independently or 

concurrently, with potential bidirectional interactions during tumorigenesis (14, 15). To enhance 

the capacity of the SPOT-MAS assay in capturing ctDNA signals across multiple cancer types, we 

aimed to integrate the detection of hotspot genetic variants into its existing workflow focusing on 

methylation and fragmentomic features. However, using hotspot mutations for multi-cancer early 

detection poses certain challenges, such as the prior knowledge of recurrent mutations and the 

confounding effects of mutations linked to clonal hematopoiesis of indeterminate potential (CHIP) 

(12, 16). To address these challenges, we developed an in-house panel comprising 700 hotspot 
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mutations selected from the Catalogue of Somatic Mutations in Cancer (COSMIC) database and 

somatic mutations identified in a large cohort of 1,100 Vietnamese cancer patients. We then 

evaluated the potential utility of this panel for detecting five common cancer types, either as a 

standalone approach or in combination with our SPOT-MAS assay (Figure 1). 

MATERIAL and METHODS 

Patients and sample collection  

Blood samples were collected from 304 healthy controls and 255 cancer patients diagnosed with 

one of five cancer types: breast, colorectal, gastric, liver, and lung (Table S1). Cancer diagnoses 

were confirmed through imaging and/or histological analysis, depending on the type of cancer. 

Patients with prior treatment or metastasis were excluded from the study.  

All participants provided written informed consent for their involvement and for the 

anonymization of their samples, clinical, and genomic data. The data were de-identified prior to 

analysis of the cohort.   

Cell-free DNA and genomic DNA sample preparation  

Blood samples (10 mL) were subjected to a two-step centrifugation process (1,600×g for 10 

minutes at 4°C, followed by 16,000×g for 10 minutes at 4°C) to separate plasma from cellular 

components. The buffy coat was carefully collected by gently pipetting the buff-colored layer, 

ensuring that the other blood components remained undisturbed. Both the plasma and buffy coat 

were then stored at -80°C. 

Cell-free DNA (cfDNA) was extracted from the plasma using the MagMAX Cell-free DNA 

Isolation kit (Thermo Fisher, USA) on the KingFisher Flex Magnetic 96DW automated system, 

according to the manufacturer’s instructions.  
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Genomic DNA (gDNA) was isolated from the buffy coat using the GeneJET Whole Blood 

Genomic DNA Purification Mini Kit (Thermo Fisher, USA) following the manufacturer’s 

instructions. The isolated cfDNA and gDNA were recovered and stored in DNA LoBind tubes 

(Eppendorf AG) at −20°C if not used immediately, and the DNA concentration was measured using 

the QuantiFluor dsDNA system (Promega, USA). 

Amplicon-based sequencing 

We profiled a panel of 700 hotspot mutations selected from the COSMIC database and somatic 

mutations identified in a cohort of 1,100 Vietnamese cancer patients suffering from breast, 

colorectal, gastric, liver, and lung cancer. Hotspot mutations were selected based on the following 

criteria: (1) reported hotspot mutations in the COSMIC database that are recurrent in the five 

cancer types, (2) reported actionable mutations, and (3) mutations found in tumor tissue from the 

Vietnamese cancer patients according to five types of cancers (breast, colorectal, gastric, liver and 

lung cancer). Compatible primer pairs were designed using Primer3Plus software (17) and 

synthesized by PhuSa Biochem (Ho Chi Minh City, Vietnam).  Details of panel 700 hotspot 

mutations in 23 genes are listed in Table S2. 

For multiplex PCR (mPCR), 3.2 ng of cfDNA was used to amplify specific DNA segments 

containing the targeted mutations. The mPCR reaction included 5 µL of primer mix at 0.5 µM and 

25 µL of KAPA HiFi DNA Polymerase mastermix (Roche Sequencing Solutions, Indianapolis, 

IN, USA). The target enrichment thermocycler program consisted of denaturation at 98°C for 45 

s, amplification with 25 cycles at (98°C for 20 s, 64°C for 1 min, 72°C for 5 min), final extension 

at 72°C for 5 min, and hold at 4°C. Post-target capture products were cleaned up using 2.2X KAPA 

Pure Beads (Roche Sequencing Solutions, Indianapolis, IN, USA). 
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Amplified DNA segments were prepared for sequencing with 1.5 µL of indexed primers and 

adaptors and 12.5 µL of Q5 High-Fidelity 2X Master Mix (New England Biolabs, USA) in a 

second-round PCR. The indexing PCR thermocycler program included denaturation at 98°C for 

30 s, amplification with 25 cycles at (98°C for 10 s, 65°C for 75 s), final extension at 65°C for 5 

min, and hold at 4°C. Post-indexed products were cleaned up with 1.2X beads. Finally, library 

products were sequenced on the NextSeq 2000 system (Illumina, San Diego, CA, USA) with an 

average depth of >100,000× per amplicon. Amplicons with coverage less than 10,000× were 

considered failed. 

