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Abstract  23 

Detecting the circulation of poliovirus in its early stages is paramount for swift public health action. 24 

Environmental surveillance (ES) is the testing of sewage samples for the presence of poliovirus and 25 

has the potential to enhance early detection capabilities. However, the establishment and 26 

maintenance of ES sites incur costs and necessitate human resources, underscoring the 27 

consideration of ES scale and site selection. Here, we aim to assess the early detection ability of ES 28 

by varying the number and location of ES sites using the simulation-based approach. We developed 29 

a stochastic meta-population model among unimmunised children aged under 5 years old and used 30 

geographic and demographic characteristics of South Africa as a case study of a non-endemic 31 

country, assuming a single introduction of wild poliovirus serotype 1. We constructed six scenarios 32 

by combining three importation risk distributions (predicated on population size, approximations of 33 

international inbound travel volume and border crossing volume) with two ES site layout strategies: 34 

one proportionate to population size and another focusing on importation risk via land border 35 

crossings. We showed that a modest number of strategically positioned ES sites can achieve a high 36 

early detection ability when assumed importation risks were geographically confined. In contrast, 37 

when importation risks were dispersed, the effectiveness of ES was diminished. Our sensitivity 38 

analyses suggested that the strategy to implement ES across large areas with low sampling 39 

frequency consistently resulted in a better early detection ability against various importation 40 

scenarios than one to implement ES in limited areas with high sampling frequency. Although we 41 

acknowledge the challenges of translating our simulated outcomes for real-world situations, our 42 

study has implications for deciding the scale and site selection of ES.       43 

(276 words)  44 
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Author summary  46 

Poliovirus causes paralytic poliomyelitis, a terrible and debilitating disease. Only a small number of 47 

infections with poliovirus result in disease. Early detection of these infections can inform public 48 

health decision-makers to trigger interventions such as vaccination campaigns. Environmental 49 

surveillance (ES) is able to detect poliovirus circulation by capturing virus shedding (even from 50 

asymptomatic people) in wastewater. Strategic geographical placements of ES sites may enhance 51 

early detection capabilities, but there has been limited exploration of factors that might affect early 52 

detection. Here, we investigated the relationship between the scale and site selection of ES and 53 

early detection ability by simulating the introduction, spread and detection of poliovirus among 54 

unimmunised children aged under 5 years old. We used geographic and demographic 55 

characteristics of South Africa as a case study of a non-endemic country, assuming an introduction 56 

of wild poliovirus serotype 1. We found that the informed ES placement achieved a high early 57 

detection ability when importation risks were geographically limited. In contrast, when importation 58 

risks were dispersed, the ES effectiveness was diminished. Our sensitivity results suggested the 59 

strategy to expand ES sites was robust against various importation scenarios and better than the 60 

strategy to merely increase sampling frequency in limited locations.      61 

(199 words)  62 

Keywords: polio, meta-population model, eradication, non-endemic, environment surveillance, 63 

wastewater surveillance, early detection   64 

Short title: Early detection ability of environmental surveillance for poliovirus 65 
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Introduction    68 

Global concerted efforts toward polio eradication have achieved a drastic reduction in the number of 69 

poliomyelitis cases [1] and cooperated surveillance systems contributed to this achievement [2]. 70 

Patients with paralytic poliomyelitis are detected through syndromic surveillance, referred to as 71 

acute flaccid paralysis (AFP) surveillance, but a tiny portion of infections can be detected due to a 72 

very low paralysis-to-infection rate. It has been estimated that for every 200 wild poliovirus serotype 73 

1 (WPV1) infections there will be one paralytic case [3]. To improve surveillance to rule out local 74 

transmission of poliovirus, sewage sampling, which is referred to as environmental surveillance 75 

(ES), has been developed. After the withdrawal of the trivalent oral polio vaccine (OPV) in 2016 and 76 

the emergence of vaccine-derived poliovirus serotype 2 (VDPV2) outbreaks [4,5], ES has been a 77 

vital complementary surveillance tool for polio eradication [6–8], especially for the detection of 78 

cryptic circulation in subnational areas of endemic countries, and detection of importation or 79 

confirmation of polio-free status in non-endemic countries.  80 

Detection of poliovirus circulation through ES can trigger swift public health actions to contain 81 

outbreaks [9].  Recent examples include the detection of VDPV2 circulation first through the ES in 82 

the US [10,11] and the UK [12], which enabled public health authorities to conduct active case 83 

finding, supplementary immunisation activity and social mobilisations. On the other hand, delays in 84 

detection have been linked to a large number of cases during outbreaks [13]. The long reporting 85 

delays of AFP surveillance have been attributable to a delay in sample collection, transport, culture 86 

and sequencing as well as the time required to ship collected samples to other countries due to the 87 

lack of facilities in resource-limited settings [13,14].    88 

Expanding ES sites can enhance early detection capabilities, but the establishment and 89 

maintenance of ES sites incur costs and necessitate human resources [15]. To operate ES 90 

effectively, the quality assessment is essential, which comprises the appropriateness of sampling 91 

site locations [16], importation risk assessment [17], ES-covered population size, non-enterovirus 92 

detection [18], and the quality of sample handling and sample processing. Although guidelines for 93 
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the implementation of ES have been developed by the Global Polio Eradication Initiative (GPEI) 94 

[19], specific guidance on the number and location of ES sites is still lacking due to uncertainties in 95 

available resources.   96 

Quantitative evidence of the early detection ability of ES is needed to design ES layout strategies at 97 

the national or subnational level. One study empirically investigated the early detection capabilities 98 

using poliovirus genome data in Pakistan, showing that ES can detect the circulation of specific 99 

genotypic clusters before AFP surveillance in nearly 60% of sampled clusters [20]. From the 100 

perspective of a mathematical modelling approach, one seminal paper quantified the simulated 101 

cumulative probability of detecting poliovirus circulation through each AFP surveillance and ES [21], 102 

and one paper broadly examined the lead time of the first detection through ES over other 103 

surveillance systems assuming various pathogen characteristics [22]. Another study theoretically 104 

investigated optimal sampling frequency against emerging pathogens, considering a balance 105 

between sampling costs and disease burden [23].  106 

There remains a gap in understanding the quantitative relationship between the ES early detection 107 

ability and spatial arrangements of ES sites. While laboratory facilities may be constrained by 108 

capacity, there is flexibility in the selection of ES sites and we aim to address this point using a 109 

simulational approach. Here, we utilised geographic and demographic characteristics of South 110 

Africa (where a polio-free status has been maintained since 1989 [24]) as a case study of a non-111 

endemic country. We employed the stochastic meta-population framework (following the basic 112 

model structure proposed by Ranta et al. [21]) among unimmunised children aged under 5 years old 113 

to assess the first detection timing through AFP surveillance and ES. We assumed that a single 114 

patient with WPV1 was imported to a specific ‘patch’ (a unit of a spatial grid in the meta-population 115 

framework) according to the importation risk distribution. Our study setting was motivated by the 116 

WPV1 importation event of 2022 into Mozambique, a neighbouring country to South Africa, implying 117 

a non-negligible risk of WPV1 importation into South Africa [25].  118 
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By conducting simulations, we aim to explore the quantitative relationship between the number and 119 

location of ES sites and the early detection capabilities of ES over AFP surveillance.   120 

Results   121 

Study setting.  122 

The overview of our study setting is summarised in Fig 1 and a schematic representation of our 123 

model is shown (Fig S3 in S1 text). We refer to a patch as a unit square at 20km spatial resolution 124 

(i.e. 400 km2), matched with the actual geographical location within the meta-population framework. 125 

The ES site was assumed to be placed within a single patch, covering 25% of the population of that 126 

patch. We chose 25% for a patch-level ES population coverage by considering the observed 127 

national ES population coverage and district-level ES population coverage (Table S4-5 and Fig S8 128 

in S1 text). Our SEIR model is comprised of three components: transmission model, AFP 129 

surveillance model and ES surveillance model (Fig S3 in S1 text). We assumed the probability of 130 

detecting poliovirus circulation through ES was proportional to the incidence rate of infected 131 

individuals. We define ‘LT’ as the lead time of the first detection (in days) through the ES over AFP 132 

surveillance and seven detection patterns were considered: ‘No detection’, ‘AFP only detection’, 133 

earlier detection through AFP surveillance than ES (i.e. ‘<-60 LT’, ‘-60 ~ -1 LT’), earlier detection 134 

through ES than AFP surveillance (i.e. ‘0 ~ 59 LT’, ‘≥60 LT’) and ‘ES only detection’ (Fig 1B&C). We 135 

used the proportion of each detection pattern among simulations with poliovirus detections (i.e. 136 

excluding the ‘no detection’ pattern) as the main output of simulation results.  137 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.17.24312151doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.17.24312151
http://creativecommons.org/licenses/by/4.0/


