- Title: Utilization of CoRDS Registry to Monitor Quality of Life in Patients with VCP
- 2 Multisystem Proteinopathy
- 4 Eiman Abdoalsadig^{1,2*}, Merwa Hamid^{1*}, Allison Peck^{3*}, Leepakshi Johar^{1,4}, Virginia Kimonis^{1,5,6}
- 5 * Contributed equally to the work and should be considered co-first authors
- 6 Affiliations:

3

- ¹Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California
- 8 Irvine Medical Center, CA, USA
- 9 ²Yale School of Public Health, CT, USA
- 10 ³Cure VCP Disease, Inc., Warner Robins, Georgia
- ⁴College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona,
- 12 CA, USA
- ⁵Department of Neurology, University of California Irvine Medical Center, CA, USA
- ⁶Department of Pathology, University of California Irvine Medical Center, CA, USA
- 15 Correspondence:
- 16 Virginia Kimonis, MD. MRCP
- 17 Professor, Department of Pediatrics
- 18 Division of Genetics and Genomic Medicine
- 19 University of California-Irvine
- 20 Lab and FEDEX: Hewitt Hall, Rm 2038,
- 21 Health Sciences Rd., Irvine CA 92697
- 22 Tel: (949) 824-0571
- vkimonis@hs.uci.edu

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Abstract Background VCP disease, also known as multisystem proteinopathy (MSP1), is a rare, autosomal dominant, adult-onset, neuromuscular disease that is caused by variants in the valosin-containing protein (VCP) gene. VCP disease may exhibit one or more of the following primary features: Inclusion Body Myopathy (IBM), Paget's disease of bone (PDB), Frontotemporal Dementia (IBMPFD), and Amyotrophic Lateral Sclerosis (ALS). Due to its progressive nature, death normally occurs in their sixties due to respiratory and cardiac failure. The purpose of this study is to utilize the Cure VCP Disease patient registry hosted by the Coordination of Rare Diseases at Sanford (CoRDS) to conduct a prospective natural history study. Methods Seventy-nine participants enrolled in the patient registry and answered demographic, VCP variant type, Patient-Reported Outcome Measures (PROMs), and Quality of Life (QOL) questionnaires over the course of three years. We additionally investigated if any sex differences existed and if genotype-phenotype correlations affected the rate of progression of the varying clinical manifestations. **Results** Overall, participants' mobility declined significantly as the disease progressed. Participants reported a 0.6% decline in upper extremity function, 1.2% decline in lower extremity function, and 0.3% decline in cognitive function per year of age. Furthermore, participants reported a 1.6% decline in upper and lower extremity function and a 0.1% decline in cognitive function per year of disease duration. The highest PROMs correlations between overall health and lower extremity function, upper extremity function, fatigue, and the ability to perform vigorous activities.

Genotype-phenotype correlations revealed no significant differences except for the absense of PDB in the p.Arg159Cys group. Conclusion The VCP CoRDS Registry was found to be a valuable tool for monitoring the QOL in patients with VCP disease and capturing patient perspectives for future clinical trials. **Keywords** VCP, Inclusion Body Myopathy, Paget's Disease of Bone, Frontotemporal Dementia (IBMPFD), and Amyotrophic Lateral Sclerosis (ALS), multisystem proteinopathy, Patient-Reported Outcome Measures (PROMs), and Quality of Life (QOL)

Background

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Valosin-containing protein (VCP) disease, otherwise known as inclusion body myopathy (IBM) associated with Paget disease of the bone (PDB) and frontotemporal dementia (FTD) (frequently used acronym, IBMPFD), or more recently, multi-system proteinopathy type 1 (MSP1), is a progressive, debilitating, predominantly autosomal dominant genetic condition, which can affect the muscle, bone, and/or brain. The condition was first reported in 2000 [1] as a new familial disorder of limb-girdle type of muscle weakness and skeletal disorganization due to PDB, which was later identified to be due to heterozygous missense variants in the VCP gene mapped to chromosomal location 9p211-p12 [2-4]. The VCP (p97) gene encodes for an abundant cytosolic AAA ATPase with multiple cellular functions. It is involved in the ubiquitin-proteasome system (UPS), the endoplasmic reticulum-associated protein degradation (ERAD), DNA endosomal sorting, cell cycle regulation, and autophagy [5-8]. To date, more than 80 missense variants associated with VCP disease have been identified [6]. At the cellular level, variants lead to the increased enzymatic activity of AAA ATPase reflecting a gain of function mechanism which dysregulates protein degradation through ERAD and/or UPS resulting in activation of the ER stress response [7] resulting in a global disturbance of protein folding [5]. Al-Obeidi et al. (2018), reported myopathy (typically IBM) in 90% of studied individuals with VCP disease, PDB in 42%, and FTD in 30% [8]. IBM manifests as progressive muscle weakness, difficulty in raising the arms and walking upstairs, and atrophy of the muscles of the pelvis and shoulder girdle. Histologically, IBM is characterized by rimmed vacuoles containing protein aggregates of TDP-43 [9]. PDB often consists of an increase in osteoclastic activity resulting in disorganized bone structure and bone weakness, resulting in fractures and localized

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

arthritis [10]. VCP gene variants have also been reported to cause ALS in 10%, Parkinson's disease in 5%, and cardiomyopathy in up to 27% of patients [8] [11-14]. FTD affects speech production and recall, comprehension, and personality [13-14]. Owing to the progressive nature of the disorder, death usually occurs prematurely in the 60s due to respiratory and cardiac failure [8]. Currently, while bisphosphonates can be effectively used to manage PDB, there are no treatments that can modify the progression of VCP disease-associated myopathy or FTD [6]. Medical management includes physical therapy, weight control, respiratory aids, and mechanical aids such as walkers or wheelchairs [6]. Patients are also recommended to receive regular surveillance to monitor cardiac, bone, lung, and neurologic function following diagnosis [6]. Even though VCP disease is now reported in several hundred patients across the globe, there are limited studies investigating how VCP disease affects the quality of life (QOL) of patients over time. We therefore planned to analyze patient reported data to ascertain the prevalence, age of onset of different manifestations, and track the progression of mobility, cognitive function, and pain levels in patients with VCP disease. Methods Cure VCP Disease, Inc., a patient advocacy group established to unite patients and researchers to advance treatments and cures for VCP disease, collaborated with the Coordination of Rare Diseases at Sanford (CoRDS), a centralized international patient registry for rare diseases, to host a patient registry (VCP CoRDS Registry). The registry survey contains 143 unique

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

questions related to demographics, diagnosis, age of onset, symptoms, disease progression, pain, and QOL. The registry participants are prompted to update survey responses annually. Thus, a longitudinal natural history study over the course of up to three years was established to explore the progression of QOL symptoms among VCP disease patients. Using data contained in the registry, we conducted the following analyses: 1) progression of functional abilities, 2) quality of life correlations, and 3) genotype-phenotype correlations. We compiled the genetic variant and phenotype responses from the VCP CoRDS Registry for each participant to conduct a genotypephenotype comparison for the specific VCP disease variant. We used Excel and SPSS to conduct one sample t-tests with a 95% confidence interval for the statistical analysis in the genotypephenotype comparison (IBM SPSS Statistics, Version 27). For the progression of functional abilities analysis, we extracted from the VCP CoRDS registry, the responses from three surveys developed by the National Institute of Neurological Disorders and Stroke (NINDS): lower extremity function (Neuro-QOL Item Bank v 1.0 short form), upper extremity function (Neuro-QOL Item Bank v 1.0 short form), and cognition function (Neuro-QOL Item Bank v 2.0 short form) [15]. Each Neuro-QoL survey consists of eight questions developed to assess upper extremity function (such as their ability to turn a key in a lock, brush teeth, write with a pen or pencil, open and close a zipper), lower extremity function, and cognitive function, respectively. These patient-reported outcome measures (PROMS) have been previously proven to be valuable tools to increase understanding of disease symptoms and overall quality of life [16-17]. The 5-point Likert scale was applied in these responses to understand the extent to which participants can perform specific daily functions where a score of 1 is defined as the inability to perform a task while a score of 5 is the ability to complete a task