Sequencing of matched gDNA from white blood cells (WBCs) in samples positive for hotspot 

mutations was performed using the same amplicon-based sequencing protocol as that used for cell-

free DNA (cfDNA) to reduce the confounding effects of mutations linked to CHIP.  

Variant calling, filtering, and annotation  

The raw FASTQ data from amplicons were first processed to remove adapters using Trimmomatic 

(v0.39) (18). The cleaned reads were then aligned to the human reference genome (GRCh38) using 

BWA-MEM (v0.7.15). Subsequent steps included sorting and marking duplicates with PICARD 

(v2.25.6) and assessing alignment quality metrics using CollectHsMetrics (Picard). Variant calling 

was performed with the mpileup function from SAMtools (v1.11) (19). 

To determine the limit of detection (LOD), we utilized commercial mutation reference standards 

Tru-Q1 and Tru-Q0 (Horizon Discovery, Cambridge, UK) and titrated somatic mutations at 

average variant allele frequencies (VAFs) of 3%, 0.5%, 0.1%, 0.05%, and 0%. These mixtures 

were fragmented using NEBNext DNA Fragmentase (New England Biolabs) to simulate cfDNA 

length and then processed through the mPCR workflow as described previously. We compared the 

observed VAF with the expected VAF for each mutation to LOD of the assay. Moreover, negative 
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cfDNA samples isolated from 570 healthy human plasmas were subjected to the same workflow 

to establish baseline VAF cutoff values for each hotspot mutation and to eliminate false positives 

(20). A sample was considered positive for ctDNA if at least one mutation was detected with a 

VAF ≥ the selected LOD. The mean VAF of a sample was calculated as the average of all positive 

mutations detected.   

SPOT-MAS assay 

The isolated cfDNA samples were analyzed using the previously described SPOT-MAS assay (8). 

This assay simultaneously evaluates multiple ctDNA signatures, including methylation changes in 

450 specific regions, genome-wide methylation patterns, copy number variations, fragment length 

distributions, and DNA end motifs. The SPOT-MAS workflow is comprised of three primary 

steps: 

Step 1: cfDNA isolated from peripheral blood undergoes bisulfite conversion followed by adapter 

ligation, resulting in a single whole-genome bisulfite library of cfDNA. 

Step 2: A hybridization reaction is performed on this library to capture the target fraction (450 

cancer-specific regions). The remaining whole-genome fraction is recovered by collecting the 

flow-through and re-hybridizing it with probes targeting the adapter sequences of DNA library. 

Both the target capture and whole-genome fractions are then sequenced to depths of approximately 

52X and 0.55X, respectively, using the DNBSEQ-G400 DNA sequencing system (MGI Tech, 

Shenzhen, China). Sequencing generated 100-bp paired-end reads with a depth of 20 million reads 

per fraction. The resulting sequencing data were demultiplexed using bcl2fastq (Illumina, CA, 

USA) to produce FASTQ files. Quality control of these files was performed using FastQC v. 0.11.9 

and MultiQC v. 1.12. Data pre-processing yielded four distinct cfDNA feature sets: target 
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methylation (TM), genome-wide methylation (GWM), fragment length patterns, and end motifs 

(EM). 

Step 3: These features were then input into a machine learning algorithm to generate prediction 

outcomes. The binary classification model, previously detailed (8) provides SPOT-MAS scores, 

which are used to classify samples as either cancerous or healthy. 

Statistical analysis 

The Mann-Whitney U test was used for continuous variables, such as age, while the Chi-squared 

test was used for categorical variables, such as gender. All statistical analyses were conducted with 

R (version 2023.12.1+402), utilizing standard data analysis packages and the ggplot2 package for 

visualization. Confidence intervals were calculated using the Wilson method in R (version 

2023.12.1+402). 