7 
 

 138 

Fig 1. Schematic illustration of study settings. (A) Simulated importation of wild poliovirus 139 

serotype 1 to South Africa, spread described by the meta-population model, and detection through 140 

acute flaccid surveillance (AFP) and environmental surveillance (ES). AFP surveillance is carried 141 

out across all patches whereas ES operations are confined to selected patches (in green). A patch-142 

level ES population coverage is assumed to be 25%. (B) Five detection patterns: i) No detection, ii) 143 

AFP only detection, iii) earlier detection through AFP surveillance than ES, iv) earlier detection 144 

through ES than AFP surveillance v) ES only detection. Detection patterns of iii) and iv) are further 145 

classified based on the lead time (LT) of the first detection through ES over AFP surveillance. (C) 146 

Stacked area plot of the proportion of each detection pattern against the number of ES-covered 147 

patches. (D) Three importation risk distributions: i) IMP-POP corresponds to the ‘Population size’-148 

based importation risk distribution and assumes importation risk is proportional to the population 149 

size of each patch (indicated by orange-red colouration); ii) IMP-AIR corresponds to the 150 

‘International airport’-based importation risk distribution and assumes an importation risk is shaped 151 

by international inbound travel volume in 2019 and approximated movement from airports. Each 152 

circle denotes the international airport with a size proportional to the international inbound travel 153 

volume: Blue, O.R. Tambo International Airport; Orange, Cape Town International Airport; Green, 154 
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King Shaka International Airport; iii) IMP-LBC corresponds to ‘Land border crossing’-based 155 

importation risk distribution and assumes importation risk is proportional to human mobilisation from 156 

outbreak countries, in this study Mozambique. (E) Two ES site layout strategies: i) ES-POP denotes 157 

‘Population size’ where allocation of sites is ordered by population size in each patch; ii) ES-LBC 158 

denotes ‘Land border crossing importation risk’ where ES sites are placed according to assumed 159 

international travel volume via land border crossings.   160 

 161 

Preliminary analysis illustrated that the first detection timing through ES was largely influenced by 162 

the assumed route of poliovirus introduction, and ES site layout. Therefore we prepared three 163 

importation risk distributions and two ES site layout strategies, totalling 6 scenarios when combined 164 

(Fig 1D&E, S7 in S1 text and S1-2 Video). For example, IMP-POP denotes the population size-165 

based importation risk distribution and assumes that an importation risk is proportional to the 166 

population size of each patch (Fig 1D and S7A in S1 text). The ES site layout strategy determines 167 

the sequence in which patches are covered by the ES. For example, ES-LBC denotes land border 168 

crossing importation risk-based ES site layout strategy and assumes that we first cover patches with 169 

a high importation risk via land border crossing from Mozambique (Fig 1E, S8C in S1 text and S2 170 

Video). Six scenarios are expressed with the combinations of importation risk distribution and ES 171 

layout strategy as the following: IMP-POP/ES-POP, IMP-AIR/ES-POP, IMP-LBC/ES-POP, IMP-172 

POP/ES-LBC, IMP-AIR/ES-LBC, and IMP-LBC/ES-LBC.  173 

 174 

A modest number of targeted ES site implementations can achieve high 175 

simulated early detection probability.  176 

The proportion of each detection pattern was visualised as the stacked area plot against the number 177 

of ES-covered patches for 6 scenarios (Fig 2). We truncated the number of ES-covered patches at 178 

160 sites even though the total number of patches for all of South Africa was 1502. The full scale of 179 
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the figure can be found in Fig S12 in S1 text, in which the x-axis represents the national ES 180 

population coverage. When importation risks were concentrated in confined patches (e.g. IMP-AIR 181 

and IMP-LBC) and an ES site layout strategy was prioritised to cover those high importation risk 182 

areas (e.g. IMP-AIR/ES-POP and IMP-LBC/ES-LBC, shown in Fig 2B and 2F), 6–8 ES-covered 183 

patches were sufficient to achieve 50% simulated early detection probability. In comparison, in the 184 

scenario where the ES site layout strategy failed to prioritise patches with high importation risks 185 

(e.g. IMP-LBC/ES-POP and IMP-AIR/ES-LBC, shown in Fig 2C and 2E), covering only 10 to 20 186 

patches by ES resulted in low simulated early detection probability.   187 

 188 

Fig 2. Proportion of each detection pattern (%) against the number of ES-covered patches for 189 

6 scenarios. The blue-coloured area under the black dotted lines represents the simulated early 190 

detection probability, consisting of the early detection through ES over AFP surveillance and the ES 191 

only detection pattern. It is noted that the maximum number of ES-covered patches is 1502 and the 192 

x-axis is truncated at 160. IMP-POP, ‘Population size’-based importation risk distribution; IMP-AIR, 193 

‘International airport’-based importation risk distribution; IMP-LBC, ‘Land border crossing’-based 194 

importation risk distribution; ES-POP, ‘Population size’-based ES site layout strategy; ES-LBC, 195 

‘Land border crossing importation risk’-based ES site layout strategy. LT denotes the lead time of 196 

the first poliovirus detection through ES over AFP surveillance. 197 
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 198 

According to the wastewater plant data provided by the National Institute of Communicable Disease 199 

in South Africa on 27 November 2023, ES for poliovirus was operating at 17 wastewater plants, 200 

covering ~11.3% of the national population (if the wastewater-served population was imputed with 201 

the median value for two wastewater plants; see S1 text for details).  Under our model assumptions, 202 

the closest number of ES-covered patches to match the current ES capacity in South Africa (i.e. the 203 

number of ES-covered patches required to achieve 11.3% national ES population coverage) was 58 204 

for ES-POP and 154 for ES-LBC. To investigate the impact of the exclusion of the ‘no detection 205 

pattern’ on the proportion of detection patterns, we visualised those proportions including the ‘no 206 

detection’ pattern in Fig S13 in S1 text. We found significant differences in the simulated probability 207 

of at least one detection of poliovirus either through ES or AFP surveillance (coloured areas), which 208 

would be attributable to heterogeneity in the effective immunisation proportions.  209 

Sensitivity analysis showed sampling frequency and ES sensitivity were key 210 

parameters for enhancing early detection ability. 211 

We conducted a sensitivity analysis of the basic reproduction number (R0), travelling rate between 212 

patches (α), sampling frequency, ES sensitivity, and patch-level ES population coverage (pc) for the 213 

IMP-POP/ES-POP scenario (Fig 3 and 4). The basic reproduction number of poliovirus (R0) did not 214 

influence the simulated early detection probability in the entire region of the number of ES-covered 215 

patches, whereas a lower basic reproduction number resulted in a large proportion of AFP only or 216 

ES only detection patterns. This tendency was consistent with the sensitivity analysis under the 217 

single patch setting (Fig S10 in S1 text).  218 
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 219 

Fig 3. Sensitivity analysis of the basic reproduction number (R0), travelling rate between 220 

patches (α), sampling frequency and ES sensitivity for the IMP-POP/ES-POP scenario. (A) 221 

Simulated early detection probability for different parameters against the number of ES-covered 222 

patches. Thick black lines represent results with the same parameter value as in the main analysis. 223 

(B, C) Stacked area plot for the smallest and largest sensitivity parameter values. LT corresponds to 224 

the lead time of the first poliovirus detection through ES over AFP surveillance and ‘sampling freq.’ 225 

corresponds to the sampling frequency.  226 

 227 
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The simulated early detection probability remained consistent across different travelling rates (α) for 228 

a small number of ES-covered patches (i.e. up to 40 patches) whereas increasing the value of α by 229 

tenfold, from the baseline value of 0.050 to 0.500, yielded a 15% increase in simulated early 230 

detection probability after the number of ES-covered patches exceeded 50. Notable disparities were 231 

consistently observed when focusing on the proportion of AFP only or ES only detection patterns. 232 