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

without any difficulty. The total raw scores from the short forms were calculated for lower extremity function, upper extremity function, and cognitive function. To analyze pain in this population, we used the pain levels reported in the patient registry on a scale of 0-10 with 10 being the worst pain imaginable. Mild pain was defined as 0-3; moderate pain was 4-6; and severe pain was 7 or higher on the pain scale. We then compared pain levels and progression of pain between male and female participants by comparing their pain level with age as well as disease duration. We applied a linear regression model to observe the progression in mobility, cognitive function, and pain with age and disease duration. Lastly, we analyzed the possible effect of disease progression, pain, and age on OOL. Participants reported their QOL symptoms by answering five questions in the QOL section of the VCP CoRDS Registry. We converted the participants' responses using a 5-point Likert scale (where 1 represents poor QOL while 5 represents excellent QOL utilizing their latest responses), in which those scores were added to a bar chart comparing the latest responses of symptomatic and pre-symptomatic participants. Mobility and cognitive function were classified according to the total raw scores provided by the Neuro-QOL surveys. We calculated the Spearman correlation coefficients to evaluate if any correlations existed between each of the following nine metrics through a correlation matrix: age, disease progression (lower extremity, upper extremity, cognitive function, and pain), and QOL factors (vigorous activities, fatigue, general health, pain interference, and depression). We classified correlations between these factors as strong (± 0.7 -1.0), moderate (\pm 0.4-0.6), and weak (\pm 0.0-0.3). We utilized the R program to generate a visually informative heat map, offering a comprehensive depiction and comparison of the various correlation coefficient magnitudes [R version 4.4.0 (Puppy Cup) prerelease versions].

Results

Demographic information was collected from the VCP CoRDS Registry (Table 1). Seventy-nine participants [males (N=35, 44.3%), females (N=39, 49.4%), and five unreported sex (6.3%)] contributed to this study and approximately 89% of the participants reported themselves as 'White' with 4% 'Asian', and 6% 'Mixed or Other'. The average age reported associated with diagnosis of muscle weakness, PDB, and dementia was 42.3 years, 47.3 years, and 54.8 years, respectively. Seventy-nine participants were registered from nine different countries (Figure 1). Most of the participants were from the United States (N=59, 71%), followed by the United Kingdom (N=5, 6%) and Australia (N=5, 6%). Four participants did not indicate their country of submission.

Table 1. Demographic Data of Participants (* prevalence)

Mean Age ± SD (years)	Range (years)				
51.6 ± 11.8	21-77				
42.4 ±11.6	5-71				
46.8 ±11.5	17-73				
42.3 ± 9.6	12-67				
47.3 ± 9.4	30-68				
54.8 ± 16.3	25-71				
35:39	5-77				
N (%)					
63 (89%)	21-73				
3 (4%)	50-67				
1 (1%)	54				
4 (6%)	27-77				
6 (10%)	56-62				
54 (90%)	21-77				
	51.6 ± 11.8 42.4 ±11.6 46.8 ±11.5 42.3 ± 9.6 47.3 ± 9.4 54.8 ± 16.3 35:39 N (%) 63 (89%) 3 (4%) 1 (1%) 4 (6%)				

Figure 1. Demographic Data of Participants by Country of Residence. Seventy-nine participants from nine different countries participated in the study. Fifty-nine participants (75%) registered in the United States. One participant (1%) did not indicate country of submission.

Of the total number of participants registered, nine participants were pre-symptomatic (Figure S1). A pre-symptomatic participant is defined as someone who has a variant on the *VCP* gene but has neither been diagnosed with nor experienced a VCP-related clinical symptom. Sixty-six (84%) participants were symptomatic, meaning the participant either reported a clinical diagnosis or VCP-related clinical symptoms in the registry (Figure 2). Three participants indicated "other" under physical diagnosis, however, did not specify their comorbidities. The status of four participants is unknown. Out of the 62 symptomatic participants that reported a phenotype diagnosis, the most common clinical feature reported was myopathy (N=52, 83.9%); notably, of these patients, twenty participants (32.3%) reported isolated myopathy and thirteen participants

186

187

188

189

190

191

192

193

194

195

196

197

198

199

(21.0%) reported both myopathy and PDB (Figure 2). The second most common physical diagnosis was PDB (N=18, 29.0%). In addition, nine participants reported FTD (14.5%), six participants reported peripheral neuropathy (9.7%), nine participants reported cataracts (14.5%), four participants reported cardiomyopathy (6.5%), three participants reported ALS (4.8%), and one participant reported Parkinson's disease (1.6%). Sixty-seven participants reported their mean age of diagnosis for VCP disease as 49 years (range 23-73). Of the symptomatic group, twelve participants (17.9%) were diagnosed between the ages of 31-40 years, twenty-one (31.3%) were diagnosed between the ages of 41 years and 50 years, and twenty participants (30%) were diagnosed between the ages of 51 years and 60 years. A large majority of participants reported symptom-onset during adulthood; however, one participant reported having symptoms starting at the age of 12 years while another participant was pre-symptomatically diagnosed at the age of 17 years (Figure S2). Among the 56 participants who reported their age of first symptom onset, the most common age range was between 31-40 years (N=20, 36%), closely followed by 41-50 years (N=17, 30%). In this cohort, the average time from symptom onset to establishment of the diagnosis was 6.8 years with the longest duration of 29 years (Figure S2).

Symptomatic VCP Patients. A comparison between pre-symptomatic (orange, N=9) and symptomatic (green, N=66) participants when asked five QOL questions was conducted. (a) Participants' responses when asked about their general health. (b) Participants' responses when asked if their health limits them in doing vigorous activities. (c) Participants' responses when asked if they feel depressed. (d) Participants' responses when asked how often they feel tired. (e)

Participants' responses when asked how much pain interfered with their enjoyment of life.

Supplemental Figure 1. Quality of Life - A Comparison of Pre-Symptomatic vs.

200

201

202

203

204

205

206

Figure 2. Venn Diagram of Physician-Confirmed Diagnoses in 66 Participants. Each circle represents a different physical diagnosis. Areas where the circles overlap are defined as the participant reporting having multiple diagnoses. One participant (not illustrated) who reported "other" was diagnosed with Parkinsonism and ataxia. The status of four participants (not displayed) is unknown. a: Indicated other in addition to provided physical diagnoses. b: One participant also reported cataracts. c: One participant also reported dementia. d: One participant also reported Parkinson's disease. e: One participant also reported peripheral neuropathy.