RESULTS 

Clinical characteristic of cancer and healthy participants 

In this study, plasma samples were collected from a cohort of 255 patients diagnosed with one of 

the five most common cancer types: breast (n=64), colorectal (n=59), gastric (n=62), liver (n=29), 

and lung (n=41). Moreover, plasma samples were obtained from 304 healthy individuals as 

controls. The healthy control group had a median age of 50 years (range: 40-79 years) and included 

136 males and 168 females. Cancer patients were significantly older than the control group (p < 

0.0001, Mann-Whitney test, Table 1). The gender distribution was comparable between the cancer 

and control groups. All cancer patients were treatment-naïve at the time of blood collection. Of the 

cancer patients, 14.1% were at stage I, 36.1% were at stage II, and 27.8% were at non-metastatic 

stage IIIA, while staging information was unavailable for 22.0% of patients. Healthy individuals 
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underwent annual health check-ups, had no history of cancer at the time of sample collection, and 

were monitored for a period of 12 months to ensure their cancer-free status. 

Profiling hotspot mutations in plasma cfDNA of cancer patients 

Recent studies have explored the potential of detecting multiple cancer types through hotspot 

mutations in plasma cfDNA (13). To assess the effectiveness of this approach, we performed deep 

amplicon-based sequencing using a panel of 700 hotspot mutations selected from the COSMIC 

database and somatic mutations in 1,100 Vietnamese cancer patients. Moreover, we performed 

deep sequencing on matched gDNA extracted from WBCs to exclude mutations associated with 

clonal hematopoiesis. 

Of the 255 cancer patients, 131 (51.4%) exhibited at least one hotspot mutation in plasma cfDNA 

(Figure 2A). The detection rates varied by cancer type, with the highest rate observed in liver 

cancers (28/29, 92.6%), followed by colorectal cancers (35/59, 59.3%), lung cancers (22/41, 

53.7%), gastric cancers (26/62, 41.5%), and breast cancers (20/64, 31.2%).  

The majority of hotspot mutations originated from TP53, detected in 23.1% (59/255) of all cancer 

patients. KRAS-derived mutations were found in 11.0% (28/255) of patients, with the highest 

prevalence in colorectal (18.6%, 11/59) and lung cancers (29.3%, 12/41). PIK3CA-derived 

mutations were primarily detected in colorectal cancer (11.9%, 7/59), breast cancer (10.9%, 7/64) 

and gastric cancer (9.7%, 6/62). Notably, APC-derived mutations were predominantly observed in 

colorectal cancer (18.6%, 11/59), while TERT promoter and CTNNB1 mutations were most found 

in liver cancer, with detection rates of 34.5% (10/29) and 24.1% (7/29), respectively. EGFR 

mutations were exclusively detected in lung cancer patients (19.5%). In the control group of 304 

healthy individuals, two were found to carry a hotspot mutation: one with KRAS p.Q22K and 

another with EGFR E746_A750del (Figure 2B). 
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We next identified the recurrent mutations (those detected in at least 2 patients) across five cancer 

types (Table S3). For TP53 mutations, p.R306* and p.R248Q were shared between gastric and 

colorectal cancers, while p.L194R and p.C275F were repeatedly observed in gastric and liver 

cancers, respectively (Figure 2C). KRAS mutations, though most frequently found in colorectal 

cancer, were also detected in other cancer types, including breast (p.G12D), liver (p.G12C and 

p.G13D), and lung cancer (p.G13C, p.G12V, p.G12D, and p.G12C). Similarly, PIK3CA p.H1047R 

was shared among colorectal, breast, and gastric cancers. Recurrent APC mutations, specifically 

p.R302* and p.R232*, and AMER1 (p.R631*) mutations were primarily observed in colorectal 

cancer. In contrast, TERT p.C228T mutations and EGFR mutations (p.L858R and E746_A750del) 

were exclusive to liver and lung cancer, respectively (Figure 2C). 

Our analysis of hotspot mutations in plasma cfDNA from both cancer patients and healthy 

individuals showed that 51.4% of patients had at least one hotspot mutation from our panel. 

Mutations in TP53, KRAS, PIK3CA, APC, and the TERT promoter were recurrently detected across 

multiple cancer types or within a single type. These findings highlight the potential utility of our 

panel in multi-cancer early detection. 

