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ABSTRACT 
  
Introduction 
Propofol is a widely used sedative-hypnotic agent for critically-ill patients requiring invasive mechanical 
ventilation (IMV). Despite its clinical benefits, propofol is associated with increased risks of 
hypertriglyceridemia. Early identification of patients at risk for propofol-associated hypertriglyceridemia is 
crucial for optimizing sedation strategies and preventing adverse outcomes. Machine learning (ML) models offer 
a promising approach to predict individualized patient risks of propofol-associated hypertriglyceridemia. 

Methods and analysis 
We propose the development of a ML model aimed at predicting the risk of propofol-associated 
hypertriglyceridemia in ICU patients receiving IMV. The study will utilize retrospective data from four Mayo 
Clinic sites. Nested cross-validation (CV) will be employed, with a 10-fold inner CV loop for model tuning and 
selection as well as an outer loop using leave-one-site-out CV for external validation. Feature selection will be 
conducted using Boruta and LASSO-penalized logistic regression. Data preprocessing steps include missing data 
imputation, feature scaling, and dimensionality reduction techniques. Six ML algorithms will be tuned and 
evaluated. Bayesian optimization will be used for hyperparameter selection. Global model explainability will be 
assessed using permutation importance, and local model explainability will be assessed using SHAP. 

Ethics and dissemination 
The proposed ML model aims to provide a reliable and interpretable tool for clinicians to predict the risk of 
propofol-associated hypertriglyceridemia in ICU patients. The final model will be deployed in a web-based 
clinical risk calculator. The model development process and performance measures obtained during nested cross-
validation will be described in a study publication to be disseminated in a peer-reviewed journal. The proposed 
study has received ethics approval from the Mayo Clinic Institutional Review Board (IRB #23-007416). 
 
KEYWORDS 
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Strengths and limitations of this study 

- Robust external validation using a nested cross-validation (CV) framework will help assess the 
generalizability of models produced from the modeling pipeline across different hospital settings. 

- A diverse set of machine learning (ML) algorithms and advanced hyperparameter tuning techniques will 
be employed to identify the most optimal model configuration. 

- Integration of feature explainability will enhance the clinical applicability of the ML models by providing 
transparency in predictions, which can improve clinician trust and encourage adoption. 

- Reliance on retrospective data may introduce biases due to inconsistent or erroneous data collection, and 
the computational intensity of the validation approach may limit replication and future model expansion 
in resource-constrained settings. 
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INTRODUCTION 

Propofol is a sedative-hypnotic agent commonly used for sedation in critically ill adults requiring invasive 
mechanical ventilation (IMV) [1]. It is recommended as one of the first-line regimens for this indication by the 
2018 Pain, Agitation/sedation, Delirium, Immobility, and Sleep (PADIS) guidelines [2] due to its rapid onset and 
short duration of action. As a highly lipophilic drug, propofol is formulated in a 10% fat emulsion, typically using 
soybean oil [1]. However, this formulation has the disadvantage of predisposing patients to hypertriglyceridemia 
[1,3]. Up to 10% of patients who develop propofol-associated hypertriglyceridemia may progress to pancreatitis 
[4], which substantially increases these patients’ risks of morbidity and mortality in the ICU [5]. 

Thus, it is crucial to assess potential risk factors associated with the development of propofol-associated 
hypertriglyceridemia when selecting sedative regimens. Several retrospective cohort studies have identified 
important predictors of hypertriglyceridemia following propofol sedation, including advanced age [4], propofol 
dose and duration, body mass index (BMI), illness severity, and concomitant medications [6,7]. However, the 
question of how this knowledge can be applied systematically for guiding clinical practice remains unanswered.  

Machine-learning (ML), which is a modeling paradigm that can identify complex and non-linear patterns in large 
datasets [8,9], has proven effective for providing individualized patient risk stratification in medical diagnoses 
and prognoses [10]. ML models could potentially help identify recently intubated ICU patients who are at higher 
risks for developing propofol-associated hypertriglyceridemia, allowing for these patients to be switched to 
alternative sedation regimens. Thus, the objective of the proposed ML development study is to create a ML-
powered clinical calculator to aid in selecting sedating regimens based on personalized patient risk predictions of 
developing propofol-associated hypertriglyceridemia in ICU settings. 