Setting high travelling rates resulted in smaller proportions of ES only detection patterns whereas 233 

setting low travelling rates resulted in higher proportions.  234 

Both sampling frequency and ES sensitivity (which is governed by two parameters of lognormal 235 

distribution) influenced the simulated early detection probability in the order of 10 to 25%, and these 236 

differences were consistently observed across the entire region of the number of ES-covered 237 

patches. It is noted that either with the higher sampling frequency or higher ES sensitivity, ES only 238 

detection pattern accounted for more than 30% among simulations excluding no detection pattern.  239 

 240 

Simulated early detection ability largely depends on the choice of patch-level 241 

ES population coverage (pc).   242 

We explored the impact of the patch-level ES population coverage (pc) on simulated early detection 243 

ability for the IMP-POP/ES-POP scenario. The parameter pc modulated the balance between the 244 

concentration of ES placement in a single patch and the dispersion of ES sites across patches 245 

under a fixed national ES population coverage. The simulated early detection ability remained 246 

nearly consistent for pc values greater than 5%, given the same number of ES-covered patches (Fig 247 

4A). Considering the observed district-level ES population coverages in South Africa all exceeding 248 

10% (with a median of 22.5%), the early detection ability would be robust despite large variations in 249 

ES coverage in those districts (Table S3 in S1 text).   250 
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251 

Fig 4. Sensitivity analysis of the patch-level ES population coverage (pc) for IMP-POP/ES-POP 252 

scenario. (A, B, C) Simulated early detection probability is plotted (A) against the number of ES-253 

covered patches, (B) against the percentage of the population in ES-covered patches, and (C) the 254 

national ES population coverage. Black lines represent simulation results for each of pc and the 255 

number of ES-covered patches. The coloured data points in (A-C) represent simulations where the 256 

simulated national ES population coverage aligned with the observed national ES population 257 

coverage in South Africa (11.3%), under pc of 25% (blue), 50% (orange) and 100% (green). The 258 

national ES population coverage is given by the product of pc and the percentage of the population 259 

in ES-coverage patches. It is noted that the maximum number of ES-covered patches is 1502 and 260 

the x-axis for (A) is limited to a maximum value of 160.   261 

 262 

Since the higher pc value leads to a larger ES-covered population with limited ES-covered sites, we 263 

plotted the coloured points representing the simulation results where the simulated national ES 264 

population coverage matched the observed coverage (Fig 4A). Under such a constraint, when pc 265 

=100%, only 5 sites were required to achieve the observed national ES population coverage but the 266 

combined sensitivity of these sites resulted in a low simulated probability of early detection (Fig 4A, 267 

green circle). Lower pc values correspond with many ES-covered patches, which in turn increased 268 

simulated early detection probability (Fig 4A, blue circle).  269 

To further illustrate the role of the patch-level ES population coverage parameter, the same 270 

simulation results are displayed in two different x-axes. First, we employed the percentage of the 271 
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population in ES-covered patches, which was calculated by the sum of the population in ES-272 

covered patches divided by the total population size (Fig 4B). It is noted that (1- pc)% of the 273 

population was not covered by ES but counted in the denominator. The tendency of simulated early 274 

detection probability was similar to Fig 4A. Second, we considered the national ES population 275 

coverage as the x-axis, which was calculated by multiplying pc with the “percentage of the 276 

population in ES-covered patches” to correctly account for the population covered by ES. Even 277 

though the same national ES population coverage was maintained (Fig 4C, coloured points), the 278 

simulated early detection ability largely depended on the choice of pc. This large variation implies 279 

the national ES population coverage would be an unreliable measurement to evaluate the spatial 280 

arrangements of the ES sites for the early detection ability. This tendency was consistent across the 281 

sensitivity analyses under the other 5 scenarios (Fig S14-15 in S1 text). 282 

 283 

Correlations between simulated early detection probability and weighted 284 

average minimum distance to ES-covered patches  285 

We explored more parsimonious assessment measurements for the ES site layout across the 286 

countries since our stochastic simulations required a long computation time. We calculated the 287 

average minimum distance from patches with importation to ES-covered patches weighted by 288 

outbreak probability. The outbreak probability in the present study is defined as the probability of 10 289 

or more infections occurring given a single introduction, considering the effective immunisation 290 

proportion (EIP) in each patch (Fig S9 in S1 text). This metric can be calculated if importation risks 291 

and ES site layout are available. Intuitively, early detection probability is likely to be higher if ES-292 

covered patches are placed near locations for importation. In this exercise, we wanted to explore 293 

whether assumptions on importation and ES placement consistently influenced this property.   294 

The relationship between simulated early detection probability and weighted average minimum 295 

distance showed a shape similar to an exponential curve for the IMP-POP and IMP-LBC scenarios 296 

(Fig 5A&B). Once the simulated early detection probability surpassed 50%, this relationship 297 
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transitioned towards a nearly linear trend. Although the shape for these relationships was similar for 298 

ES-POP and ES-LBC scenarios, the scale of weighted average minimum distance was different.  299 

 300 

Fig 5. Relationship between the weighted average minimum distance to ES-covered patches 301 

and simulated early detection probability (%). (A) Under ES-POP scenarios. (B) Under ES-LBC 302 

scenarios. Minimum distances to ES-covered patches were weighted by importation risk and 303 

outbreak probability of 10 or more infections occurring, considering the effective immunisation 304 

proportion. The coloured numbers next to points correspond to the number of ES-covered patches 305 

for each importation risk distribution.  306 

 307 

In contrast, the relationship between simulated early detection ability and weighted average 308 

minimum distance showed an irregular pattern in IMP-AIR scenarios. We observed a sharp increase 309 

in simulated early detection probability despite a small difference in weighted average minimum 310 

distance in both ES-POP and ES-LBC. Conversely, only a small difference in simulated early 311 

detection probability was present despite a large difference in weighted average minimum distance. 312 

Notably, in the IMP-AIR/ES-LBC scenario, when the number of ES-covered patches exceeded 152, 313 

there was no increase in simulated early detection probability despite a more than 100km decline in 314 

the weighted average minimum distance to ES-covered patches.   315 
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Discussion   316 

In this study, we assessed the quantitative relationship between early detection ability and the scale 317 

and locations of ES sites by employing a meta-population framework. We simulated the importation, 318 

spread and detection process, varying the number of ES-covered sites under different importation 319 

risk distributions and ES site layout strategies. By applying stochastic simulations, we successfully 320 

considered the partial detection patterns (i.e. ES only detection or AFP surveillance only detection) 321 

to align with real-world observations. The results provided here illustrated the potential of strategic 322 

positioning of ES sites to enhance early detection capabilities and clarified key ES-related 323 

parameters to be considered. Our results also highlight the importance of poliovirus importation risk 324 

assessment and how infectious disease surveillance should be tailored to perceived threats.     325 

We found that simulated early detection probability exhibited a monotonic increase with the number 326 

of ES sites, but distinct variations in slope and plateau points were observed across six different 327 

scenarios. When importation risks were concentrated in confined patches, the modest number of 328 

strategic and targeted ES positioning can be highly efficient in the early detection of poliovirus 329 

circulation. Conversely, if importation risk was geographically dispersed, the effectiveness of ES 330 

was diminished, and many ES sites were required for a high early detection ability. It is noted that in 331 

our simulation study, we did not consider delays in reporting from the onset of AFP or delays in 332 

processing environmental samples. The reporting delays in patients with AFP were substantial in 333 

resource-limited settings, which could be around 29–74 days [22], and those delays should be 334 

considered in practice. 335 

Our sensitivity analysis showed large variations in simulated early detection probability depending 336 

on the patch-level ES population coverage given the same national ES population coverage, which 337 

poses the challenge of translating our simulation results into the practical ES implementation 338 

strategy. Although national ES population coverage can be easily calculated, this measurement 339 

would poorly reflect early detection ability for the ES layout unless a patch-level ES population 340 

coverage is precisely specified. On the other hand, it is difficult to relate a patch in our simulations to 341 
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real-world geographical settings. We roughly assumed the spatial resolution of each patch was 342 

equal to 20 x 20 km (i.e. 400 km2) regardless of urban and rural areas and made homogenous 343 

mixing assumptions within a patch. This assumption led to unreasonable model-based conclusions 344 

that ES sites should cover as small a proportion of the population within a patch as possible and as 345 

many patches as possible, resulting in high early detection probability with low national ES 346 

population coverage (requiring fewer resources) (Fig 4C). This result is an artefact of assuming that 347 

all individuals within a patch mix homogeneously, and therefore a tiny ES area coverage within a 348 

patch would have an unreasonably high probability of detecting poliovirus. Thus, crucial information 349 

for connecting models with real-world settings is needed to identify areas where homogenous 350 

mixing is held, and in other words, to identify the fragmentation level of patches, as is historically 351 

pointed out by several authors [26–29]. One study of COVID-19 provided some insights into the 352 

homogenous mixing assumptions. This study used virus genome data with corresponding resident 353 

addresses in Danne, Scotland, suggesting around a 5km radius circle was well mixed in terms of 354 

genetic distance [30]. An alternative approach would have been to reduce patch size, for example to 355 