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Supplemental Figure 2. Demographics. (a) Age of diagnosis of participants with VCP disease (N=67). (b) Age of first symptom onset in VCP disease participants (N=56). Each slice represents a specific age range. **Genotype-Phenotype Comparison** The genotype-phenotype analysis of this cohort revealed phenotypic diversity in VCP disease in relation to the variant group and the corresponding clinical features reported (Table 2, S1). Among the 49 participants (mean age 52.5 years) who reported their VCP variant, 17 (35%) reported the p.Arg155His, c.464G>A, variant, making this the most prevalent variant in this cohort (Table 2, S1). Not surprisingly, all the phenotypes were represented in this p.Arg155His cohort (myopathy, PDB, dementia, ALS, peripheral neuropathy, Parkinson's disease, and cataracts); Parkinson's disease was reported by only one participant in the R155H variant group in 5.6% (2%), ALS was only reported by two (4.1%) participants with p.Arg155His variant and was not reported in the other variant groups. The earliest reported age of onset was by a 27-yearold participant with myopathy and peripheral neuropathy with the p.Arg155His, c.464G>A variant (Table S1). The second most prevalent variant group with 8 participants was the p.Arg155Cys, c.463C>T group. Among all the variant groups, myopathy was identified in 36 participants [73.5%, 43.1 ± 8.8 years], making it the most common phenotype. The only possible notable genotype-phenotype correlations identified was the absence of PDB in the p.Arg159Cys, c.475C > T variant group.

Table 2. VCP gene variants in current cohort

Variant group	N=49 (%)
p.Arg155His, c.464G>A	18 (36.2%)
p.Arg155Cys, c.463C>T	6 (17.0%)
p.Arg159His, c.476G>A	5 (6.4%)
p.Arg93Cys, c.277C>T	3 (8.5%)
p.Arg159Cys, c.475C>T	4 (8.5%) b
p.Arg191Gln, c.572G>A	3 (6.4%)
p.Leu198, c.Trp 593T>G	2 (4.3%)
p.Gly97Glu, c.290G>A	1 (2.1%)
p.Ile369Thr, c.1106T>C	1 (2.1%)
p.Arg95Gly, c.283C>G	1 (2.1%)
p.Asn387Thr, c.1160A>C	1 (2.1%)
p.Gly128Ala, c.383G>C	1 (2.1%)
p.Gly782Ala, c.2345G>C	1 (2.1%)

Supplemental Table 1: Genotype—phenotype comparison data of clinical features

symptomatic patients in different variant groups. (Please see appendix)

Abbreviations: N= sample number, NA = not applicable; No participants reported to have the corresponding symptoms in the phenotype categories.

Progression of Functional Abilities

235

236

237

238

239

240

241

242

243

244

245

246

247

Upper and Lower Extremity Function

We assessed the mobility of the sixty-seven participants who completed all the questions in the

Neuro-QoL upper and lower extremity function surveys by analyzing the responses separately.

Examples of PROM questions pertaining to upper extremity function include the ability to turn a

key in a lock, brush teeth, write with a pen or pencil, open and close a zipper, etc. Affected

participants showed an overall decline of 0.58% in upper extremity function with every 1-year increase of age (slope=-0.38, R^2 =0.23) (Figure 3a). Participants also displayed an overall decline of -1.57% in upper extremity function for every 1 year of disease progression (slope=-0.63, R^2 =0.32) (Figure 3b). Similar trends were seen in males and females with age (p=0.45) and disease duration (p=0.57).

Figure 3. Upper Extremity Function Progression. A scatter plot was created to illustrate the correlations between (a) age and (b) disease duration relative to the total reported raw score for upper extremity function. The solid lines indicate progression within a singular participant over time for data with multiple submissions whereas the dashed lines indicate overall progression in males (blue) and females (pink) using the latest submission. Both male (blue squares) and female participants (pink circles) showed a rapid decline in their overall mobility with increasing age and also disease duration.

Both sexes exhibited similar trends in lower extremity function with increasing age with an overall decline of 1.19%, (Figure 4a). Participants reported an overall decline in lower extremity function as their disease progressed (slope=-0.64, $R^2=0.27$) (Figure 4b). Females demonstrated a more rapid decline (slope=-0.66, $R^2=0.29$) than males (slope=-0.59, $R^2=0.25$). Participants also

rated their upper extremity function by answering PROM questions such as their ability to run errands, get in and out of a car, step up and down curbs, and walk for at least 15 minutes.

Figure 4. Lower Extremity Function Progression. A scatter plot was created to illustrate the correlations between (a) age and (b) disease duration relative to the total reported raw score for lower extremity function. The solid lines indicate progression within a singular participant over time for data with multiple submissions whereas the dashed lines indicate overall progression in males (blue) and females (pink) using the latest submission. Both male (blue squares) and female participants (pink circles) showed a rapid decline in their overall mobility with increasing age and disease duration.

Cognitive Function

Next, we assessed the cognitive function of the seventy participants who completed the Neuro-QoL cognitive function survey. PROM questions to assess cognitive function include ability to perform specific tasks such as reading and following complex instructions, concentrating, and paying attention. Similar to the technique used in the calculation of functional ability, we calculated the total raw scores and then created a scatter plot to show the correlation with age in years (Figure 5). Both males (N=33) and females (N=37) displayed an overall gradual decline in cognitive function, however females showed a slightly more rapid decline (slope=-0.18, R²=0.06) compared to males (slope=-0.06, R²=0.01) (Figure 5a). Overall, there is no correlation

between cognitive function and disease duration for every year of age, regardless of sex $(R^2=0.01)$ (Figure 5b).

Figure 5. Cognitive Function Progression.

A scatter plot was created to illustrate the correlations between (a) age and (b) disease duration relative to the total reported raw score for cognitive function. The solid lines indicate progression within a singular participant over time for data with multiple submissions whereas the dashed lines indicate overall progression in males (blue) and females (pink) using the latest submitted value. Both male (blue squares) and female participants (pink circles) showed a decline in their overall cognitive abilities with increasing age whereas little to no decline with increasing disease duration.

Pain Level

Based on the overall pain scale, 13.0% of participants reported no pain, 38.2% reported mild pain (pain score 1-3), 35.3% reported moderate pain (pain score 4-6), and 13.2% reported severe pain (pain score 7 or higher). Furthermore, 80.3% of symptomatic participants reported pain sometimes, often, or always interferes with their enjoyment of life (Figure S2). Using the latest participant data entries, we created a bar graph comparing the frequency of reported pain levels between male (N=34) and female (N=38) participants (Figure 6). There was a wide distribution in pain levels among participants, with 2 being the most frequent score for females (22.9%) and

3 being the most frequent score for males (24.2%), according to the latest submission. Interestingly, females showed a gradual decrease in pain (slope=-0.03, R²=0.03), whereas males showed an increase in pain with increasing age (slope=0.08, R²=0.13) (Figure 7a). Most male and female participants with multiple entries reported no change in pain, while some reported an increase in pain.

Figure 6. Comparison of Pain Levels in Males and Females. The bar graph shows the distribution of pain scores amongst males (blue) and females (pink). Pain levels of participants were recorded over the course of up to three years with the latest score being used for analysis. the pain scores ranged from 0-10, a value of 0 indicating no pain while a value of 10 indicating the worst pain imaginable.

Figure 7. Pain Level Progression. A scatter plot was generated to illustrate the correlations between age (a) and disease duration (b) relative to the total reported raw score for pain. The solid lines indicate progression within a singular participant over time for data with multiple submissions whereas the dashed lines indicate overall progression in males (blue) and females (pink) using the latest submission. Male participants (blue squares) showed an incline in their overall pain levels with increasing age and disease duration whereas female participants (pink circles) showed a decline in pain levels with increasing age but an increase in pain levels as the disease progressed.