METHODS 

The proposed study will be conducted and reported in accordance with the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis or Diagnosis+AI (TRIPOD+AI) Checklist for Prediction 
Model Development and Evaluation [11]. 

Data sources 

The proposed study involves a secondary analysis of data from a multi-centered retrospective cohort investigation 
conducted at Mayo Clinic sites in the United States. The original retrospective study included consecutive adults 
(≥18 years of age) admitted to one of 11 ICUs across four Mayo Clinic sites: 1) Mayo Clinic Rochester, 2) Mayo 
Clinic Phoenix, 3) Mayo Clinic Jacksonville, and 4) Mayo Clinic Health System (MCHS) community sites in 
Mankato, Minnesota and Eau Claire, Wisconsin. Patient inclusion criteria for the proposed model development 
study is the same as the eligibility criteria in the original retrospective study, which included: 1) admission to one 
of the study ICUs between May 5th 2018, and June 30th 2023, 2) required IMV for greater than 24 hours, and 3) 
received continuous propofol infusion for >24 hours. Exclusion criteria included: 1) development of 
hypertriglyceridemia (defined as serum triglyceride levels >400 mg/dL) [5] prior to propofol infusion, and 2) lack 
of prior authorization for medical records to be assessed for research purposes. The index ICU admission for 
eligible patients were identified through institutional data warehouses (Mayo Clinic ICU DataMart and Unified 
Data Platform). 

Outcomes of interest 

The goal of model development is to predict the probability of hypertriglyceridemia within 10 days following the 
start of propofol infusion. Hypertriglyceridemia is defined as serum triglyceride levels exceeding 400 mg/dL [5]. 
The predicted probability estimates will be transformed into a binary classification to categorize patients into high 
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risk and low risk groups for developing hypertriglyceridemia based on a decision threshold. The anticipated usage 
setting for the model is during the ICU admission process or shortly before/after intubation and sedation for IMV. 

Nested cross-validation 

A nested cross-validation (CV) methodology [12] will be used to evaluate the performance and consistency of the 
overall ML modeling process. Nested CV involves two layers of CV (Figure 1): 

1. Inner CV loop: The inner CV loop is used to tune each ML algorithm and to select the best-performing 
model. This is similar to regular, non-nested “flat” CV. 

2. Outer CV loop: The dataset is divided into k outer folds. In each iteration of the outer loop, one fold is 
held out as the test set while the remaining k-1 folds are used for model tuning and selection using the 
inner CV loop. The main function of the outer loop is to estimate the performance of the best-performing 
model selected by the inner loop [13]. 

For our proposed study, we will use stratified 10-fold CV as our inner CV loop for hyperparameter tuning and 
model selection. For the outer CV loop, we will use leave-one-site-out CV (LOSO-CV). In our study, LOSO-CV 
involves tuning, selecting, and training models on data from three of the four included Mayo Clinic sites and 
externally validating the best performing model on data from the remaining site. This is repeated four times so 
that each Mayo Clinic site serves as the external validation set at least once. In essence, we are externally 
validating our modeling process four times to better assess how our models will perform on new, unseen data 
[14]. Following the nested CV process, we will run the inner CV loop on the entire dataset to generate the final 
production model for deployment into a clinical calculator. 

Feature selection 

Candidate features will be first filtered based on availability (≤10% of missing data) and expert domain (see 
Table 1 for the list of candidate features). For each training set in the outer CV loop, the dimension of the feature 
set will be further reduced using random-forest-based Boruta [15] and Least Absolute Shrinkage and Selection 
Operator (LASSO) penalized logistic regression [16]. During feature selection, the regularization hyperparameter 
α of the LASSO penalized logistic regression model will be determined via a grid-search of 1000 α values along 
the regularization path to minimize the LASSO objective function across 10-fold CV. A union of features selected 
by the two methods will be chosen as the final feature set used for predictive modeling. The goal of the feature 
selection process is to follow the “one-in-ten” rule—which states that there should be 10 patients with the target 
outcome in the dataset to support every one feature included to ensure stable ML model predictions [17,18]—as 
closely as possible. 