Detection concordance between hotspot mutations and SPOT-MAS  

We previously developed a multimodal assay (SPOT-MAS) designed to detect cancer signals in 

plasma by simultaneously analyzing multiple cancer-specific epigenetic and fragmentomic 

signatures of cfDNA (8). The assay generates probability scores, known as SPOT-MAS scores, 

through a machine learning classifier (Table S4). A sample is predicted to be cancerous if the 

SPOT-MAS score exceeds a cut-off value of 0.60. To assess the concordance between cancer 

detection using hotspot mutations and the SPOT-MAS assay, we set a cut-off for cancer detection 

by hotspot mutations at a mutant allele fraction (MAF) of 0.05. We observed varying concordance 
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rates across the five cancer types analyzed (Figures 3A-3D). Notably, 96.6% of liver cancer 

patients were detected by both hotspot mutations and the SPOT-MAS assay (Figure 3D). 

However, the concordance was lower for the other cancer types. Breast cancer patients had the 

lowest concordance rate at 15.6% (Figure 3A), followed by gastric cancer (29.7%, Figure 3C), 

colorectal cancer (35.6%, Figure 3D), and lung cancer (51%) (Figure 3E, blue). Interestingly, 

hotspot mutations were uniquely detected in 23.7% of colorectal cancer patients, a rate slightly 

higher than that of the SPOT-MAS assay (23.7% versus 22.0%, Figure 3B). In contrast, the SPOT-

MAS assay uniquely detected 35.9% of breast cancer patients (Figure 3A), 31.2% of gastric cancer 

patients (Figure 3B), and 29.0% of lung cancer patients (Figure 3E), surpassing the detection 

rates observed by the hotspot mutation-based approach (15.6%, 10.9%, 2.0%, respectively). The 

discordance in detection between hotspot mutations and the SPOT-MAS assay highlights the 

potential advantage of using hotspot mutations to complement SPOT-MAS to improve detection 

rates across a broader range of cancer types. 

Integration of hotspot mutations into SPOT-MAS assay enhanced the multi-cancer detection 

rates 

We next explored the potential of combining hotspot mutations with the SPOT-MAS assay to 

improve detection rates across five cancer types (Table S5). Our analysis revealed that SPOT-

MAS achieved higher overall sensitivity for detecting cancer patients compared to the hotspot 

mutation-based approach (65.9% [95% CI: 59.9-71.4] versus 51.4% [95% CI: 45.3-57.4], Figure 

4A). This advantage was especially pronounced in cancers with a low mutational burden, such as 

breast cancer (51.6% [95% CI: 39.6-63.4] versus 31.3% [95% CI: 21.2-43.4], Figure 4A) and 

gastric cancer (62.9% [95% CI: 50.5-73.8] versus 41.9% [95% CI: 30.5-54.3], Figure 4A). 

Importantly, both methods demonstrated high specificities, with 99.3% for hotspot mutations and 
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98.4% for SPOT-MAS. This suggests that combining hotspot mutation data with SPOT-MAS 

scores using an 'OR' rule could enhance detection rates for multiple cancer types while maintaining 

high specificity. We showed that this combined approach increased overall sensitivity to 78.4% 

(95% CI: 73.0-83.0, Figure 4A) at a specificity of 97.7% (95% CI: 95.3-98.9, Figure 4A). The 

improvement was particularly significant for colorectal, breast, and gastric cancers. When 

stratifying cancer detection by stages, the hotspot mutation approach had lower sensitivity 

compared to SPOT-MAS for detecting stage I (44.4% [95% CI: 29.5-60.4] versus 63.9% [95% CI: 

47.6-77.5], Figure 4B) and stage II cancers (48.9% [95% CI: 39.0-59.0] versus 64.1% [95% CI: 

54.0-73.2], Figure 4B). Our data demonstrated that the combined approach led to improvements 

in detecting cancers across all stages.  

In summary, our study demonstrated that integrating hotspot mutations into the SPOT-MAS assay 

could enhance cancer detection across multiple types and stages of cancer.  

DISCUSSION 

Liquid biopsy based on multimodal analysis of ctDNA has emerged as a promising approach for 

MCED (8, 21). Both hotspot mutations and epigenetic features, including methylation and 

fragmentomics, have been utilized for early cancer detection (22). Our group previously developed 

an MCED assay, SPOT-MAS, which profiles methylation and fragmentomics features of cfDNA 

to detect five common cancer types. In this study, we demonstrated that hotspot mutations can 

complement our SPOT-MAS assay to further improve the sensitivity of cancer detection. 