5 x 5 km, which may align better with the size of ES catchments and assumptions on homogenous 356 

mixing. However, this procedure results in a large increase in computation time, and the chatchment 357 

sie of environmental sites is typically unavailable in low- and middle-income settings and we are 358 

therefore trying to align simulations with a uncertain value. An improved understanding of catchment 359 

sizes in real-world settings is warranted because our study illustrates the sensitivity to assumptions 360 

on catchment (or patch) size on early detection ability.   361 

The sampling frequency is a parameter of interest to optimise the ES site layout [17,23]. By 362 

employing a daily sampling strategy in our study, the ES early detection ability increased 363 

significantly. However, this strategy resulted in an increased proportion of the ES only detection 364 

pattern, which might cause overacting against such an importation that does not lead to secondary 365 

infections.  Assuming an equal number of environmental samples can be taken for each month, 366 

extending ES sites can be more efficient in improving early detection ability and be robust against 367 

various importation risk distributions. For example, if we assumed 20 ES-covered sites and monthly 368 
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sampling for the IMP-POP/ES-POP scenario, doubling sampling frequency led to a 10% increase in 369 

simulated early detection probability while doubling ES-covered sites resulted in the same increase 370 

and more resilience against multiple importation risk distributions. Moreover, the latter strategy can 371 

minimise the proportion of the ES only detection pattern. One concerning point is that expanding ES 372 

sites requires much more cost and additional human resources for transportation than increasing 373 

sampling frequency [16,31].  374 

The basic reproduction number (R0) for poliovirus is difficult to determine due to the small number of 375 

reported paralytic cases per outbreak and the impact of changes in hygiene. Our sensitivity analysis 376 

of R0 showed small differences in simulated early detection probabilities, supporting the high 377 

robustness of results in the present study. Our assumed R0 for the main analysis was based on a 378 

review of transmissibility by Fine et al. from 1999 [32], and the hygiene level in the African continent 379 

has since greatly improved. We therefore expect the current R0 value in South Africa will be lower, 380 

but the sensitivity analysis would be well within the bounds of potential R0 values. One study 381 

quantitatively investigated the early detection ability varying R0 and other pathogen characteristics 382 

using a branching process [22] and found that the lead time for wastewater surveillance was 383 

different depending on R0.  Two reasons can be considered. First, our model assumed an effective 384 

reproduction number of around one by considering vaccination coverage. So, the variation of the 385 

effective reproduction number was smaller compared to the range of R0 investigated in Andrew, et 386 

al. [22].  Second, we considered ES only detection patterns as early detection, which did not 387 

happen in the branching process model. 388 

Our study is not free from limitations. First, we considered the country where OPV and inactivated 389 

polio vaccine (IPV) are routinely administered. The large outbreak of VDPV2 was caused by 390 

switching from trivalent OPV to bivalent OPV [33], and many countries are planning to cease OPV 391 

usage except for outbreak response [34,35]. Moreover, in many developed countries, IPV is only 392 

included in their routine immunisation schedule. Those vaccinated with only IPV could spread 393 

poliovirus to others due to lack of mucosal immunity and could be detected through ES, but they 394 

would be less likely to develop AFP due to the humoral immunity, implying increased utility of the ES 395 
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compared to our study (where an IPV-OPV schedule is assumed). Second, we only focused on 396 

WPV1 and did not consider other serotypes (such as cVDPVs) or transmission from immune-397 

compromised individuals shedding (iVDPVs).  398 

Third, we limited transmission dynamics in children under 5 years old, assuming those aged 5 or 399 

more were completely immunised. However, the reported age distribution of poliomyelitis patients is 400 

skewed towards older groups in non-endemic countries [36], and multiple reasons for being 401 

unvaccinated were considered such as migration, poverty and conflict [37–39]. We ignored those 402 

pocket populations considering the size of that population and the paucity of historical vaccine 403 

coverage data in South Africa. Fourth, our importation risk distributions were essentially based on 404 

the population size of each patch and the approximated mobilisation pattern by the radiation model, 405 

which could make the ES performance better when compared to reality. Quantitative data about 406 

international traveller movement from airports and border crossing populations could improve 407 

predictions that support risk assessment. Furthermore, research on the importation pathway is 408 

demanding for prevention, detection and response. The importation routes to reported outbreak 409 

sites were often unknown and one to three years of cryptic circulation was suspected for some 410 

outbreaks [25]. Lastly, parameters for ES sensitivity, which was described by the lognormal 411 

distribution, were estimated using the wastewater surveillance data for COVID-19 in the US [40]. 412 

Considering differences in virus shedding characteristics between poliovirus [41] and COVID-19 413 

[42,43] as well as differences in ES site system and quality between the US and other low- and 414 

middle-income countries, the ES sensitivity will be inherently different, underscoring the need for 415 

region-specific data to assess site-specific ES sensitivity.   416 

In conclusion, several countries are planning to initiate, expand and optimise the ES for poliovirus. 417 

We varied the number and location of the ES sites under different importation risk distributions to 418 

quantify the ES early detection ability over AFP surveillance. Our results showed that risk-targeted 419 

ES site layout could achieve high early detection capabilities. Further research is required to 420 

optimise resources for the ES to monitor the progress toward polio eradication.  421 
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Material and Methods 422 

Data  423 

We collated population data for children under 5 years old and for all age groups in 100m spatial 424 

resolution in South Africa and Mozambique from WorldPop, respectively [44]. We aggregated each 425 

dataset to obtain a 20km spatial resolution and called each unit of area a ‘patch’ within a meta-426 

population framework. We removed patches with less than 100 children under 5 years old for 427 

computational efficiency, resulting in 1502 patches in South Africa (Fig S1 in S1 text).  428 

We collated the district-level vaccination coverage from the Expanded Programme on Immunisation 429 

National Coverage Survey Report 2020 in South Africa [45]. South Africa included both bivalent 430 

OPV and IPV in their routine immunisation schedule. In South Africa’s vaccine schedule, OPV is 431 

administered at birth and 6 weeks after birth, and IPV is administered as a part of the hexavalent 432 

vaccine (HEXA) at 6 weeks, 10 weeks, 14 weeks, and 18 months after birth.  433 

To quantitatively validate the choice of patch-level ES population coverage (pc), we obtained the 434 

wastewater plant information about the location and their served-population size from the National 435 

Institute for Communicable Diseases (NICD). The details of the wastewater data description and 436 

validation process can be found in Table S3-4 and Fig S8 in S1 text.  437 

Proportion of immunised children under 5 years old 438 

We assumed those vaccinated with at least one IPV also completed two doses of OPV in our 439 

simulation, and classified children into immunised and unimmunised ones. Immunised children are 440 

assumed to have no susceptibility and transmissibility because of mucosal immunity induced by 441 

OPV and they are assumed not to develop AFP because of serum antibody induced by IPV. 442 

Therefore, we removed immunised children from the transmission dynamics. Since the last known 443 

polio patient in South Africa was documented in 1989 [24], immunity from natural infection was not 444 

considered.  445 
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We calculated the proportion of children under 5 years old who were effectively immunised, which 446 

we called the effective immunisation proportion (EIP), with the district-level coverage of IPV and 447 

assumptions of vaccine effectiveness against transmission. Let VEp be the vaccine effectiveness per 448 

dose (0.63 against serotype 1 [46–48]) and the probability of immunisation after n doses of IPV 449 