Data preprocessing 

Within each iteration of the outer CV loop, the training set will be split into 10 folds of different training and 
testing subsets for the inner CV loop. A data preprocessing pipeline will be constructed to identify and impute 
missing data, correct for class imbalance, and improve compatibility with ML algorithms before the data is 
entered into the ML models (Figure 2). 

Categorical data encoding. As all of the candidate categorical features are non-ordinal, they will be transformed 
via one-hot encoding into multiple binary features [19]. 

Missing data imputation. Because we expect the amount of missing data in the dataset to be low (≤10%), we will 
assume missing data to be missing at random and perform missing data imputation. Imputation will be conducted 
using Multivariate Imputation by Chained Equations (MICE) [20]. As previous research had suggested that the 
number of MICE iterations should be determined based on the highest percentage of data missing (e.g., if 30% of 
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data needs to be imputed for one feature, then MICE will be run for 30 iterations) [21,22], we will run MICE for 
10 iterations to account for the maximum missing data percentage of 10%. The training and testing subsets will be 
imputed separately to avoid data leakage [23]. When assessing and tuning ML algorithms with native missing 
data handling methods, we will treat the use of MICE as a hyperparameter to trial both MICE and the algorithms’ 
native missing data handling approaches. 

Data imbalance and resampling. Given that we aim to develop a model that can perform probability predictions, 
we will not resample the dataset even if the dataset is imbalanced. However, we will tune ML algorithms’ weight 
scaling factors as a hyperparameter during model tuning to help reduce bias towards the majority class. 

Feature scaling. Before the dataset is entered into dimensionality reduction steps and ML algorithms, the 
normality of each continuous feature within the dataset will be assessed using the Shapiro–Wilk test [24] and by 
visual inspection of the features’ histograms [25]. If the distribution of all continuous features are determined to 
be close to normal, the continuous features will be Z-score normalized to center the feature data around the mean 
and scale the data according to its standard deviation [26]. If any of the continuous features were not close to 
normal, the continuous features will be transformed using robust normalization, which centers the data around the 
median and scales the data around its interquartile range [26]. Compared to Z-score normalization, robust 
normalization is more robust towards the presence of outlier values in the dataset [27]. 

Dimensionality reduction. Potential multicollinearity in the final feature set will be assessed using variance 
inflation factors (VIFs) [28]. If the VIF for any feature exceeds 5, we will trial the use of principal component 
analysis (PCA) as a dimensionality and multicollinearity reduction approach in our data preprocessing pipeline. 
The lowest number of principal components needed to explain at least 95% of the variance will be kept [29]. 

Hyperparameter tuning 

Within each iteration of the outer CV loop, we will tune and evaluate: 

1. Two classical ML algorithms: 1) logistic regression (with LASSO, ridge, or elastic net penalization) and 
2) support vector machines (SVMs, with linear, polynomial, radial basis function, or sigmoid kernels). 

2. Three ensemble ML algorithms: 1) random decision forest, 2) Light Gradient-Boosting Machine [30] 
(LightGBM, with either regular Gradient Boosting Decision Trees [GBDT] algorithm [31] or Dropouts 
meet Multiple Additive Regression Trees [DART] algorithm [32]), and 3) eXtreme Gradient Boosting 
(XGBoost, with either regular gradient boosting decision trees [GBDT] algorithm [31] or Dropouts meet 
Multiple Additive Regression Trees [DART] algorithm [32]) [33]. 

3. A multilayer perceptron (MLP) neural network with 2, 3, or 4 hidden layers. Each hidden layer will use a 
rectified linear unit (ReLU) activation function with Kaiming kernel initialization [34]. Each ReLU layer 
will be followed by a dropout layer for regularization [35] and a batch normalization layer to improve 
training stability and speed [36]. All hidden layers will use the same number of neurons determined via 
hyperparameter tuning. The output layer will use a sigmoid function to produce the predicted probability. 
An AdamW optimizer will be used [37]. An example of the proposed network architecture with 2 hidden 
layers is shown in Figure 3. 

