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ABSTRACT 35 

Background 36 

Uncomplicated urinary tract infection (UTI) is a common indication for outpatient antimicrobial 37 
therapy. National guidelines for the management of uncomplicated UTI were published by the 38 
Infectious Diseases Society of America in 2011, however it is not fully known the extent to which 39 
they align with current practices, patient diversity, and pathogen biology, all of which have evolved 40 
significantly in the time since their publication.  41 

Objective 42 

We aimed to re-evaluate efficacy and adverse events for first-line antibiotics (nitrofurantoin, and 43 
trimethoprim-sulfamethoxazole), versus second-line antibiotics (fluoroquinolones) and versus 44 
alternative agents (oral β-lactams) for uncomplicated UTI in contemporary clinical practice by 45 
applying machine learning algorithms to a large claims database formatted into the Observational 46 
Medical Outcomes Partnership (OMOP) common data model.  47 

Outcomes 48 

Our primary outcome was a composite endpoint for treatment failure, defined as outpatient or 49 
inpatient re-visit within 30 days for UTI, pyelonephritis or sepsis. Secondary outcomes were the 50 
risk of 4 common antibiotic-associated adverse events: gastrointestinal symptoms, rash, kidney 51 
injury and C. difficile infection.  52 

Statistical methods 53 

We adjusted for covariate-dependent censoring and treatment indication using a broad set of 54 
domain-expert derived features. Sensitivity analyses were conducted using OMOP-learn, an 55 
automated feature engineering package for OMOP datasets.  56 

Results 57 

Our study included 57,585 episodes of UTI from 49,037 patients. First-line antibiotics were 58 
prescribed in 35,018 (61%) episodes, second-line antibiotics were prescribed in 21,140 (37%) 59 
episodes and alternative antibiotics were prescribed in 1,427 (2%) episodes. After adjustment, 60 
patients receiving first-line therapies had an absolute risk difference of -2.1% [95% CI -2.9% to    61 
-1.6%] for having a revisit for UTI within 30 days of diagnosis relative to second-line antibiotics. 62 
First-line therapies had an absolute risk difference of -6.6% [95% CI -9.4% to -3.8%] for 30-day 63 
revisit compared to alternative β-lactam antibiotics. Differences in adverse events were clinically 64 
similar between first and second line agents, but lower for first-line agents relative to alternative 65 
antibiotics (-3.5% [95% CI -5.9% to -1.2%]). Results were similar for models built with OMOP-66 
learn.  67 

Conclusion 68 

Our study provides support for the continued use of first-line antibiotics for the management of 69 
uncomplicated UTI. Our results also provide proof-of-principle that automated feature extraction 70 
methods for OMOP formatted data can emulate manually curated models, thereby promoting 71 
reproducibility and generalizability.  72 
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INTRODUCTION 73 

Up to 50% of women will experience a urinary tract infection (UTI) in their lifetime1, making it the 74 
third most common indication for antibiotic treatment in the United States after respiratory tract 75 
infection and skin and soft tissue infections2. Treatment guidelines published by the Infectious 76 
Diseases Society of America (IDSA) encourage the use of nitrofurantoin, trimethoprim-77 
sulfamethoxazole and fosfomycin as first-line treatments for uncomplicated UTI based on their 78 
efficacy and relatively limited side effect profile3,4. Fluoroquinolones are listed as a second-line 79 
option due to their predilection for selecting for multidrug resistant organisms5 and their 80 
association with serious adverse events including C. difficile colitis6. Despite this, ciprofloxacin 81 
and levofloxacin are still the most commonly used antibiotics in the treatment of UTI, which may 82 
reflect the real or perceived threat of antibiotic resistance to the first line agents2.  The guidelines 83 
list beta-lactams as alternative treatments as they are associated with reduced treatment efficacy7.  84 