We designed a panel covering 700 hotspot mutations selected from the COSMIC database and 

somatic mutations identified in Vietnamese cancer patients. This extensive panel identified 

mutations in 51.4% of cancer patients with a specificity of 99.3%, indicating their potential as 
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biomarkers for multi-cancer detection. We noted that KRAS Q22K and EGFR E746_A750del were 

detected in the plasma of 0.7% (2/304) healthy individuals (Figure 2B). The detection of hotspot 

mutations in healthy individuals has been described in previous studies, which suggest that these 

mutations could derive from very early neoplastic changes or from a normal apoptotic process that 

eliminates damaged cells with mutations (23). 

There was a strong correlation between the detection of hotspot mutations and the SPOT-MAS 

assay in liver cancer, with 96.6% of liver cancer patients being detected by both methods. This 

suggests that liver cancer patients may shed high amounts of ctDNA containing both mutations 

and epigenetic changes. Among liver-associated hotspot mutations, TERT promoter mutations 

were detected in cfDNA from 10 out of 29 liver cancer patients. Notably, hotspot mutations were 

exclusively detected in 23.7% of colorectal cancer patients who were missed by the SPOT-MAS 

assay. This finding suggests that colorectal cancer patients may shed ctDNA harboring mutations 

but not methylation or fragmentomic features detected by SPOT-MAS. This observation aligns 

with previous studies indicating that colorectal cancers, depending on their subtype or location, 

exhibit distinct methylation patterns (24). While epigenetic alterations are robust indicators of 

early tumorigenesis, the variable presence of these signatures in ctDNA underscores the 

importance of a multimodal approach to improve colorectal cancer diagnosis. On the other hand, 

SPOT-MAS could exclusively detect 35.9% and 31.2% of breast and gastric cancers, respectively 

(Figure 3B and 3C). Our findings were consistent with previous studies reporting low TMB of 

these two cancer types (25-27), for which epigenetic changes such as methylation and fragment 

length demonstrated greater classification power.  

Integrating hotspot mutations into the SPOT-MAS assay resulted in enhanced detection sensitivity 

for colorectal, breast, gastric, and lung cancers (Figure 4), highlighting the power of the 
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multimodal approach. Moreover, we observed that SPOT-MAS demonstrated higher detection 

sensitivity for early-stage cancers (stage I and II) than hotspot mutations, suggesting that 

methylation and fragmentomic changes are more prevalent in early tumorigenesis (Figure 4B) 

(28). 

A limitation of integrating hotspot mutations into the SPOT-MAS assay is the increase in test cost 

and the requirement for significantly more cfDNA input to accommodate both amplicon and 

bisulfite sequencing. However, target amplicon sequencing might be the most cost-effective 

method for detecting hotspot mutations compared to whole exome or whole genome sequencing. 

Although the five cancer types included in this study are the most common in Vietnamese and 

Asian populations, it is necessary for future studies to investigate the benefit of combining 

mutation detection with methylation and fragmentomic profiling in other types of cancers, 

especially those lacking standard screening. This study is subject to the inherent limitations of a 

retrospective study and, therefore, requires prospective validation in a larger population.  

CONCLUSION 

Integrating hotspot mutation analysis with the SPOT-MAS assay markedly enhances the early 

detection of multiple cancer types, particularly in the early stages. With an overall sensitivity of 

78.4% and specificity of 97.7%, the enhanced assay offers a promising advancement in MCED. 

Future studies involving larger cohorts are essential to validate these findings and support the 

broader clinical application of this integrated multimodal approach. 