Quality of Life

Quality of Life in Symptomatic Participants

Seventy-five participants completed the five QOL survey questions in the VCP CoRDS Registry (9 pre-symptomatic, 66 symptomatic) (Figure S2). Among symptomatic participants, 88% (57/66) of symptomatic participants reported that their health often or always limits doing vigorous activities, 76% (51/66) reported that they often or always felt tired, 55% (36/66) reported fair or poor general health, 45% (29/66) reported that pain always or often interfered with their enjoyment of life, and 29% (19/66) reported being always or often depressed. The

responses of pre-symptomatic patients are included in the graph for reference, but due to the low numbers, a comparison was not calculated.

Quality of Life, Disease Progression, and Age Correlations:

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

Moderate positive correlations were found between vigorous activities and upper (0.57) and lower (0.63) extremity function, suggesting that musculoskeletal health and functional ability across different body areas for patients with VCP disease has a negative impact on the intensity of physical exercise. Furthermore, the moderate positive correlation between pain interference and fatigue (0.63) implies that as pain interference increases, there is a negative impact on the enjoyment of life for individuals experiencing these symptoms. Depression and fatigue (0.46), and pain interference and depression (0.41) also had positive correlation. This suggests that those who often felt that pain interfered with their enjoyment of life also reported feeling depressed and those who reported often having feelings of depression also reported greater feelings of tiredness. This connected relationship emphasizes the concept that perceptions of pain interference, feelings of depression, and tiredness are closely intertwined, highlighting the complexity of these emotional and physical states VCP patients experience. Additionally, several moderate positive correlations were found between overall general health and other factors: lower extremity function (0.63), upper extremity function (0.46), fatigue (0.46), and vigorous activities (0.46). Moderate negative correlations were found between pain level and fatigue (-0.57), pain level and pain interference (-0.56), lower extremity function and age (-0.49), and vigorous activities and age (-0.41) while all other correlations were weak. This analysis provided a sophisticated understanding of the complex relationships among the factors under

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

investigation. These findings emphasize the significance of considering multiple perspectives of VCP patients to improve affected individuals' overall well-being and quality of life. When comparing age, disease progression and QOL factors, a strong correlation was discovered between lower extremity function and upper extremity function (0.85). Additionally, moderate correlations were found between lower extremity function and vigorous activities (0.63). These findings are consistent with the known progression of muscle disease in both the upper and lower skeletal muscles. When analyzing patients' determination of their overall general health, lower extremity function had the strongest correlation (0.63), with upper extremity function, vigorous activities and fatigue also revealing a moderate correlation to overall general health (0.46 respectively). Loss of muscle function has a direct effect on a person's ability to complete daily activities and participate in vigorous activities, so these findings are not surprising. Our data revealed moderate correlations between age and lower extremity function as well as vigorous activities, while pain, general health, cognition function, and fatigue showed weak correlations with age. Heat Map depicting Quality of Life correlations between key health factors. We studied correlations between pain level, cognitive function, lower extremity, upper extremity, general health, vigorous activities, pain interference, fatigue, depression factors that were evaluated in the questionnaire. The larger and darker the circle around the correlation value, the stronger the correlation between the two variables (Figure 8).

A patient's pain level displayed a moderate negative correlation to both fatigue (-0.57) and how often pain interfered with their enjoyment of life (-0.56). In other words, as pain level increased, a patient was more likely to report being tired and having pain interfere with their enjoyment of life. Strong evidence of a relationship between pain and tiredness, and between pain interference and depression. Interestingly, fatigue and pain interference have the same correlation to pain level suggesting the significance of both pain and fatigue in the enjoyment of life. Moreover, a significant percentage of VCP patients reported experiencing fatigue at high levels, with 76% (51/66) reporting that they often or always felt tired and 88% (57/66) of symptomatic participants reporting that their health often or always limits doing vigorous activities. A correlation analysis between fatigue, pain inference, and depression further revealed a moderate correlation between all three of these factors [pain inference and fatigue (0.63), fatigue and depression (0.46), and pain inference and depression (0.41)].

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

Figure 8. Quality of Life. This is a representation of a heat map signifying the correlation between the first five variables, which were measured during the study. General Health, Vigorous Activities, Pain Interference, Tiredness, Depression were factors that were evaluated from our questionnaire. The scale on the right represents the direction and intensity of the correlation. The larger and darker the circle around the correlation value, the stronger the correlation between the two variables. **Overall Summary of Findings:** Among the 79 participants, myopathy was the most prevalent phenotype (84.0%), followed by PDB (43.4%), FTD (12.9%), ALS (4.8%), and Parkinson's disease (1.6%). Regarding the disease progression studies, participants revealed a significant decline of 0.6% in upper extremity function, 1.2% in lower extremity function, and 0.3% in cognitive function per year of age. Participants also revealed a 1.6% decline in upper and lower extremity function and a 0.1% decline in cognitive function per year of disease duration. This study highlights the high frequency of pain and the impact of fatigue on the quality-of-life aspects, such as depression and enjoyment of life in this patient population. Interestingly, the strongest correlation concerning patient reported general health was not age but lower extremity function. The c. 464G>A, p.R155H VCP variant was reported as the most prevalent variant group with the highest number of phenotypic characteristics. No obvious genotype-phenotype correlations for VCP disease phenotypes were noted.

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Discussion Studying the natural history of a disease is important because it provides critical information on how the disease affects a patient's daily life, understanding disease progression, which can thus be useful in creating preventative interventions, and permits studying the effects of therapeutic interventions. The inclusion of real-world evidence in the 21st Century Cures Act and the use of PROMs in the FDA guidance in drug development elevates the need to evaluate natural history from the patient's perspective early in the drug discovery process [17, 18]. *Influence of Genotype on Phenotype* Valosin-containing protein (VCP) variants can cause adult-onset proximal myopathy, which leads to upper and lower extremity weakness, axial myopathy, scapular winging, PDB and frontotemporal dementia (IBMPFD) [4, 19-21]. The most common phenotype was myopathy with the mean age of onset of 43.1 years as previously reported [22], followed by PDB with an average age of onset of 44.8 years. VCP has several functions: it is involved in cell division, repairing DNA damage, membrane fusion, and reassembling structures in cells post-division. It is also involved as an ATPase in autophagy and cell degradation, including ubiquitin-related cellular processes [5]. The VCP enzyme consists of the N domain and D1 and D2 domains, which are the ATPase modules. The D1 and D2 domains of VCP form a homohexamer in a head-to-tail ring structure, which allows the N domain to undergo conformational changes when ubiquitin-binding occurs. Missense variants in the VCP gene that cause IBMPFD can disrupt the double-psi barrel (R95G), four-stranded beta-barrel (R155C, R155H, R155P), or the flexible linker (R191Q). Most of the variants are in the N-terminal domain, which has the function of binding cofactors and ubiquitylated proteins [4]. We reported 13 unique variants in this