The evidence base supporting the IDSA treatment guidelines are based on a small number of 85 
randomized controlled trials and observational studies 7–11, many of which were completed several 86 
decades ago. While these provide important information for policy making, they were limited in 87 
the diversity of patients they recruited and were performed at a time when standards of care, and 88 
health-seeking behavior differed significantly from current practice. Furthermore, the pathogen 89 
strains in circulation at the time of these studies have likely been replaced by new strains that 90 
may have a differential response to drug therapies regardless of their susceptibility phenotype. 91 
Therefore, a re-evaluation of management strategies for uncomplicated UTI could provide useful 92 
information for treating clinicians and policy makers. In this study, we sought to estimate treatment 93 
efficacy and adverse events for guideline-concordant and discordant treatments for UTI using 94 
causal inference supported by machine learning applied to a large contemporary claims dataset.  95 

METHODS 96 

Study design and data 97 

We conducted a retrospective cohort study using the claims database from Independence Blue 98 
Cross, which contains health-related information for 3 million people living primarily in a 5 county 99 
area surrounding Philadelphia, PA. The dataset contains inpatient, outpatient, laboratory and 100 
pharmacy claims made between 2012 and 2021. The database is formatted in the Observational 101 
Medical Outcomes Partnership (OMOP) common data model (version 5), developed by the 102 
Observational Health Data Sciences and Informatics (OHDSI) initiative12. Reporting of this study 103 
follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 104 
statement13. This study was deemed exempt by the Institutional Review Board of the 105 
Massachusetts Institute of Technology (protocol E-3970). 106 

Study population 107 

The analysis cohort consisted of non-pregnant females aged 18 and older with a diagnosis of 108 
uncomplicated, non-recurrent UTI at an outpatient setting. The list of diagnosis codes associated 109 
with a diagnosis of UTI is provided in Supplementary Table 1. Patient included in the analysis 110 
must also have been treated with one of the following three classes antimicrobials within a 7-day 111 
period after the diagnosis: a) nitrofurantoin, and trimethoprim-sulfamethoxazole (first line 112 
treatments), b) ofloxacin, ciprofloxacin and levofloxacin (second-line treatments), or c) specific 113 
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oral β-lactam drugs used for UTI such as amoxicillin-clavulanate, cefadroxil, and cefpodoxime 114 
(alternative treatments). Fosfomycin was excluded due to the low number of treatment events. 115 

We excluded individuals with UTI who received treatment outside of the three classes above, e.g. 116 
fluconazole, and individuals treated with more than one antibiotic within a 7-day period. In 117 
addition, to avoid contamination of previous antibiotic exposures, we excluded patients that had 118 
antibiotic exposure within 7 days before the date of UTI diagnosis. We also excluded those with 119 
recurrent UTI, defined as ≥2 episodes in a 180 day period and ≥3 episodes in a 365 day period, 120 
and people with complicated UTI, defined as any males with a UTI diagnosis or females with a 121 
predefined list of procedures and diagnoses associated with complicated UTI within 180 days of 122 
the diagnosis, or any histories of complicating long-term comorbidities such as neurogenic 123 
bladder, spina bifida, or cancers of the genitourinary tract prior to the UTI diagnosis. A full list of 124 
comorbidities flagged for exclusion can be found in Supplementary Table 2.   125 

Outcomes and Censoring 126 

We defined two primary endpoints for the analysis. The first was a composite endpoint for 127 
treatment failure, defined as outpatient or inpatient re-visit within 30 days for UTI, pyelonephritis 128 
or sepsis. The second set of endpoints involved adverse events, defined as the presence of 129 
diarrhea within 15 days of the UTI event, acute kidney injury (AKI) or a dermatologic adverse 130 
event within 30 days of a UTI event or a diagnosis of C. difficile infection within 90 days of the UTI 131 
event. The conditions and the corresponding codes included in each adverse event category are 132 
listed in Error! Reference source not found.. Individuals were right-censored from the analysis 133 
if they left the health plan before the observational period of the outcome of interest.  134 