Each algorithm will be tuned to minimize cross-entropy loss across stratified 10-fold CV. The full list of 
hyperparameters that will be tuned for each model is tabulated in Supplementary Table S1 to S17. The optimal 
hyperparameters will be selected using Bayesian optimization [38]. 

Bayesian optimization starts with several initial rounds of random hyperparameter searches to gather data points 
for building a probabilistic model that predicts the performance of different hyperparameter combinations. An 
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acquisition function then uses this model to identify the most promising hyperparameter combinations for the next 
round of evaluations. The results are used to update the probabilistic model, and the process is repeated until a 
pre-established performance budget is exhausted [39]. In essence, Bayesian optimization can be thought of as a 
more intelligent and “guided” version of random hyperparameter searching, and it is empirically considered to 
outperform traditional grid-search and random search approaches [40]. Because random search can reliably 
identify hyperparameter combinations from the top 5% of the most performant combinations with 60 iterations 
[38], we aim to perform Bayesian optimization at or beyond this performance budget. With computational 
limitations, we estimate that Bayesian optimization will be performed for at least 200 iterations per model. 

Calibration 

As the objective of our hyperparameter tuning process is to minimize cross-entropy loss, we can reasonably 
assume that our models will be well-calibrated. Nevertheless, we will trial Platt/sigmoidal scaling [41,42], 
isotonic regression [41], or no further calibration to assess if our calibration performance can be further improved. 
The calibration approach with the lowest average cross-entropy loss on stratified 10-fold cross-validation will be 
selected. 

Threshold selection 

Following calibration, each model will undergo threshold tuning to maximize their binary classification 
performance. Youden’s Index [43] will be calculated for every classification threshold between 0.01 and 0.99 at 
an interval of 0.01, and the threshold with the highest average Youden’s Index across stratified 10-fold cross-
validation will be selected as the most optimal threshold. 

Model selection and evaluation 

We will follow a previously published framework proposed for the evaluation of clinical prediction models [44] 
to perform model selection and external validation. The classification performance of each tuned and calibrated 
model will be assessed using the area under the curve of the receiver operating characteristic curve (AUC-ROC), 
sensitivity, specificity, and Matthew’s Correlation Coefficient (MCC). MCC ranges from -1 to 1 (with higher 
values indicating better classification performance) and serves as a good representation of all four categories 
within the confusion matrix. It is generally considered to be a more informative and robust measure of 
classification performance compared to raw accuracy or F1 scores [45]. Calibration performance will be assessed 
using Brier score, calibration curve slope and calibration curve intercept. 

During model selection within the training set of each outer CV loop, all metrics will be produced and averaged 
across 10-fold cross-validation, and 95% confidence intervals (CIs) will be used to assess performance variance. 
The model configuration with the best classification and calibration performance will be selected as the most 
optimal configuration. 

For external validation within each iteration of the outer CV loop, the same set of classification and calibration 
metrics will be generated using the most optimal model configuration and data from the held-out site not involved 
in model tuning and selection. The external validation metrics will be averaged across all 4 iterations of the outer 
CV loop to assess the generalization performance of our modeling process, and 95% CI will be used to assess the 
variance of the generalization performance. 

Model explainability and fairness 

To understand how the final production model makes its predictions and to assess model bias arising from over-
reliance on patient demographics, we will use the permutation importance method to assess which features have 
the greatest impact on the performance of our final production model [46]. Permutation importance is a global 
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explainability method that involves repeatedly shuffling individual predictors in the training dataset, which 
effectively renders the predictor useless to the model. It then observes how this operation affects model 
performance, thereby identifying the most influential features. To understand how the production model makes 
individual predictions, we will use permutation-based SHapley Additive exPlanations (SHAP) [47], which is a 
local explainability method that produces an estimate of the direction and magnitude of each features’ effect on 
individual predictions. A bee swarm summary plot will be used to illustrate SHAP feature attributions for each 
patient in our dataset. 