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

cohort. The R155 codon is a mutational hotspot reported in 46% of the VCP variants reported in our study; the most prevalent is R155H, followed by R155C, as reported previously [4, 21]. Based on our genotype-phenotype comparisons study, we did not observe any significant correlations. Disease Progression A notable decline in mobility was detected in participants with VCP disease, exhibiting a negative correlation with both advancing age and prolonged disease duration. The presence of comorbidities such as myopathy, PDB, ALS, and Parkinson's disease further exacerbates the decline in mobility seen in those with VCP disease. The variability in decline of mobility due to VCP myopathy aligns with the documented progression pattern in limb-girdle muscular dystrophy (LGMD), which could be characterized by a heterogeneous onset of muscle weakness affecting the pelvic and shoulder girdles, typically manifesting in adolescence or early adulthood. The progression of LGMD varies widely, with some patients experiencing rapid deterioration while others show a slower decline [23, 24]. Variability in progression rate is similarly observed in ALS, particularly among patients with SOD1 mutations. For instance, individuals harboring the SOD1 A4V mutation often experience a more aggressive disease trajectory, with a median survival of approximately 1.2 years, in contrast to the 6.8 years observed for other SOD1 mutations [25]. Studies emphasize the importance of early clinical markers, including changes in functional scores and respiratory function, to elucidate disease trajectories and inform therapeutic strategies. These insights highlight the necessity of an integrated approach to the clinical management of VCP disease, addressing both the primary disorder and its associated comorbidities to enhance patient outcomes and quality of life.

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

Overall, both male and female participants displayed slight cognitive impairments with age. This is consistent with previous studies of families with patients who displayed cognitive impairments at a mean age of 56 years [8]. Following a detailed investigation of the link between aging and cognitive performance, our findings demonstrated a steady deterioration in cognitive function with increasing age. Previous research confirms this by concluding a negative connection between age and cognitive performance across a variety of activities, including memory, processing speed, and executive functioning [26]. The research goes into neuroimaging studies, which highlight structural and functional changes in the aging brain, notably in memory and information processing areas [26]. According to another study, the aging brain experiences complex interactions and changes that affect many cognitive processes other than memory and information processing. Altogether, these investigations confirm a similar trend: an individual's cognitive capacity tends to deteriorate with age. In addition to identifying potential treatment and preventive methods to reduce age-related cognitive loss, it is critical to underline the importance of multidisciplinary research in understanding the complex nature of cognitive aging [27]. Pain Implications In analyzing the reported pain levels, males reported more pain with the progression of the disease (slope = 0.08 versus -0.03, p<0.01) with advancing age. In other studies, a multitude of factors, including biological, psychosocial, sex difference, have been proven to influence an individual's pain, and understanding these factors can serve as a vital foundation for individualized pain treatment plan [28]. Pain is a common and underappreciated manifestation of VCP disease and can result from comorbidities such as PDB, which typically affects the lumbar

spine, hips, pelvis and skull [25]. It is important to investigate the presence of PDB to reduce the

additional burden since it is readily treatable with bisphosphonates. Interestingly in this cohort, symptomatic VCP participants with PDB did not report a higher level of pain when compared to symptomatic VCP participants without PDB (average pain score of 3.2/10, 4.1/10, respectively). These results may suggest that patients may have undiagnosed PDB or that some patients with PDB may be receiving treatment to address their pain. We further analyzed similarities among patients who reported high levels of pain, and the presence of myopathy was the only common factor we discovered. Interestingly, a greater percentage of VCP participants without PDB reported a moderate to high level of pain (4 or higher) when compared to VCP participants with PDB (55% 26/45, 37% 6/16). These results suggest that PDB may not be the main source of pain and that other disease-specific causes of pain exist in VCP disease, such as muscle pain or neuropathy. Thus, these results indicate that the detection and treatment of an individual's pain needs to be part of a VCP patient's clinical care plan; future studies are needed to determine the causes of pain in VCP patients.

Sex Considerations

Other research studies indicate that males may have a more noticeable perception of decline in physical activity as they are unable to reach their activity goals, and this perception of change may explain the steeper reported decline in lower extremity function reported in males (slope=-0.52, R²=0.34) compared to the females (slope=-0.41, R²=0.22). One particular study found a difference in motivating factors for adult physical activities amongst the sexes [22]. Another study found that while males were motivated by mastery of physical activity, females were motivated by the psychosocial wellbeing component of exercise [26]. Additionally, previous studies have demonstrated that males were less likely to report depression than females, despite

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

more males completing suicide due to the gravity of their deteriorating mental health [27]. However, we cannot ignore the potential biological differences between males and females and the prevalence of depression. There is evidence that estrogen acting as a psycho-protective component in the body, and the conversion of testosterone to estrogen in males mediates a protective action throughout life. While estrogen levels fluctuate with the premenstrual cycle in females, testosterone has a more consistent level in males [27]. Cognitive function results from this cohort showed a slightly more rapid decline in females (slope=-0.1782, R²=0.06) compared to males (slope=-0.0622, R²=0.01), but a low incidence of dementia reported in this cohort may influence these findings. Comparing Quality of Life Parameter Correlations In a thorough investigation conducted by Yamada et al., cross-sectional studies of the data unveiled significant correlations between measures of pain and fatigue/tiredness [29]. Although the study's main focus was on the relationship between pain and tiredness symptoms over time in people with musculoskeletal disorders, it is crucial to interpret these results in the context of the larger body of research on the relationship between pain and fatigue. Strong evidence of a relationship between pain and tiredness was found in our dataset; this relationship graphically displayed in a heatmap. This numerical insight not only underscores the significance of our study's specific analysis but also contributes valuable quantitative evidence to the broader body of research affirming the intricate relationship between pain and fatigue. According to Linton et al.'s analysis, there is a clear relationship between pain and depression, which calls for a complex understanding of their interaction within the therapeutic framework [30]. Within our dataset there was a significant relationship between pain interference and

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

depression. These results highlight the necessity of further research efforts to thoroughly investigate this association, clarifying the importance for improving therapeutic approaches. Fatigue or exhaustion is a widespread issue in both community and medical settings, and there is a strong association with depression. The correlation between enhanced work performance and improved energy underscores the importance of addressing fatigue in the context of depression. In our study, an analysis of depression and tiredness/fatigue revealed a significant association meriting the need for further investigation [31]. Paterson et al.'s study of generalized physical activity and functional limitations demonstrated that regular physical activity is associated with a reduced risk of functional limitations, particularly in the older age group [32]. In a preclinical study of VCP disease, exercise training in mice with the Arg155His Vcp variant found that there was an improvement with uphill exercise [33]. Korb et al.'s recommendations of the standard of care for patients with VCP disease acknowledges that exercise has a positive effect on individuals with FTD [34]. A recent study on resistance respiratory exercise in subjects with VCP myopathy showed that the maximum inspiratory pressure increased significantly over the 32 week course of the resistance training compared to the baseline [35]. The effects of generalized exercise training however have not been studied and is a significant unmet need because of the absence of clear guidelines on exercise training in the VCP myopathy patient population. Patient Perspective and Management of Care Quality of life is imperative to navigating a patient's health. Treatment options are catered to maximizing a patient's quality of life, and therefore understanding patient perspectives is integral

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

to optimizing patient care [36]. In chronic diseases of neurological or musculoskeletal disabilities, it has been demonstrated that psychological impacts may lead to a decline in the QOL of a patient [37-38]. Additionally, chronic illnesses like VCP disease may increase the prevalence of depression. Routine management of chronic disease warrants depression screenings and management of pain as patients progress through life with their diagnosis [38]. To gain a better understanding of patient perspectives in VCP disease, we analyzed the responses to better understand how fatigue, pain, and depression directly impacted their daily life. A patient's pain level displayed a moderate negative correlation to both fatigue (-0.57) and how often pain interfered with their enjoyment of life (-0.56). In other words, as pain level increased, a patient was more likely to report being tired and having pain interfere with their enjoyment of life. Interestingly, fatigue and pain interference have the same correlation to pain level suggesting the significance of both pain and fatigue in the enjoyment of life. Moreover, a significant percentage of VCP patients reported experiencing fatigue at high levels, with 76% (51/66) reporting that they often or always felt tired and 88% (57/66) of symptomatic participants reporting that their health often or always limits doing vigorous activities. A correlation analysis between fatigue, pain inference, and depression further revealed a moderate correlation between all three of these factors [pain inference and fatigue (0.63), fatigue and depression (0.46), and pain inference and depression (0.41), suggesting that these symptoms may be interrelated and should be monitored throughout the life of a VCP patient. The inclusion of a mental health section in the VCP care guidelines further demonstrates the importance of including psychological health in a VCP patient's overall care plan [34].