Confounder generation 135 

We derived 2 sets of baseline covariates, which served as potential confounders. The first utilized 136 
domain expert knowledge from two practicing infectious disease physicians (SA and SK), and the 137 
second was derived from the OMOP-learn coding package. OMOP-learn is a data-driven feature 138 
extractor developed in prior work and is specifically designed for use with claims datasets 139 
formatted in the OMOP common data model14. The package serves to automatically generate 140 
time-windowed covariates. 141 

Domain expert-derived features were classified into demographics, medical conditions, drug 142 
prescriptions, prior UTI history, prior antibiotic exposures, laboratory measurements, and provider 143 
specialty and year of prescription to account for secular trends in prescribing behavior. A list of 144 
medical conditions and drug prescriptions included in the features is shown in Supplementary 145 
Table 4. Domain expert-derived features related to medical histories were binned into non-146 
overlapping time windows of 0 to ≤6 months, >6 to ≤12 months and >12 to ≤24 months relative to 147 
the date of UTI diagnosis. Laboratories (urinalysis and blood tests) were counted if they were 148 
drawn at the time of the UTI diagnosis. The final expert-derived model consisted of 245 features. 149 
OMOP-learn features were derived from diagnoses, procedures, medications, and provider 150 
specialties. The total OMOP-derived model consisted of 143,830 features for the comparison 151 
between first and second-line antibiotics, and 131,035 features for the comparison between first-152 
line and alternative antibiotics. Figure 1 depicts the cohort, outcome and confounder definitions. 153 
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 154 
Figure 1: Cohort inclusion criteria and definitions for outcomes and feature. Static features 155 
were evaluated at T0. Abbreviations, T, time. 156 

Statistical analysis 157 

We estimated the absolute risk difference of first line therapies versus second line or alternative 158 
therapies for patients with uncomplicated UTI on 30-day recurrence and adverse effects. To 159 
account for possible covariate-dependent censoring, we used inverse probability of censoring 160 
weighting (IPCW) to reweight individuals that were observed or not censored15. In addition, the 161 
central problem in estimating antibiotic treatment on outcomes is confounding by indication, 162 
therefore we utilized inverse probability weighted propensity scores to adjust for the likelihood of 163 
receipt of each treatment class given an individual’s confounders.  164 

For both the observation probability model and treatment propensity score model, the dataset 165 
was split 80/20 into a training and test set and the training set was further split 75/25 into a 166 
development and validation set to search optimal hyperparameters. Hyperparameters were 167 
selected using a grid search across three model types, logistic regression, random forests and 168 
light gradient boosted machine models. The model with the highest area-under-the ROC curve 169 
(AUROC) after 3-fold cross-validation was chosen to generate the probabilities of being observed 170 
and propensity scores for the entire dataset. To avoid the undue influence of extreme propensity 171 
scores, we applied symmetric trimming and only included patients with propensity scores between 172 
0.05 and 0.95.  We additionally only included patients with follow-up time for the treatment 173 
outcome under consideration.  After adjusting for the observation probability and propensity for 174 
treatment, the average treatment effect (ATE) was estimated as follows, 175 

𝐴𝑇𝐸 = 𝐸 %
𝑇!𝑌!

𝑃(𝑇 = 1|	𝑋!) ∗ 𝑃(𝐷" = 1|	𝑇 = 1, 𝑋!)
−

(1 − 𝑇!)𝑌!
𝑃(𝑇 = 0	|𝑋!) ∗ 𝑃(𝐷" = 1|𝑇 = 0, 𝑋!)