List of abbreviations 

MCED Multi-cancer early detection 

ctDNA circulating tumor DNA 

TNBC triple-negative breast cancer  

NSCLC non-small cell lung cancer  

SPOT-MAS Screening for the Presence Of Tumor by Methylation And Size  

CHIP clonal hematopoiesis of indeterminate potential  
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COSMIC Catalogue of Somatic Mutations in Cancer database 

WBCs White blood cells  

LOD limit of detection 

gDNA genomic DNA 

MAF mutant allele fraction  

TMB tumor mutational burden 
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Figures 

Figure 1. Diagram illustrates study design 

Our study recruited 304 healthy controls and 255 cancer participants. From each participant, 10 

ml of blood was drawn. Cell-free DNA (cfDNA) and genomic DNA (gDNA) were isolated for 

targeted sequencing using a 700-hotspot mutation panel. Mutation calling was performed, with 

CHIP mutations filtered out to confirm positive mutations. Another fraction of cfDNA was 

subjected to the SPOT-MAS assay, which uses bisulfite sequencing to profile methylomic and 

fragmentomic features for classification analysis by machine learning algorithms. The detection 

abilities of the hotspot mutation-based approach and the SPOT-MAS-based approach were 

evaluated individually and in combination. 

Figure 2. Hotspot Mutation Profiles in cfDNA of Cancer Patients and Healthy Individuals 

A. Pie charts illustrating mutation detection rates across five cancer types (breast, colorectal, 

gastric, liver, and lung). 

B. Oncoplot showing an overview of mutations in specific genes per cancer type. 

C.  Heatmap illustrating recurrent mutational patterns across and within cancer types 

Figure 3. Concordance of Cancer Detection by Hotspot Mutation and SPOT-MAS Assay 

A-E. Correlation plots describing MAF and scores from the SPOT-MAS model. The cut-off values 

were set at 0.05 for MAF and 0.60 for the SPOT-MAS score. Pie charts show the detection rates 

by hotspot mutations only, SPOT-MAS assay only, both methods, or not detected for breast, 

colorectal, gastric, liver, and lung cancer patients. 

Figure 4. Detection of Cancers Using a Combination Approach 

A. Sensitivity and specificity of the hotspot mutation-based approach, SPOT-MAS assay, and 

combination strategy for differentiating patients with five cancer types from healthy individuals. 

Data are shown as the mean and 95% confident intervals.  

B. Bar chart showing the stratification of detection rates by cancer stages. 
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Figure 4. Detection of Cancers Using a Combination Approach 

A. Sensitivity and specificity of the hotspot mutation-based approach, SPOT-MAS assay, and 

combination strategy for differentiating patients with five cancer types from healthy individuals. 

Data are shown as the mean and 95% confident intervals.  

B. Bar chart showing the stratification of detection rates by cancer stages. 
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Tables 

Table 1. Clinical characteristic of cancer and healthy participants 

Table S1. Clinical information of 559 participants 

Table S2.  Details of panel 700 hotspot mutations in 23 genes 

Table S3. List of recurrent mutations (detected in at least 2 patients) 

Table S4. Mutation profiling and SPOT-MAS model score of 255 cancer patients   

Table S5. Detection Accuracy of the combination approach 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.18.24312164doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.18.24312164


Table 1. Clinical characteristic of cancer and healthy participants 

 Breast cancer Colorectal cancer Gastric cancer Liver cancer Lung cancer All cancers Healthy 

control 

N 64 59 62 29 41 255 304 

Stage   

I (N,%) 
10 

(15.6%) 
4 

(6.8%) 
12 

(19.4%) 
9 

(31.0%) 
1 

(2.4%) 

36 

(14.1%)  

II (N,%) 
44 

(68.8%) 
19 

(32.2%) 
16 

(25.8%) 
12 

(41.4%) 
1 

(2.4%) 

92 

(36.1%)  

IIIA (N,%) 6 
(9.4%) 

13 
(22.0%) 

22 
(35.5%) 

8 
(27.6%) 

22 

(53.7%) 

71 

(27.8%)  

Non-metastatic 

with unknown 

staging 

4 
(6.3%) 

23 
(39.0%) 

12 
(19.35%) 

0 
(0%) 

17 

(41.5%) 

56 

(22.0%) 
 

Age (Range) 

52 
(28-75) 

63 
(32-83) 

62.5 
(38-84) 

59 
(32-71) 

66 
(34-79) 

60 
(28-84) 

50 
(40-79) 

Mann-Whitney U test (p-value= 8.62e-18) 

Gender Chi-square (p-value =0.9999)  

Male 0 (0%) 32 (54.2%) 34 (54.8%) 25 (86.2%) 25 (61.0%) 103 (42.6%) 136 (44.7%) 

Female 64 (100%) 27 (45.8%) 28 (45.2%) 4 (13.8%) 16 (39.0%) 134 (55.4%) 168 (55.3%) 
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