Limitations and Future Directions

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

Understanding the mechanisms of complex traits through genotype-phenotype comparisons can be limiting because there can be multiple genetic and environmental factors that can contribute to the differences. Understanding interactions between modifier genes and variants on the gene-ofinterest, epigenetics, and environmental factors that lead to certain phenotypes are factors that should be taken into consideration [21]. The phenotypic diversity of VCP disease is not necessarily due to the specific types of VCP variants [8]. Patients with the same VCP variant who are in the same family can present with different phenotypes and clinical manifestations. Other environmental or genetic modifiers that have yet to be investigated [24]. Prior studies have shown a correlation of the apolipoprotein-E (APOE4) allele as a potential VCP modifier gene [39]. VCP patients with one or more APOE4 alleles had dementia as a phenotypic characteristic. Based on these studies, modifier genes and potential interactions with VCP such as APOE4, NF1, among others should be accounted for in future studies to better understand their effects on phenotype along with VCP variants [39]. Our group has also indicated that the R159C variant is associated with a lower incidence of PDB [16]. While the PROMs are very useful in understanding a patient's perspective of disease and monitoring their longitudinal progression, there are limitations to this data. Because PROMs are subjective, there are many parameters that can influence the subject's response. Depending on how patients have been feeling, even days leading up to the questionnaire, can influence their general perspective of how they answer the survey questions. Moreover, there can be variation in assessment on a day-to-day basis since the time period for this questionnaire is 7 days. In addition, every subject's idea of items such as "vigorous activities", "depression", "general

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

health", and "pain" are subjective and based on their perception. In addition, participants have subjective levels of pain tolerance at baseline. Moreover, the progression of the disease does not have the same initial baseline for the participants, as the disease duration is unique for each participant. Therefore, progression is relative to the patient's disease progression. For a more complete disease understanding and natural history, PROMS should be complemented with clinical examination, diagnostic imaging, and clinical diagnosis. Analyzing the patient-reported progression of VCP disease can provide great insight into its clinical manifestations; however, more longitudinal data is needed. While we were able to observe the overall trend in cognitive function, mobility, and pain in this study, only 17 participants reported unique results two or more times, most participants only reporting one data entry. This limited our ability to report on an individual's reported change over time. Retrieving additional data entries from existing participants will provide a better understanding of the disease progression. In addition, including more pre-symptomatic participants with a VCP disease variant will allow the monitoring of disease progression longitudinally. Another limitation is that participants did not submit answers to all survey questions due to the protocol management by the internal review board at Sanford Research. This protocol reviewed by the review board at Sanford Research allows subjects the option to omit questions which they do not feel comfortable answering. While this protocol may eliminate erroneous answers from patients and increase overall registry enrollment, not having all answers completed leads to challenges in conducting correlation analysis, including having to exclude some participants from calculations entirely.

Increasing the sample size of the cohort to include statistically significant data in VCP genotypephenotype comparisons can help to analyze the progression in participants with other
comorbidities such as ALS, PDB, and peripheral neuropathy. This could provide better insight as
to how other conditions impact the severity of QOL symptoms amongst participants with VCP
disease. Moreover, collecting data for a longer period of time will allow for increased data
consistency and the monitoring of the long-term progression of VCP phenotypic manifestations.

As more responses are collected over time in the VCP CoRDS Registry, further data analysis can
be conducted, allowing for a longer span of time to understand the correlation of how QOL
changes over time with disease progression.

Conclusion

Patient registries are valuable tools in improving clinical care and setting future research direction by including the patient voice, capturing natural history data, and elevating the QOL of patients. The VCP CoRDS Registry was found to be a valuable tool for monitoring the quality of life in patients with VCP disease. The results of this study could be a useful tool in monitoring the natural history progression of upper extremity function, lower extremity function, and cognitive function in the VCP patient population. This study indicates that patient-driven registries such as CoRDS can be used to monitor disease progression in rare diseases on a global scale.

Declarations

Ethics Approval and Consent to Participate

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

Written informed consent was obtained from all individuals. This study was approved by the University of California Irvine Institutional Review Board (IRB) (#2007-5832). **Consent for Publication** Written informed consent was obtained from all the subjects included in the study. In the case of deceased patients, they provided their consents prior to their demise. **Authors' Contributions** Virginia Kimonis, Allison Peck: Conceptualization, methodology, resources, supervision, validation, project administration, writing and funding acquisition. Eiman Abdoalsadig: Investigation, writing - original draft, visualization, and validation. Merwa Hamid: Investigation, writing - original draft, visualization, and validation. Leepakshi Johar: Investigation, writing - original draft, and visualization. All authors read and approved the final manuscript. **Competing Interests** The authors declare that they have no competing interests. **Funding** This work was supported by the Cure VCP Disease, Inc. and the Coordination of Rare Diseases at Sanford (CoRDS) Research Institute **Availability of Data and Materials** The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Acknowledgments

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

We thank the participants for their contribution to the study. Our gratitude extends to the Cure VCP Disease, Inc., Alyssa Mendel, and the Coordination of Rare Diseases at Sanford (CoRDS) Research Institute, Sioux Falls, S. Dakota for their support with the acquisition and management of registry data. We are grateful to Regina Im, Vu Luu, Mabel Tang, and Ryan Mahoney for their contribution to this work. References [1] Kimonis VE, Kovach MJ, Waggoner B, Leal S, Salam A, Rimer L, et al. Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone. Genet Med. 2000;2(4):232-41. [2] Tucker WS, Jr., Hubbard WH, Stryker TD, Morgan SW, Evans OB, Freemon FR, et al. A new familial disorder of combined lower motor neuron degeneration and skeletal disorganization. Trans Assoc Am Physicians. 1982; 95:126-34. [3] Kovach MJ, Waggoner B, Leal SM, Gelber D, Khardori R, Levenstien MA, et al. Clinical delineation and localization to chromosome 9p13.3-p12 of a unique dominant disorder in four families: hereditary inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Mol Genet Metab. 2001;74(4):458-75. [4] Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377-81. [5] Meyer H, Weihl CC. The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci. 2014;127(Pt 18):3877-83.