3 176 

where 𝑖 is the participant, 𝑋 are the covariates, 𝑇 = 1 if given a first-line treatment, 𝐷" = 1 if the 177 
patient was followed for at least the outcome variable’s follow up period and 𝑌	is the outcome, 178 
which is treated as missing when 𝐷"  = 0. Confidence intervals for the propensity scores and 𝐴𝑇𝐸 179 
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were generated using bootstrapping16. Feature importance for both models was determined using 180 
Shapley Additive Explanation values (SHAP values)17. Figure 2 represents the analytic pipeline.  181 

 182 
Figure 2: Analytic pipeline.  We built and separately analyzed cohorts for first-line versus 183 
second-line and first-line versus alternative treatment. Eighty percent of the total data was set 184 
aside for training and this was further split 75/25 into development (blue) and validation (green) 185 
datasets. Two models were then run to estimate the probability of treatment and of being observed 186 
through the outcome period post-diagnosis. We used a 3-fold cross-validation to select the model 187 
with the highest AUROC, indicated by the asterisk. Average treatment effect for a given outcome 188 
was estimated on test data (yellow) by the risk difference between those receiving first-line 189 
treatment or another treatment (second-line or alternative) after normalizing for the probability of 190 
receiving a treatment and of being observed at the end of the outcome’s follow-up period (e.g 30 191 
days). Abbreviations, T, treatment, X, covariates, D, observed. 192 

We assessed for residual confounding by assessing treatment effect on three negative control 193 
outcomes, fibrocystic disease of the breast, hernia and fracture 4,18. These were selected based 194 
on domain knowledge and a comprehensive literature search that found no evidence of a causal 195 
association with exposure to our antibiotics of interest. Treatment effect was calculated by 196 
estimating the prevalence of each negative control outcome at 1 month and 3 months after 197 
exposure. 198 

The primary analysis used the model specified by domain expert knowledge. Sensitivity analyses 199 
included subgroup analysis in patients who were admitted within a 30-day period after their initial 200 
diagnosis of UTI and with the model specified by OMOP-learn, using the same analysis pipeline. 201 
All analyses were run in Python v3.85 and source code to reproduce all analyses is available at 202 
GitHub (https://github.com/clinicalml/uti-causal-inference/). 203 

RESULTS 204 

Baseline cohort description 205 

The study flow diagram is shown in Figure 3 and baseline cohort characteristics are summarized 206 
in Table 1.  207 
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 208 
Figure 3: Study flow diagram. Sample sizes indicate UTI diagnoses.  209 
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Baseline characteristics Full cohort First line Second line Alternative 

Sample size (UTI diagnoses) 57,585 35,018 21,140 1,427 

Age (median, IQR) 52 (29) 49 (30) 57 (29)* 59 (35)* 

Fever at presentation 649 (1.1) 207 (0.6) 390 (1.8)* 52 (3.6)* 

Urinalysis ordered at presentation 13,713 (23.8) 7,365 (21.0) 5,937 (28.1)* 411 (28.8)* 

Blood test ordered at presentation 2,248 (3.9) 1,040 (3.0) 1,057 (5.0)* 151 (10.6)* 

Menopause 3,852 (6.7) 2,320 (6.6) 1,424 (6.7) 108 (7.6) 

UTI in past year 5,863 (10.2) 3,418 (9.8) 2,257 (10.7)* 188 (13.2)* 

Underlying conditions     

   Hypertension 21,026 (36.5) 10,742 (30.7) 9,525 (45.1)* 759 (53.2)* 

   Diabetes Mellitus 8,298 (14.4) 4,056 (11.6) 3,910 (18.5)* 332 (23.3)* 

   Arthritis 11,220 (19.5) 6,122 (17.5) 4,698 (22.2)* 400 (28.0)* 

   Cancer 5,684 (9.9) 2,847 (8.1) 2,639 (12.5)* 198 (13.9)* 

   Chronic kidney disease 2,992 (5.2) 1,364 (3.9) 1,458 (6.9)* 170 (11.9)* 

   Autoimmune 2,956 (5.1) 1,639 (4.7) 1,207 (5.7)* 110 (7.7)* 

   Thyroid Disorder 292 (0.5) 148 (0.4) 136 (0.6) 8 (0.6) 

Year of UTI episode     

    2012-2014 7,376 (12.8) 3,435 (9.8) 3,792 (17.9)* 149 (10.4) 