(VEn) is calculated as 1 – (1-VEp)n. Considering the IPV coverage for nth dose (Cv,n), the EIP can be 450 

estimated considering VEn and the IPV coverage for nth dose (Cv,n), which is described by Cv,4VE4 + 451 

(Cv,3 – Cv,4)VE3 + (Cv,2 – Cv,3)VE2 + (Cv,1 – Cv,2)VE1. When Cv,n < Cv,n+1, we assumed Cv,n - Cv,n++1 to be 452 

zero. We calculated the district-level EIPs (Table S1 and Fig S2 in S1 text) and assigned them as 453 

the corresponding patch-level EIP. The average EIP weighted by the population size of children 454 

under 5 years old in each patch in South Africa was 91.9%.  455 

Modelling framework  456 

We constructed a stochastic meta-population model among unimmunised children under 5 years old 457 

considering the detection process of poliovirus through AFP surveillance and ES. The model 458 

comprises three components: the transmission model, the AFP surveillance model, and the ES 459 

model. In each simulation, we randomly chose one patch to introduce WPV1 proportional to the 460 

assumed importation risks of each patch and ran the stochastic SEIR meta-population model until 461 

one of the following criteria was met: the first poliovirus was detected through both surveillance, no 462 

polio patients were present, or 3 years had passed from the beginning of the simulation.   463 

Since the first detection timing through ES is largely influenced by the distribution of importation 464 

risks and ES site layout strategy, we prepared three importation risk distributions and two ES site 465 

layout strategies as follows (Fig 1, Fig S7-8 in S1 text and S1-2 Video):  466 

- IMP-POP denotes ‘Population size’-based importation risk distribution and assumes the 467 

importation risk of each patch is proportional to the population size of each patch.  468 

- IMP-AIR denotes ‘International airport’-based importation risk distribution and assumes the 469 

importation risk of each patch is proportional to international inbound travel volume in 2019 and 470 

further considers mobilisation from airports.  471 
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- IMP-LBC denotes ‘Land border crossing’-based importation risk distribution and assumes the 472 

importation risk of each patch is proportional to travelling volume from Mozambique, which is 473 

approximated by the radiation model.  474 

- ES-POP corresponds to ‘Population size’-based ES site layout strategy, and assumes the ES is 475 

implemented in the descending order of population size of each patch. 476 

- ES-LBC corresponds to  ‘Land border crossing importation risk’-based ES site layout strategy 477 

and assumes the ES is first implemented in a patch with a high importation risk via land border 478 

crossing from Mozambique. 479 

We considered the combination of each importation risk distribution and ES site layout strategy, 480 

totalling 6 scenarios: IMP-POP/ES-POP, IMP-AIR/ES-POP, IMP-LBC/ES-POP, IMP-POP/ES-LBC, 481 

IMP-AIR/ES-LBC, and IMP-LBC/ES-LBC. We included the land border crossing scenarios to assess 482 

the early detection ability against the poliovirus introduction in rural settings with an informed ES 483 

layout strategy (i.e. IMP-LBC/ES-LBC scenario).   484 

In each scenario, we ran 10,000 simulations and calculated the proportion of each detection pattern, 485 

varying the number of ES-covered patches. All analyses were performed in Julia v1.8.3.  486 

Transmission model 487 

We employed a stochastic meta-population SEIR model among unimmunised children under 5 488 

years old (Fig S3 in S1 text). The SEIR model simulates the process in which susceptible individuals 489 

(S) get infected, passing through a latent period (E) and infectious period (I), and then recover from 490 

infection (R). The daily hazard rate for newly infected individuals in patch i at day t is expressed as  491 

𝜆𝑖,𝑡 =
𝛽

𝑁𝑖,𝑐
[(1 − 𝛼)(𝐼𝑖,𝑐,𝑡 + 𝐼𝑖,𝑛𝑐,𝑡) + 𝛼 ∑ 𝜋𝑗𝑖(𝐼𝑗,𝑐,𝑡 + 𝐼𝑗,𝑛𝑐,𝑡)

𝑗≠𝑖

 ] , (1) 492 

where β corresponds to the transmission rate, Ni,c is the population size of children under 5 years 493 

old of patch i regardless of immunity status, α corresponds to the travelling rate between patches 494 

and πji denotes the rates of moving from origin j to destination i. The moving rates (πji) were 495 
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approximated by the radiation model, which showed an improved fit to data than the gravity model 496 

in the polio context [49–51]. We classified the infectious individual compartment into two classes: 497 

infectious individuals at patch i covered by the ES at day t (Ii,c,t) and not covered by the ES (Ii,nc,t). 498 

Infected individuals in the latent period (E) are randomly assigned to Ii,c,t or Ii,nc,t proportional to the 499 

patch-level ES population coverage (pc) and 1 - pc, respectively. However, assumptions on 500 

infectiousness did not differ between groups.  501 

AFP surveillance model  502 

Patients with WPV1 develop AFP with a probability of 1/200, and we assumed those patients seek 503 

healthcare on the same day as the paralysis onset. The incubation period of developing AFP was 504 

assumed to be 16.5 days [52,53] and we prepared 6 compartments with transition rates of 0.329 505 

days-1 to be aligned with the incubation period distribution [47].  506 

To be correctly diagnosed and reported as AFP cases, patients should visit health care, be tested, 507 

and get a positive result. We assumed the probability of correctly reporting AFP cases followed the 508 

Binomial process considering the above three steps.  509 

Environmental surveillance model 510 

ES was implemented in limited patches and its number was varied in each scenario. ES is assumed 511 

to cover a portion of the population (pc) in each patch. We chose a default pc of 25% by considering 512 

the observed ES location and ES-covered population (Table S3-4 and Fig S8).   513 

We modelled the detection process through ES as a binomial process. Let ni,t be an index variable 514 

for sampling at location i at day t (taking 0 or 1), and PES,test be a test sensitivity given a collected 515 

sample contains a detectable level of virus. The number of polio-positive samples in the ES site at 516 

patch i at day t (wi,t) is given by  517 

𝑤𝑖,𝑡~Binomial (𝑛𝑖,𝑡 , 𝐺 (100,000
𝐼𝑖,𝑐,𝑡

𝑁𝑖𝑝𝑐
; 𝜇𝐸𝑆, 𝜎𝐸𝑆) 𝑃𝐸𝑆,𝑡𝑒𝑠𝑡) , (2)  518 
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where Ni denotes the population size of all age groups in patch i, and G denotes the cumulative 519 

density function of the log-normal distribution with parameters of μES and σES, which represents the 520 

ES sensitivity against the incidence rate of polio patients per 100,000 population. The ES sensitivity 521 

parameters were estimated based on the wastewater surveillance study on COVID-19 [40]. To 522 

ensure the consistent quality of ES in each sampling site for estimation, we used sampling sites with 523 

both positive and negative samples, where daily newly reported cases on the day with positive 524 

samples were consistently higher than on the day with negative samples. The estimated dose-525 

relationship for the ES sensitivity can be seen in Fig S6 in S1 text.  526 

Sensitivity analysis and weighted minimum distance to ES-covered patches 527 

We performed the sensitivity analyses of the basic reproduction number (R0), travelling rate 528 

between patches (α), sampling frequency and ES sensitivity for the IMP-POP/ES-POP scenario. For 529 

a patch-level ES population coverage (pc), sensitivity analysis was conducted for all 6 scenarios. 530 

Additionally, we conducted the sensitivity analysis under a single patch setting (i.e. simulations were 531 

performed without spatial structures). This analysis aimed to differentiate between the effects of 532 

parameters on the ES early detection ability attributable to spatial components and those stemming 533 

from model behaviours in a single patch (Fig S10 in S1 text).  534 

Since our stochastic meta-population model requires a huge computational burden, we explored an 535 

alternative parsimonious assessment measurement for the ES early detection ability. Assuming the 536 

importation risk distributions and EIPs are known at a patch level, we calculated the average 537 

minimum distance to ES-covered patches weighted by importation risk and outbreak probability of 538 

10 or more infections occurring (dave,w). The outbreak probability was based on the branching 539 

process considering the effective reproduction number in patch i (Re,i) while the effective 540 

reproduction number was given by the product of R0 and EIP in patch i (Fig S9 in S1 text). We 541 

calculated the probability of 10 or more infections occurring given the effective reproduction number, 542 