- [6] Pfeffer G, Lee G, Pontifex CS, Fanganiello RD, Peck A, Weihl CC, Kimonis V. Multisystem
- 694 Proteinopathy Due to VCP Mutations: A Review of Clinical Heterogeneity and Genetic
- 695 Diagnosis. Genes (Basel). 2022 May 27;13(6):963.
- 696 [7] Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S. AAA-ATPase p97/Cdc48p, a
- 697 cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell
- 698 Biol. 2002;22(2):626-34.
- 699 [8] Al-Obeidi E, Al-Tahan S, Surampalli A, Goyal N, Wang AK, Hermann A, et al. Genotype-
- 700 phenotype study in patients with valosin-containing protein mutations associated with
- 701 multisystem proteinopathy. Clin Genet. 2018;93(1):119-25.
- 702 [9] Weihl CC, Temiz P, Miller SE, Watts G, Smith C, Forman M, et al. TDP-43 accumulation in
- inclusion body myopathy muscle suggests a common pathogenic mechanism with
- frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008;79(10):1186-9.
- [10] Langston AL, Ralston SH. Management of Paget's disease of bone. Rheumatology
- 706 (Oxford). 2004;43(8):955-9.
- 707 [11] Hubbers CU, Clemen CS, Kesper K, Boddrich A, Hofmann A, Kamarainen O, et al.
- 708 Pathological consequences of VCP mutations on human striated muscle. Brain. 2007;130(Pt
- 709 2):381-93.
- 710 [12] Majounie E, Traynor BJ, Chio A, Restagno G, Mandrioli J, Benatar M, et al. Mutational
- analysis of the VCP gene in Parkinson's disease. Neurobiol Aging. 2012;33(1):209 e1-2.
- 712 [13] Nalbandian A, Donkervoort S, Dec E, Badadani M, Katheria V, Rana P, et al. The multiple
- faces of valosin-containing protein-associated diseases: inclusion body myopathy with Paget's
- disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. J Mol Neurosci.
- 715 2011;45(3):522-31.

- 716 [14] Guyant-Maréchal, L., Laquerrière, A., Duyckaerts, C., Dumanchin, C., Bou, J., Dugny, F.,
- 717 Le Ber, I., Frébourg, T., Hannequin, D., & Campion, D. (2006). Valosin-containing protein gene
- 718 mutations: clinical and neuropathologic features. Neurology, 67(4), 644–651.
- 719 https://doi.org/10.1212/01.wnl.0000225184.14578.d3
- 720 [15] Cella, D., Lai, J. S., Nowinski, C. J., Victorson, D., Peterman, A., Miller, D., Bethoux, F.,
- Heinemann, A., Rubin, S., Cavazos, J. E., Reder, A. T., Sufit, R., Simuni, T., Holmes, G. L.,
- Siderowf, A., Wojna, V., Bode, R., McKinney, N., Podrabsky, T., Wortman, K., ... Moy, C.
- 723 (2012). Neuro-QOL: brief measures of health-related quality of life for clinical research in
- 724 neurology, 78(23), 1860–1867. https://doi.org/10.1212/WNL.0b013e318258f744
- 725 [16] Chan, N., Le, C., Shieh, P., Mozaffar, T., Khare, M., Bronstein, J., & Kimonis, V. (2012).
- Valosin-containing protein mutation and Parkinson's disease. Parkinsonism & related disorders,
- 727 18(1), 107–109. https://doi.org/10.1016/j.parkreldis.2011.07.006
- 728 [17] Baumhauer J. F. (2017). Patient-Reported Outcomes Are They Living Up to Their
- Potential? The New England journal of medicine, 377(1), 6–9.
- 730 https://doi.org/10.1056/NEJMp1702978
- [18] Lasiter, L., Campbell, A., Basch, E., Hudgens, S., Stewart, M., Wu, J. J., Leahy, A. B., &
- Allen, J. (2020). Use of Patient-Reported Outcomes to Understand & Measure the Patient
- 733 Experience of Novel Cell and Gene Therapies. Therapeutic innovation & regulatory science,
- 734 54(6), 1566–1575. https://doi.org/10.1007/s43441-020-00184-6
- 735 [19] Kimonis VE, Mehta SG, Fulchiero EC, Thomasova D, Pasquali M, Boycott K, et al.
- 736 Clinical studies in familial VCP myopathy associated with Paget disease of bone and
- 737 frontotemporal dementia. Am J Med Genet A. 2008;146A(6):745-57.

- 738 [20] Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body
- myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul Disord.
- 740 2009;19(5):308-15.
- 741 [21] Mehta SG, Khare M, Ramani R, Watts GD, Simon M, Osann KE, et al. Genotype-
- 742 phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone
- and/or frontotemporal dementia. Clin Genet. 2013;83(5):422-31.
- 744 [22] Orgogozo, V., Morizot, B., & Martin, A. (2015). The differential view of genotype-
- phenotype relationships. Frontiers in genetics, 6, 179. https://doi.org/10.3389/fgene.2015.00179
- 746 [23] LoMauro, A., Gandossini, S., Russo, A., Diella, E., Pistininzi, C., Marchi, E., Pascuzzo, R.,
- Vantini, S., Aliverti, A., & D'Angelo, M. G. (2021). Over three decades of natural history of
- limb girdle muscular dystrophy type R1/2A and R2/2B: Mathematical modelling of a
- multifactorial study. Neuromuscular disorders: NMD, 31(6), 489–497.
- 750 https://doi.org/10.1016/j.nmd.2021.02.018
- 751 [24] Murphy, A. P., Morrow, J., Dahlqvist, J. R., Stojkovic, T., Willis, T. A., Sinclair, C. D. J.,
- Wastling, S., Yousry, T., Hanna, M. S., James, M. K., Mayhew, A., Eagle, M., Lee, L. E.,
- Hogrel, J. Y., Carlier, P. G., Thornton, J. S., Vissing, J., Hollingsworth, K. G., & Straub, V.
- 754 (2019). Natural history of limb girdle muscular dystrophy R9 over 6 years: searching for trial
- endpoints. Annals of clinical and translational neurology, 6(6), 1033–1045.
- 756 <u>https://doi.org/10.1002/acn3.774</u>
- 757 [25] Tang, L., Ma, Y., Liu, X., Chen, L., & Fan, D. (2019). Better survival in female SOD1-
- 758 mutant patients with ALS: A study of SOD1-related natural history. Translational
- 759 Neurodegeneration, 8(1). https://doi.org/10.1186/s40035-018-0142-8

- 760 [26] Salthouse T. A. (2011). Neuroanatomical substrates of age-related cognitive decline.
- 761 Psychological bulletin, 137(5), 753–784. https://doi.org/10.1037/a0023262
- 762 [27] Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A.,
- Dahle, C., Gerstorf, D., & Acker, J. D. (2005). Regional brain changes in aging healthy adults:
- general trends, individual differences and modifiers. Cerebral cortex (New York, N.Y.: 1991),
- 765 15(11), 1676–1689. https://doi.org/10.1093/cercor/bhi044
- 766 [28] Fillingim R. B. (2017). Individual differences in pain: understanding the mosaic that makes
- 767 pain personal. Pain, 158 Suppl 1(Suppl 1), S11–S18.
- 768 https://doi.org/10.1097/j.pain.0000000000000775
- 769 [29] Yamada, K., Adams, H., Ellis, T., Clark, R., Sully, C., Lariviere, C., & Sullivan, M. J.
- 770 (2022). The temporal relation between pain and fatigue in individuals receiving treatment for
- chronic musculoskeletal pain. BMC musculoskeletal disorders, 23(1), 219.
- 772 https://doi.org/10.1186/s12891-022-05162-7
- [30] Linton, S. J., & Bergbom, S. (2011). Understanding the link between depression and
- pain. Scandinavian journal of pain, 2(2), 47–54. https://doi.org/10.1016/j.sjpain.2011.01.005
- 775 [31] Demyttenaere, K., De Fruyt, J., & Stahl, S. M. (2005). The many faces of fatigue in major
- depressive disorder. The international journal of neuropsychopharmacology, 8(1), 93–105.
- 777 https://doi.org/10.1017/S1461145704004729
- 778 [32] Paterson, D. H., & Warburton, D. E. (2010). Physical activity and functional limitations in
- older adults: a systematic review related to Canada's Physical Activity Guidelines. The
- international journal of behavioral nutrition and physical activity, 7, 38.
- 781 https://doi.org/10.1186/1479-5868-7-38