    2015-2017 26,770 (46.5) 14,757 (42.1) 11,420 (54.0)* 593 (41.6) 

    2018-2021 23,439 (40.7) 16,826 (48.1) 5,928 (28.0)* 685 (48.0) 

Provider specialties     

    Family medicine 17,523 (30.4) 9,710 (27.7) 7,426 (35.1)* 387 (27.1) 

    Internal medicine 8,025 (13.9) 3,858 (11.0) 3,930 (18.6)* 237 (16.6)* 

    Emergency care 4,757 (8.3) 2,968 (8.5) 1,689 (8.0)* 100 (7.0) 

    Obstetrics / Gynecologist 2,839 (4.9) 2,124 (6.1) 684 (3.2)* 31 (2.2)* 

    Other non-urology specialist 6,729 (11.7) 5,119 (14.6) 1,480 (7.0)* 130 (9.1)* 

    Urology 1,498 (2.6) 907 (2.6) 522 (2.5) 69 (4.8)* 

    Others 2,385 (4.1) 1,433 (4.1) 818 (3.9) 134 (9.4)* 

Table 1. Baseline characteristics of cohort. Unless otherwise indicated, values represent 210 
sample size and column percentage. * p <0.05 compared to first-line cohort 211 
The final analysis cohort consisted of 57,585 episodes of UTI occurring in 49,037 patients. Of 212 
these, first-line antibiotics were prescribed in 35,018 (61%) episodes, second-line antibiotics were 213 
prescribed in 21,140 (37%) episodes and alternative antibiotics were prescribed in 1,427 (2%) 214 
episodes. Compared to those prescribed with first-line antibiotics, patients prescribed second-line 215 
antibiotics were older, more likely to present with fever, more likely to have laboratory tests 216 
ordered, and had a higher comorbidity burden. Those prescribed alternative treatments were 217 
similarly older, more likely to be febrile and had a higher comorbidity burden. They were also more 218 
likely to be seen in the emergency room.   219 

  220 
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Primary outcomes 221 

For the domain expert-derived features, a light gradient boosting machine was the best model for 222 
predicting censorship as well as the likelihood of treatment (details of performance in 223 
Supplementary Results and Supplementary Figures). The top 5 covariates predicting first-line 224 
versus second-line therapy were year at UTI diagnosis, patient age, whether the provider was an 225 
advanced specialist, internal medicine or family medicine doctor. The top 5 covariates predicting 226 
first-line versus alternative therapy were age, whether the provider was an obstetrics / 227 
gynecologist, and whether the individual had received beta-lactams in the previous 2 years. 228 

Patients with UTI who were prescribed first-line antibiotics had a lower probability of an inpatient 229 
and outpatient revisit within 30 days compared to those who received a second-line antibiotic 230 
(adjusted risk difference = -1.8% [95% CI -2.4% to -1.1%]). Relative to alternative beta-lactam 231 
treatments, patients prescribed first-line antibiotics for UTI had a 6.4% [95% CI -10.1% to -3.2%] 232 
lower probability of inpatient or outpatient revisit at 30 days (Figure 4). For both comparisons, 233 
these findings were driven largely by individuals with uncomplicated UTI, but were also observed 234 
in those with pyelonephritis or sepsis to a lesser extent.  235 

 236 
Figure 4. Adjusted rate difference for revisits for patients receiving first-line versus second-line 237 
antibiotics, and first-line versus alternative treatments, after adjusting for potential confounding 238 
factors and censoring. 239 
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Secondary outcomes  240 

In terms of adverse events, receipt of first-line antibiotics was associated with a slightly increased 241 
risk for skin-related adverse events (adjusted risk difference +0.4% [95% CI: +0.2% to +0.5%]) 242 
compared to second-line antibiotics and a decreased risk of acute kidney injury within 30 days of 243 
treatment (adjusted risk difference -0.3% [95% CI: -0.5% to -0.2%]) (Figure 5). There was no 244 
difference in the risk for C. difficile infection between the treatment groups.  245 