𝑃(𝑋 ≥ 10; 𝑅𝑒,𝑖), assuming the off-spring distribution follows the Poisson distribution [54–56]. Then, 543 

the average minimum distance dave,w is described as  544 
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𝑑𝑎𝑣𝑒,𝑤 =
∑ 𝑟𝑖𝑃(𝑋 ≥ 10; 𝑅𝑒.𝑖) min({𝑑𝑖𝑗; 𝑗 ∈ 𝑆𝐸𝑆})𝑖

∑ 𝑟𝑖𝑃(𝑋 ≥ 10; 𝑅𝑒,𝑖)𝑖

, (3) 545 

where ri denotes the importation risk at patch i and SES denotes the set of patches covered by the 546 

ES. The detailed explanations can be found in S1 text. 547 
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1 Supplementary Methods  

1.1 Data  

We collated the population size data from the WorldPop [1] at 100m spatial resolution for 5 bin age 

categories and created population size data for children under 5 years old and for all ages in South 

Africa. We aggregated the population data into a 20km spatial resolution (precisely 21.31km x 

19.74km), resulting in 3,193 patches. We removed patches with less than 100 children under 5 

years old and finally obtained 1502 patches (Fig S1). Through this process, we removed 0.61% 

population of children under 5 years old. We kept patch spatial resolution constant for all patches so 

that ES-covered areas in each patch were fixed. We applied the same procedure to create the 

population data for children under 5 years old in Mozambique at the same resolution.  

 

Fig S1. Heatmap of population size in South Africa. (A) Children under 5 years old and (B) All 
ages. Patches with <100 children under 5 years old were removed from the analysis.  

We collated the district-level vaccination coverage from the Expanded Programme on Immunisation 

National Coverage Survey Report 2020 in South Africa [2]. We summarised the coverage of oral 

polio vaccine (OPV) and hexavalent vaccine (HEXA) including inactivated polio vaccine (IPV) for 

each district in Table S1 with the district-level effective immunisation proportions (EIPs), which were 

calculated using the equation described in the main text. We visualised the district-level EIPs in Fig 

S2.   
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Table S1. OPV coverage (%), HEXA coverage (%) and effective immunisation proportion 
(EIP, %) by districts in South Africa. 

District Sample size OPV0a OPV1 HEXA1b HEXA2 HEXA3 HEXA4 EIPc 

West Coast 74 97.3 95.9 97.3 97.3 89.2 82.4 94.3 

Cape Winelands 179 96.1 94.4 95.0 94.4 93.9 88.8 92.8 

Overberg 143 97.2 94.4 94.4 94.4 96.5 84.6 94.3 

Eden 121 96.7 88.4 95.9 95.0 90.9 89.3 93.3 

Central Karoo 33 100.0 100.0 100.0 100.0 100.0 97.0 98.0 

Namakwa 27 100.0 96.3 96.3 100.0 100.0 92.6 97.9 

Pixley ka Seme 32 93.8 87.5 90.6 81.3 78.1 68.8 85.0 

Z F Mgcawu 61 98.4 98.4 96.7 100.0 96.7 83.6 97.3 

Frances Baard 200 99.0 98.0 99.0 99.5 98.5 90.5 97.3 

Cacadu 348 97.1 95.4 96.0 96.3 94.8 87.6 94.1 

Amathole 220 98.6 96.4 97.7 96.8 95.0 86.4 95.1 

Chris Hani 79 98.7 92.4 92.4 97.5 93.7 87.3 95.0 

Joe Gqabi 110 95.5 92.7 92.7 91.8 93.6 81.8 92.0 

O.R.Tambo 372 95.4 90.3 86.6 87.9 84.4 76.3 85.6 

Xhariep 81 97.5 95.1 96.3 92.6 93.8 76.5 93.8 

Lejweleputswa 285 98.6 97.9 99.3 97.9 97.9 87.4 96.6 

Thabo 
Mofutsanyane 

50 100.0 96.0 98.0 98.0 98.0 86.0 95.8 

Fezile Dabi 128 91.4 81.3 82.0 82.8 82.8 82.0 81.2 

Ugu 187 97.3 96.8 97.9 98.4 96.3 88.8 96.1 

Umgungundlovu 60 96.7 96.7 93.3 96.7 96.7 83.3 94.5 

Uthukela 700 95.3 93.7 93.3 92.7 92.7 80.6 91.0 

Umzinyathi 205 97.6 97.6 97.1 96.6 95.6 83.9 94.6 

Amajuba 470 96.0 95.3 95.3 93.6 93.8 83.2 92.8 

Zululand 399 96.5 95.5 95.0 95.2 93.7 77.9 92.7 

Umkhanyakude 243 97.1 95.5 93.8 94.2 93.8 87.2 92.2 

Uthungulu 986 92.4 92.3 92.7 91.7 91.3 82.8 90.3 

iLembe 359 79.9 78.6 76.9 76.3 76.6 72.4 75.4 

Gert Sibande 284 99.3 98.2 98.2 98.2 97.9 84.9 95.9 

Nkangala 328 90.2 87.5 88.7 88.4 86.9 78.0 86.5 

Ehlanzeni 396 93.2 92.9 89.9 89.9 89.6 81.1 87.9 

Mopani 680 93.5 91.5 91.9 92.1 90.4 81.6 89.9 

Vhembe 589 93.0 92.5 92.2 91.9 90.8 82.0 90.0 

Capricorn 493 87.4 85.8 86.0 86.6 85.8 71.6 84.4 

Waterberg 111 96.4 95.5 96.4 94.6 92.8 73.9 93.1 

Bojanala 299 94.3 91.6 93.0 91.3 90.6 83.3 90.3 

Ngaka Modiri 
Molema 

484 97.1 96.7 94.8 95.2 93.2 82.0 92.8 

Dr Ruth 

Segomotsi 
Mompati 

106 97.2 97.2 97.2 95.3 95.3 84.9 94.4 

Dr Kenneth 

Kaunda 

210 95.7 94.8 94.8 93.3 91.9 83.8 92.1 

Sedibeng 514 94.6 92.6 94.2 93.8 93.0 84.0 91.9 

Sisonke 597 96.0 95.1 94.6 94.1 94.5 87.1 92.8 

Alfred Nzo 271 98.2 95.9 96.7 96.7 95.6 83.4 94.4 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.17.24312151doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.17.24312151
http://creativecommons.org/licenses/by/4.0/


5 
 

John Taolo 

Gaetsewe 

5 100.0 100.0 100.0 100.0 100.0 100.0 98.1 

Sekhukhune 345 92.8 89.6 91.6 91.9 90.7 82.6 89.8 

West Rand 382 97.4 96.9 97.4 96.1 95.8 90.1 94.9 

Buffalo City 211 98.6 95.3 95.3 95.3 94.8 86.3 93.2 

City of Cape 

Town 

101 97.0 98.0 97.0 97.0 94.1 90.1 94.7 

Ekurhuleni 890 97.1 96.1 96.6 95.5 94.9 86.9 94.1 

eThekwini 887 94.0 92.6 92.4 91.7 91.8 83.8 90.3 

City of 

Johannesburg 

1710 97.0 96.4 95.6 95.3 94.8 87.8 93.4 

Mangaung 187 98.9 97.9 97.3 98.4 97.9 87.7 96.2 

Nelson Mandela 
Bay 

326 94.5 93.3 93.9 92.9 92.0 86.5 91.5 

City of Tshwane 621 98.9 96.3 96.5 95.3 95.8 86.5 94.5 

a OPV: Oral polio vaccine 
b HXA: Hexavalent vaccine including diphtheria, tetanus, acellular pertussis, Haemophilus influenzae type b, 

inactivated polio vaccine (IPV), and hepatitis B vaccines. 
c EIP: Effective immunisation proportion. 

 

 

Fig S2. Estimated effective immunisation proportion by districts in South Africa, 2020.   