- 782 [33] Nalbandian, A., Nguyen, C., Katheria, V., Llewellyn, K. J., Badadani, M., Caiozzo, V., &
- 783 Kimonis, V. E. (2013). Exercise training reverses skeletal muscle atrophy in an experimental
- model of VCP disease. PloS one, 8(10), e76187. https://doi.org/10.1371/journal.pone.0076187
- 785 [34] Korb, M., Peck, A., Alfano, L. N., Berger, K. I., James, M. K., Ghoshal, N., Healzer, E.,
- Henchcliffe, C., Khan, S., Mammen, P. P. A., Patel, S., Pfeffer, G., Ralston, S. H., Roy, B.,
- Seeley, W. W., Swenson, A., Mozaffar, T., Weihl, C., Kimonis, V., & VCP Standards of Care
- Working Group (2022). Development of a standard of care for patients with valosin-containing
- protein associated multisystem protein pathy. Orphanet Journal of Rare Diseases, 17(1), 23.
- 790 https://doi.org/10.1186/s13023-022-02172-5
- 791 [35] Halseth M, Mahoney R, Hsiou J, Jones HN, Kimonis V. Remote respiratory resistance
- 792 exercise training improves respiratory function in individuals with VCP multisystem
- 793 proteinopathy. Neuromuscul Disord. 2024 Jan; 34:68-74.
- 794 [36] Sixma, H. J., Kerssens, J. J., Campen, C. V., & Peters, L. (1998). Quality of care from the
- patients' perspective: from theoretical concept to a new measuring instrument. Health
- expectations: an international journal of public participation in health care and health policy,
- 797 1(2), 82–95. https://doi.org/10.1046/j.1369-6513.1998.00004.x
- 798 [37] Crombez, G., Veirman, E., Van Ryckeghem, D., Scott, W., & De Paepe, A. (2023). The
- 799 effect of psychological factors on pain outcomes: lessons learned for the next generation of
- 800 research. Pain reports, 8(6), e1112. https://doi.org/10.1097/PR9.000000000001112
- 801 [38] Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and Pain Comorbidity: A
- 802 Literature Review. Arch Intern Med. 2003;163(20):2433–2445.
- 803 doi:10.1001/archinte.163.20.2433

[39] Mehta, S. G., Watts, G. D., Adamson, J. L., Hutton, M., Umberger, G., Xiong, S., Ramdeen, S., Lovell, M. A., Kimonis, V. E., & Smith, C. D. (2007). APOE is a potential modifier gene in an autosomal dominant form of frontotemporal dementia (IBMPFD). Genetics in Medicine: official journal of the American College of Medical Genetics, 9(1), 9–13.

https://doi.org/10.1097/gim.0b013e31802d830d

808

													Age of o																				
		Age of onset				Age of onset Paget's Disease of Bone				Age of onset Dementia							Age of onset				Age of onset				Age of onset				Age of onset				
		Myopathy			Amyotrophic Lateral Sclerosis									Peripheral Neuropathy				Cardiomyopathy				Parkinson's Disease				Cataracts							
Mutation group	N (%)	N (%)	Mean	Range	p-value	N (%)	Mean (yrs)	Range	p-value	N (%)	Mean (yrs)	Range	p-	N (%)	Mean	Range	p-	N (%)	Mean (yrs)	Range	p-	N (%)	Mean	Range	p-	N (%)	Mean	Range	p-value	N (%)	Mean (yrs)	Range	p-value
p.Arg155His	18 (36.0%)	17 (45.9%)	40.6 ± 8.2	27-59	0.12	3 (25.0%)	41.3 ± 10.0	30-49	0.61	2 (40.0%)	43.5 ± 4.9	40-47	0.23	2 (100.0%)	52.5 ± 9.2	46-59	1.0	4 (80.0%)	44.3 ± 13.1	27-59	0.99	1 (25.0%)	36.0	36	NA	1 (100.0%)	46.00	46	NA	3 (42.9%)	45.3 ± 11.9	37-59	0.78
p.Arg155Cys	8 (16.0%)	4 (10.8%)	39.3 ± 10.7	30-54	0.52	1 (8.3%)	33.0	33	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	2 (50.0%)	49.0 ± 7.1	44-54	0.47	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Arg159His	5 (10.0%)	1 (2.7%)	51.0	51	NA	0 (0.0%)	NA	NA	NA	2 (40.0%)	63.5 ± 10.6	56-71	0.39	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Arg93Cys	4 (8.0%)	3 (8.1%)	52.3 ± 6.8	47-60	0.14	3 (25.0%)	52.7 ± 7.4	47-61	0.21	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	3 (42.9%)	49.7 ± 9.3	42-60	0.73
p.Arg159Cys	4 (8.0%)	1 (2.7%)	50.0	50	NA	0 (0.0%)	NA	NA	NA	1 (20.0%)	50.0	50	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Arg191Gln	3 (6.0%)	3 (8.1%)	42.7 ± 4.6	40-48	0.89	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	1 (20.0%)	NA	NA	NA	1 (25.0%)	40	40	NA	0 (0.0%)	NA	NA	NA	1 (14.3%)	NA	NA	NA
p.Leu198Trp	2 (4.0%)	2 (5.4%)	38.0	38	NA	1 (8.3%)	38.0	38	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Gly97Glu	1 (2.0%)	1 (2.7%)	47.0	47	NA	1 (8.3%)	47.0	47	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Ile369Thr	1 (2.0%)	1 (2.7%)	61.0	61	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Arg95Gly	1 (2.0%)	1 (2.7%)	40.0	40	NA	1 (8.3%)	40.0	40	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Asn387Thr	1 (2.0%)	1 (2.7%)	58.0	58	NA	1 (8.3%)	58.0	58	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Gly128Ala	1 (2.0%)	1 (2.7%)	40.0	40	NA	1 (8.3%)	40.0	40	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
p.Gly782Ala	1 (2.0%)	1 (2.7%)	42.0	42	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA	0 (0.0%)	NA	NA	NA
	50 (100%)	37 (74.0%)	43.3 ± 8.8	27-60	0.87	12 (24.0%)	44.8 ± 9.3	30-61	0.99	5 (10.0%)	52.8 ± 11.7	40-71	1.0	2 (4.0%)	52.5 ± 9.2	46-59	1.0	5 (10.0%)	44.3 ± 13.1	27-59	0.99	4 (8.0%)	43.5 ± 7.7	36-54	1.0	1 (2.0%)	46,00	46	NA	7 (14.0%)	47.5 ± 9.8	37-60	1.0

Abbreviations: N number, ALS amyotrophic lateral sclerosis

NA indicates not applicable. No participants reported to have the corresponding symptoms in the phenotype categories.