Model deployment 

The final production model will be integrated into a web-based clinical risk calculator based on shiny. SHAP 
waterfall plots will be provided for each individual prediction generated through the calculator to allow users to 
understand how the model is generating its predictions and to assess whether the predictions make clinical and 
biological sense. 

Implementation of permutation SHAP in the clinical risk calculator requires access to the full training dataset as 
the user is using the calculator in order to allow SHAP to generate perturbations around a prediction to understand 
the local behaviors of the model. Involvement of training data in a web-based context represents a data privacy 
concern. To facilitate SHAP implementation, we will generate a synthetic dataset that mimics the distribution and 
characteristics of our training dataset for SHAP perturbations using a Differentially Private Conditional Tabular 
Generative Adversarial Network (DP-CTGAN) [48]. DP-CTGAN uses random noise during network training and 
data generation to offer a privacy guarantee. Hyperparameters of the DP-CTGAN will be tuned manually to 
minimize generator and discriminator loss. The privacy budget ε will be set to between 0 and 10. We aim to 
generate a synthetic dataset that yields similar SHAP value predictions and SHAP base values for use with the 
clinical risk calculator. 

Statistical softwares 

The modeling and evaluation processes will be completed using Python 3.11. Boruta-based feature selection will 
be conducted using the BorutaPy package, and LASSO-based feature selection will be conducted using scikit-
learn. ML models will be fitted, tuned, calibrated, and evaluated using scikit-learn, lightgbm, xgboost, tensorflow, 
keras, and scikit-optimize. Permutation importance will be assessed using eli5, and permutation SHAP will be 
implemented using shap. 

Patient and public involvement 

Due to the technical nature of the proposed study, patients and other members of the public were not involved in 
the study’s design or conduct. 

DISCUSSIONS 

While traditional statistical modeling is useful for identifying predictors of hypertriglyceridemia in mechanically 
ventilated patients receiving continuous propofol infusion, it is difficult to systematically translate these findings 
to actual clinical practice. By leveraging ML-based modeling approaches and by incorporating ML models into an 
accessible clinical risk calculator, we aim to develop a tool that could guide clinicians in making informed 
decisions surrounding the choice of sedation regimens and potentially reduce the incidence of propofol-related 
hypertriglyceridemia and associated adverse events such as acute pancreatitis. 

A notable use case for our proposed clinical risk calculator is to identify patients who may benefit from increased 
triglyceride level monitoring. In the absence of widely-accepted guidelines and protocols, routine measurements 
of triglycerides among patients receiving IMV with propofol sedation is often ad hoc and remains care-team 
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dependent. Previous studies have shown that only 15-24% of intubated patients with propofol sedation receive 
routine measurements of triglyceride levels, with about a fifth of these patients having elevated triglyceride levels 
>400 mg/dL [5]. It is possible that a ML model can identify specific patient characteristics at the time of ICU 
admission or intubation that can predict patient risks of developing hypertriglyceridemia, so that triglyceride 
levels in these patients can be monitored and used to tailor the patients’ sedation regimen accordingly. 

The proposed ML modeling study has several notable strengths. First, we propose the use of multiple well-
established feature selection methods to reduce the dimensionality of our training dataset. This helps us to keep 
only the most important predictors of hypertriglyceridemia in our models, and to avoid the “curse of 
dimensionality”, including overfitting the models on noise in the data. Secondly, we aim to use robust external 
validation methods involving a nested CV framework with LOSO-CV. This approach allows the generalizability 
of our modeling process to be rigorously and repeatedly evaluated across different hospital settings, which 
improves the external validity of our performance metrics. Third, we aim to trial a diverse set of popular ML 
algorithms, including classical, ensemble, and neural network models, along with state-of-the-art hyperparameter 
tuning techniques using Bayesian optimization. This exhaustive approach will allow us to identify the most 
optimal ML model configuration for our dataset and target outcome. Lastly, we considered the clinical 
applicability of our ML models by proposing to integrate both global and local feature explainability to assess 
how our final model makes its predictions, as well as by integrating our final model into a web-based clinical risk 
calculator. 