 

1.2 Ethical statement  

This study was assessed by the Research Governance & Integrity Office at the London School of 

Hygiene & Tropical Medicine as not requiring ethical approval due to its study design as a 

secondary data analysis on 9 May 2023 (MSc ethics reference number: 29004). The location and 

population size covered by each wastewater plant were provided by the National Institute of 

Communicable Diseases (NICD) in South Africa. All other data are publicly available.  
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1.3 Modelling framework 

To assess the early detection ability of environmental surveillance (ES) over acute flaccid paralysis 

(AFP) surveillance, we constructed the stochastic spatiotemporal model among unimmunised 

children under 5 years old considering the detection process through the AFP surveillance and ES 

(Fig S3). We utilised South Africa as a case study of a non-endemic country and assumed a single 

introduction of a patient with wild poliovirus serotype 1 (WPV1). Following other modelling studies 

on polio [3–5], our model comprises three components: transmission model, AFP surveillance model 

and ES model (Fig S3), which will be explained in later sections. We used the detection patterns 

and first detection timing by ES and AFP surveillance as outcomes to quantify the early detection 

ability while we varied the number of ES-covered patches. We prepared three importation risk 

distributions and two ES site layout strategies, totalling six scenarios, to account for limited 

knowledge of importation risks (Fig 1).  

 

Fig S3. Schematic representation of our model, comprising of three parts: transmission 
model, AFP surveillance model and ES model. Each compartment is defined as follows: S, 
susceptible population; E, latent population; I, infectious population; R, recovered population; V, 
immunised population; and A1 through A6, population who are developing AFP. ES sensitivity is 
dependent on the incidence rate of infectious polio patients. The subscript of i corresponds to the 
location. Abbreviations: ES, environmental surveillance; AFP, acute flaccid paralysis. 

 

1.3.1 Transmission model  

We employed the stochastic spatiotemporal SEIR model to describe the transmission dynamics. 

The SEIR model simulates the process in which susceptible individuals (S) get infected, passing 

through a latent period (E) and infectious period (I), and then recover from infection (R). We only 

considered unimmunised children under 5 years old since most reported patients with AFP were 
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within this age group [6]. We assumed no waning of immunity from vaccination or natural infection. 

Considering our simulation length (i.e. 3 years), we introduced the birth and removal rate (μ) to 

reflect the population dynamics. We classified infectious compartments into the one covered by the 

ES (Ic) and the one not covered by the ES (Inc) but assumptions on infectiousness did not differ 

between groups.  

The force of infection at patch i at day t (λi,t) corresponds to the rate at which susceptible individuals 

at patch i at day t get infected and is described by  

𝜆𝑖,𝑡 =
𝛽

𝑁𝑖,𝑐
[(1 − 𝛼)(𝐼𝑖,𝑐,𝑡 + 𝐼𝑖,𝑛𝑐,𝑡) + 𝛼 ∑ 𝜋𝑗𝑖(𝐼𝑗,𝑐,𝑡 + 𝐼𝑗,𝑛𝑐,𝑡)

𝑗≠𝑖

 ] , (S1) 

where β corresponds to the transmission rate, and α corresponds to the travelling rate between 

patches, which represents the proportion of travellers per day from one patch. The population aged 

under 5 years old at patch i  is denoted as Ni,c. It is noted that immunised populations (Vi) 

contributed to herd immunity and its population size was given by Ni,c multiplied by the EIP at patch i 

(EIPi). Then, the initial susceptible population at patch i (Si) was given by Ni,c (1-EIPi), and the 

effective reproduction number at patch i at the beginning of the simulation (Re,i) was given by the 

product of the basic reproduction number (R0=β/γ2) and the EIP at patch i.  

The second term of Equation S1 corresponds to the hazard from other patches, considering the 

travelling rate (α) and moving rates of travellers from origin j to destination i among all travellers 

moving from patch j (πji). We adopted the frequency-dependent model for between-patch 

transmission, which was theoretically investigated [7,8], while another modelling study on poliovirus 

employed density-dependent transmission [5]. We used the radiation model to approximate moving 

rates (πji): 

𝜋𝑖𝑗 =
𝑁𝑖,𝑐𝑁𝑗,𝑐

(𝑁𝑖,𝑐 + 𝑁𝑖𝑗,𝑐
𝑠 )(𝑁𝑖,𝑐 + 𝑁𝑗,𝑐 + 𝑁𝑖𝑗,𝑐

𝑠 )
, (S2) 

where 𝑁𝑖𝑗,𝑐
𝑠  denotes the aggregated population aged under 5 years old within the circular area with a 

radius extending from patch i to patch j, centred at patch i but excluding the source and destination 

population. The histogram and heatmap of moving rates (πij) of the top 3 populous patches are 

shown in Fig S4. The previous study suggested in the context of polio disease, the radiation model 

not only outperformed the gravity model [9–11], but also excelled when compared to the gravity 

model calibrated to mobile phone data [9].   

We adopted the discrete Markov process with daily time steps for our stochastic simulations. 

Transition events, effects and sampling ways of new states were summarised in Table S2.   
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Fig S4. Moving rates from origin i to destination j (πij) approximated by the radiation model 
for the three most populous patches. (A, C, E) Histogram of πij and (B, D, E) heatmap of πij with 
colour bar values on a log10 scale for (A, B) West Rand, (C, D) City of Cape Town and (E, F) City of 
Johannesburg.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.17.24312151doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.17.24312151
http://creativecommons.org/licenses/by/4.0/


9 
 

Table S2. Discrete Markov process for each time step.  

Event (patch i) Effect Sampling way 

Birth of susceptible 

individuals 
(𝑆𝑖,𝑡+1) ← (𝑆𝑖,𝑡 + 𝑍

𝑖,𝑡

(𝑁𝑖,𝑢)
) 𝑍

𝑖,𝑡

(𝑁𝑖,𝑢)
∼ Binomial(𝑁𝑖,𝑢, 1 − 𝑒−𝜇) 

Removal of susceptible 

individuals because of  age 

eligibility 

(𝑆𝑖,𝑡+1) ← (𝑆𝑖 − 𝑍𝑖,𝑡

(𝑆𝑖)
) 𝑍

𝑖,𝑡

(𝑆𝑖,𝑡)
∼ Binomial(𝑆𝑖.𝑡 , 1 − 𝑒−𝜇) 

Infection of susceptible 

individuals 
(𝑆𝑖,𝑡+1, 𝐸𝑖,𝑡+1) ← 

 (𝑆𝑖,𝑡 − 𝑍
𝑖,𝑡

(𝑆𝑖.𝑡, 𝐸𝑖,𝑡)
, 𝐸𝑖,𝑡 + 𝑍

𝑖,𝑡

(𝑆𝑖,𝑡, 𝐸𝑖,𝑡)
) 

𝑍
𝑖,𝑡

(𝑆𝑖,𝑡,𝐸𝑖,𝑡)
∼ Binomial(𝑆𝑖,𝑡 , 1 − 𝑒−𝜆𝑖,𝑡) 

New individuals who will 

develop AFP 
(𝐴1,𝑖,𝑡+1) ← (𝐴1,𝑖,𝑡 + 𝑍

𝑖,𝑡

(𝐴1,𝑖,𝑡)
) 𝑍

𝑖,𝑡

(𝐴1,𝑖,𝑡)
∼ Binomial(𝑍

𝑖,𝑡

(𝑆𝑖,𝑡,𝐸𝑖,𝑡)
, 𝑝𝐴𝐹𝑃) 

Removal of latent 

individuals because of age 

eligibility 

(𝐸𝑖,𝑡+1) ← (𝐸𝑖,𝑡 − 𝑍
𝑖,𝑡

(𝐸𝑖,𝑡)
) 𝑍

𝑖,𝑡

(𝐸𝑖,𝑡)
∼ Binomial(𝐸𝑖,𝑡 , 1 − 𝑒−𝜇) 

Becoming infectious (𝐸𝑖,𝑡+1, 𝐼𝑖,𝑡+1) ← 

    (𝐸𝑖,𝑡 − 𝑍
𝑖,𝑡

(𝐸𝑖,𝑡, 𝐼𝑖,𝑡)
, 𝐼𝑖,𝑡 + 𝑍

𝑖,𝑡

(𝐸𝑖,𝑡, 𝐼𝑖,𝑡)
) 

𝑍
𝑖,𝑡

(𝐸𝑖,𝑡, 𝐼𝑖,𝑡)
∼ Binomial(𝐸𝑖,𝑡 , 1 − 𝑒−𝛾1) 

Removal of infected 

individuals because of age 

eligibility 

(𝐼𝑖,𝑡+1) ← (𝐼𝑖,𝑡 − 𝑍
𝑖,𝑡

(𝐼𝑖,𝑡)
) 𝑍

𝑖,𝑡

(𝐼𝑖,𝑡)
∼ Binomial(𝐼𝑖,𝑡 , 1 − 𝑒−𝜇) 