Receipt of first-line antibiotics for UTI was associated with a lower risk of acute kidney injury at 30 246 
days (adjusted risk difference -2.7% [95% CI: -4.1% to -1.1%]), relative to receiving an alternative 247 
treatment (Figure 5). There was no difference in the risk of skin-related adverse events, diarrhea, 248 
and C. difficile infection at 90 days. 249 

 250 
Figure 5. Adjusted rate difference for treatment-related adverse effects for patients receiving first-251 
line versus second-line antibiotics, and first-line versus alternative treatments, after adjusting for 252 
potential confounding factors and censoring. 253 

Negative Control Outcomes and Sensitivity Analyses 254 

There were no differences in the 1-month and 3-month risk for the three negative control 255 
outcomes regardless of whether the patient received a first-line, second-line or alternative 256 
treatment (Figure S3). We observed little to no difference between treatment arms in the 257 
sensitivity analysis for patients who had an inpatient revisit within 30 days (1st line versus 2nd line 258 
-0.1%, [95% CI: -0.3% to 0.0%]; 1st line versus alternative 0.3%, [95% CI -0.7% to 1.1%], Figures 259 
S4). Additionally, results obtained from the model specified by OMOP-learn were similar across 260 
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all comparators and outcomes to the domain expert specified model (Supplementary Results and 261 
Figures S5, S6 and S7). For the OMOP-learn model, first-line antibiotics had better efficacy than 262 
second-line antibiotics as measured by lower risk of medical revisits (-2.1% [95% CI: -2.9% to -263 
1.6%]) overall, and in those with inpatient revisits (-0.2% [95% CI: -0.3% to 0.0%]). They also had 264 
a lower overall risk of any adverse events (-0.7% [95% CI: -1.0% to -0.4%]) but a higher rate of 265 
skin-related adverse events (adjusted risk difference: 0.3% [95% CI: 0.2% to 0.4%]). Similar 266 
results were observed in the comparison between first-line antibiotics and alternative antibiotics 267 
using the OMOP-learn derived model. 268 

DISCUSSION 269 

Using a large contemporary real-world dataset, we demonstrate that IDSA guidelines for 270 
treatment of uncomplicated UTI remain robust in terms of both efficacy and adverse events, 271 
despite major changes in the epidemiology of antibiotic resistance21,22. Unless a patient has a 272 
history of drug resistance, or intolerance or lives in a region where local rates of resistance are 273 
high, nitrofurantoin and trimethoprim-sulfamethoxazole remain the treatments of choice. We 274 
replicated our domain-expert derived results with an automated feature building package applied 275 
to a common data model, thereby supporting the hypothesis that complex causal inference 276 
analyses combined with careful cohort selection can be semi-automatable. This will help promote 277 
reproducibility of our findings in other health systems and opens inquiry into other important 278 
clinical questions. 279 

We observed a small increase in rates of revisits for patients receiving second-line therapy relative 280 
to those receiving first-line antibiotics. This result is surprising as fluoroquinolones are thought to 281 
be equivalent or superior to nitrofurantoin and TMP-SMX in terms of clinical efficacy23. The 282 
differences were limited to outpatients with a diagnosis of lower urinary tract infection and were 283 
much less pronounced for inpatients, suggesting the benefit of first-line treatments is restricted to 284 
classic presentations of uncomplicated UTI. Follow up visits soon after treatment may be driven 285 
by drug intolerance, toxicity or by selection of a drug to which an organism is resistant. The latter 286 
may be a possible explanation for why people treated with nitrofurantoin and TMP-SMX had fewer 287 
revisits. Recent work has suggested that rates of resistance to nitrofurantoin remain low despite 288 
its widespread use and may be due to a high barrier to resistance24. While resistance to TMP-289 
SMX is more common, clinicians are less likely to use this drug based on IDSA guidance that 290 
recommends avoiding it when rates of local resistance exceed 20%, which is a common scenario 291 
throughout the United States. In contrast, resistance to fluoroquinolones is most often mediated 292 
by the accumulation of mutations in a single gene often in response to antibiotic exposure. Given 293 
the high rate of fluoroquinolone prescription in the community, this may increase the risk for 294 
prescribing an agent to which the agent is resistant. This is further complicated by the fact that 295 
uncomplicated UTI, is often managed over telephone and without culture data. Lastly, given that 296 
prescribers are prone to prescribe the same antibiotic25–27, the impact of prior exposure may be 297 
more likely to lead to selection of resistance if that antibiotic is a fluoroquinolone and the patients 298 
are otherwise healthy outpatients with a low risk for colonization by drug-resistant organisms.  299 