Despite these strengths, we foresee several potential challenges associated with the proposed study. First, the 
study relies on retrospective data, which can introduce biases relating to inconsistent or erroneous data collection. 
Secondly, while the proposed nested CV approach is thorough, it will be computationally intensive and time-
consuming. This limits the feasibility of future replications of the proposed study methodology, especially in 
resource-constrained settings or when using larger datasets. Lastly, while the generalizability of our dataset is 
improved by including information from multiple Mayo Clinic sites, these sites may share similar treatment or 
data recording protocols that reduces the external validity of our developed models. 

Overall, our protocol outlines a comprehensive approach to developing and validating a clinical tool designed to 
provide a personalized risk estimate of developing hypertriglyceridemia when sedated with continuous propofol 
infusion while on IMV. In the absence of routine triglyceride monitoring, it remains important to prevent the 
development of hypertriglyceridemia in an effort to avoid a sequela of adverse events. 
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FIGURE LEGENDS 

Figure 1: Illustration of the proposed nested cross-validation approach. The outer loop consists of a leave-one-
site-out cross-validation approach for repeated external validation of models produced by the inner loop. The 
inner loop involves a 10-fold cross-validation approach for model tuning and selection. 

Abbreviations: MCHS Mayo Clinic Health System (community sites). 

Figure 2: Flowchart illustrating the flow of training data through our proposed modeling pipeline. Because 
principal component analysis requires a complete dataset with no missing data, model configurations that did not 
use imputation (and relied on machine-learning algorithms’ native missing data handling methods) cannot use 
principal component analysis. Flow of data through configurations without imputation is shown using the dotted 
arrows. 

Abbreviations: LASSO Least Absolute Shrinkage and Selection Operator (penalized logistic regression), MICE 
Multivariate Imputation by Chained Equations, PCA Principal Component Analysis, ML Machine-Learning, 
MCC Matthew’s Correlation Coefficient. 

Figure 3: Example schema of the proposed network architecture, with dropout and batch normalization 
components in each hidden layer. An example with 2 hidden layers is shown. 

Abbreviations: ReLU Rectified Linear Unit. 
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Table 1: Candidate features selected based on data availability and expert domain. 
 

Feature Description 

Patient demographics and comorbidities 

Age at ICU admission Continuous feature, in the unit of years 

Sex Binary feature: yes, no (male) 

BMI Continuous feature, in the unit of kg/m2 

History of hypertension Binary feature: yes, no 

History of diabetes 
mellitus 

Binary feature: yes, no 

Charlson Comorbidity 
Index  

Continuous feature, unitless 

Clinical characteristics at ICU admission 

ICU admission 24-hour 
respiratory SOFA score 

Categorical feature: 0 to 4 

ICU admission 24-hour 
CNS SOFA score 

Categorical feature: 0 to 4 

ICU admission 24-hour 
cardiovascular SOFA 
score 

Categorical feature: 0 to 4 

ICU admission 24-hour 
hepatic SOFA score 

Categorical feature: 0 to 4 

ICU admission 24-hour 
coagulation SOFA score 

Categorical feature: 0 to 4 

ICU admission 24-hour 
renal SOFA score 

Categorical feature: 0 to 4 

COVID-19 positive at ICU 
admission 

Binary feature: yes, no 

First lab values during ICU admission 

First WBC count in ICU Continuous feature, in the unit of x109/L 

First blood glucose in ICU Continuous feature, in the unit of mmol/L 

First serum lactate in ICU Continuous feature, in the unit of mmol/L 

Propofol and ventilation characteristics 

Initial propofol dose Continuous feature, in the unit of mg/kg/hour, represents the average 
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hourly propofol dose over the first 24 hours of infusion 

Number of days from ICU 
admission to onset of IMV 

Continuous feature, in the unit of days 

 
Abbreviations: SOFA Sequential Organ Failure Assessment (Score), CNS Central Nervous System, WBC 
White Blood Cell (Count), IMV Invasive Mechanical Ventilation. 
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