We applied two approaches to feature construction to correct for confounding. Domain expert-300 
derived features are derived from expert knowledge on the biologic mechanisms of disease and 301 
real-world experience with managing uncomplicated UTI. These features have the advantage of 302 
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theoretical backup from established pathophysiology and clinical data, but suffer from the 303 
possibility of missing potential confounders, especially when the disease has diverse mechanistic 304 
pathways or is not well-understood. In contrast, OMOP-learn14, which captures all information 305 
available in the data without prior knowledge of its relationship with the disease, lowers the 306 
probability of missing confounders but comes at the expense of including a large number of non-307 
relevant covariates. Our study provides an empirical demonstration that extracting features under 308 
the OMOP-learn framework can yield conclusions comparable to that domain expert-derived 309 
features, which supports application of causal inference methods using automatic feature 310 
generation in the medical context.  311 

Recent work has shown that carefully constructed retrospective cohorts with proper statistical 312 
adjustment can provide robust results that complement findings from prospective randomized 313 
controlled trials28. However, as with all observational studies, there is a possibility that our results 314 
may be biased due to residual confounding. We believe the degree of confounding is small as we 315 
adjusted for both covariate-dependent censoring and treatment indication, which are the major 316 
forms of confounding we expect to impact our results. This is further supported by the results of 317 
the negative control outcome analysis, which shows an equal distribution of control outcomes 318 
between treatment arms. The consistency in the strength and direction of our outcomes between 319 
domain-expert derived and OMOP-learn derived features lends further strength to the validity of 320 
our findings.The major strength of this study is the inclusion of a real-world dataset with a 321 
comprehensive collection of covariates translated into a common data model. The rich set of 322 
features permits construction of models that better specify causal mechanisms and the use of a 323 
common data model enhances the study’s reproducibility for other patient populations. Lastly, 324 
large observational datasets offer the opportunity to gain real-world insight that is both up to date 325 
and representative of the patients presenting with disease in practice today.  326 

Other limitations of our study are that the prevalence of certain comorbidities is lower in our cohort 327 
than in the general population. This may partly reflect the limited scope of our data, which comes 328 
from a single health insurer primarily based in Southeast Pennsylvania but may also reflect our 329 
inclusion criteria, which intentionally restricted our analyses to people with uncomplicated UTI.  330 
We also had limited data on patient race, ethnicity and socioeconomic status, which precluded 331 
our ability to assess for fairness across diverse subpopulations. Future work should seek to 332 
reproduce our analysis using larger datasets with more diverse populations to ensure equity. The 333 
increase in prescription of first-line antibiotics over time, which likely reflects the effect of guideline 334 
dissemination and promotion of antibiotic stewardship29–31, should not by itself bias outcomes, 335 
assuming care practices did not dramatically change over the study period. 336 

In conclusion, our results provide reassurance that guideline-concordant therapy remains the 337 
optimal treatment decision for uncomplicated UTI. The application of an automated feature 338 
extraction package for datasets translated into a common data model, combined with a rigorous 339 
analytic pipeline, is a promising approach to assess the impact of guideline-directed therapy in 340 
real-world populations and over time.   341 
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