Recovery from infection (𝐼𝑖,𝑡+1, 𝑅𝑖,𝑡+1) ← 

    (𝐼𝑖,𝑡 − 𝑍
𝑖,𝑡

(𝐼𝑖,𝑡, 𝑅𝑖,𝑡)
, 𝑅𝑖,𝑡 + 𝑍

𝑖,𝑡

(𝐼𝑖,𝑡, 𝑅𝑖,𝑡)
) 

𝑍
𝑖,𝑡

(𝐼𝑖,𝑡, 𝑅𝑖,𝑡)
∼ Binomial(𝐼𝑖,𝑡 , 1 − 𝑒−𝛾2) 

Removal of recovered 

individuals because of age 

eligibility 

(𝑅𝑖,𝑡+1) ← (𝑅𝑖,𝑡 − 𝑍
𝑖,𝑡

(𝑅𝑖,𝑡)
) 𝑍

𝑖,𝑡

(𝑅𝑖,𝑡)
∼ Binomial(𝑅𝑖,𝑡 , 1 − 𝑒−𝜇) 

Progression of the 

incubation period of AFP 

from stage k to k +1 

(𝐴𝑘,𝑖,𝑡+1, 𝐴𝑘+1,𝑖,𝑡+1) ← 

    (𝐴𝑘,𝑖,𝑡 − 𝑍
𝑖,𝑡

(𝐴𝑘,𝑖,𝑡,𝐴𝑘+1,𝑖,𝑡)
,          

                  𝐴𝑘+1,𝑖,𝑡 + 𝑍
𝑖,𝑡

(𝐴𝑘,𝑖,𝑡,𝐴𝑘+1,𝑖,𝑡)
) 

𝑍
𝑖,𝑡

(𝐴𝑘,𝑖,𝑡,𝐴𝑘+1,𝑖,𝑡)
∼ Binomial(𝐴𝑘,𝑖,𝑡 , 1 − 𝑒−𝜎  ) 

a Ni,u denotes unvaccinated individuals at patch i, calculated as the product of population aged under 5 years 

old and effective immunisation proportion at patch i. 

 

We estimated the infectious period (1/γ2) using the proportion of infected individuals shedding any 

amount of virus over time, which was provided by expert opinions [12]. Formally, the time course of 

infectiousness can be obtained by the product of the proportion of individuals shedding any amount 

of virus and non-linear transformation of the amount of virus shedding given a person excretes the 

virus each day since infection [12]. Since we do not know the functional form for the latter data, we 

regarded the first one as the infectiousness for simplicity.  
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Since the compartment model implicitly assumes the transition process from one compartment to 

another follows the exponential distribution, the distribution of infectiousness over time can be 

described as the convolution of two exponential distributions:   

𝑓(𝑡) =  ∫ 𝛾1𝑒−𝛾1(𝑡−𝑠)𝛾2𝑒−𝛾2𝑠𝑑𝑠
𝑠

0

=
𝛾1𝛾2

𝛾2 − 𝛾1

(e−𝛾1𝑡 − e−𝛾2𝑡), (S3) 

where the reciprocal, 1/γ1, corresponds to the mean incubation period and is assumed to be 4 day, 

and 1/γ2 corresponds to the mean infectious period.  We minimised the Kullback-Leibler divergence 

between the observed distribution and f(t), estimating 1/γ2 to be 15.02 days. The fitted curve is 

shown in Fig S5. 

 

Fig S5. The proportion of individuals excreting the poliovirus regardless of the amount of 
virus shedding over time, which was scaled to be one for the probability density function 
and the fitted probability density function.  
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1.3.2 AFP surveillance model   

We assumed the probability of developing AFP given infection with poliovirus to be 1/200, which 

was denoted as pAFP. Patients developing AFP are correctly reported if they successfully undergo 

the following process: seeking healthcare, being tested, and getting a positive result. We denoted 

PH, PAFP, sample, and PAFP ,test as the probability of each process. Then, the number of reported patients 

with AFP at patch i at time t, Oi,t, was described as  

𝑂𝑖,𝑡~Binomial (𝑍𝑖,𝑡

(𝐴5,𝑖,𝑡,𝐴6,𝑖,𝑡)
, 𝑃𝐻𝑃𝐴𝐹𝑃,𝑠𝑎𝑚𝑝𝑙𝑒𝑃𝐴𝐹𝑃,𝑡𝑒𝑠𝑡) , (S4) 

where the number of individuals who newly develop AFP at patch i at day t is denoted as 

𝑍𝑖,𝑡

(𝐴5,𝑖,𝑡,𝐴6,𝑖,𝑡)
. 

The incubation period of developing AFP was assumed to be 16.5 days [13,14] and we prepared 6 

compartments with transition rates of 0.329 days-1 to be aligned with the incubation period 

distribution [5]. The number of compartments and transition rates were estimated in the previous 

study [5] by fitting an Erlang distribution to 36 independent data intervals from poliovirus exposure to 

the onset of AFP. In the present study, we did not consider a delay in medical consultations, 

conducting tests and notifications to authorities. These processes usually take time [15] and should 

be accounted for when results are interpreted.  

1.3.3 Environmental surveillance model  

There are limited empirical data to compare the incidence of poliovirus against the probability of a 

positive ES sample, which is a required parameter in this analysis. Instead, we opted to assume 

that ES sensitivity for poliovirus was comparable to that observed for COVID-19, and used the 

wastewater surveillance data in the US, published by Fuqing Wu et al. [16]. The data for COVID-19 

is more amenable to analysis because of the intensity of clinical testing for SARS-CoV-2 and the 

(comparatively) low proportion of asymptomatic infections. To ensure the consistent quality of ES in 

each sampling site for estimation, we used sampling sites with both positive and negative samples, 

where daily newly reported cases on the day with positive samples were consistently higher than on 

the day with negative samples. Finally, 27 out of 353 sampling sites were eligible for the estimation.  

We employed the log-normal distribution to estimate the dose-response curve for the ES sensitivity 

against the incidence rate of COVID-19 (thus also of poliovirus infection). Let xi,t be the number of 

newly reported COVID-19 cases at sampling site i on day t,  yi,t be the indicator variable for an 

observed positive sample at sampling site i on day t, and pi,t be the probability of detecting a positive 

sample at site i on day t. We minimized the following likelihood function to estimate the parameters 

of the lognormal distribution (μES and σES):  

𝐿 = ∏ ∏ 𝑝𝑖,𝑡

𝑦𝑖,𝑡(1 − 𝑝𝑖,𝑡)
1−𝑦𝑖,𝑡

𝑡𝑖

, (S5) 

𝑝𝑖,𝑡 = 𝐺 (100,000
𝑥𝑖,𝑡

𝑁𝑖,𝐹𝑊
; 𝜇𝐸𝑆, 𝜎𝐸𝑆) = Φ (

log (100,00
𝑥𝑖,𝑡

𝑁𝑖,𝐹𝑊
) − 𝜇𝐸𝑆

𝜎𝐸𝑆
) 

where G denotes the cumulative density function of the log-normal distribution, Ni, FW denotes the 

population in the state with sampling site i, which was given in Fuqing Wu et al. [16], and Φ 
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corresponds to the cumulative density function of the standard normal distribution. We obtained 

0.818 for μES and 1.45 for σES.  

The estimated parameters here will be inappropriate in terms of differences in the amount and 

length of virus shedding between SARS-CoV-2 and poliovirus in addition to differences in 

diagnostics for the detection of virus. In the main text, we conducted the sensitivity analysis ranging 

the ES sensitivity from 10 times higher to 10 times lower. We multiplied 1/k for previous data to 

obtain parameters for k times higher ES sensitivity. The dose-response curves for those ES 

sensitivity parameters are shown in Fig S6. σES was estimated to be constant across different ES 

sensitivity assumptions and μES was estimated to be 3.121, 1.917, -0.281 and -1.485 for 10 times 

lower, 3 times lower, 3 times higher, and 10 times higher ES sensitivity, respectively.  

 

Fig S6. Dose-response curve for the ES sensitivity parameter against the number of 
infectious individuals per 100,000 population in a single patch.   

 

We modelled the detection process through ES as the binomial process in our simulation study. Let 

ni,t be the indicator variable for conducting environmental sampling at patch i at day t (e.g. given 

monthly sampling, ni,t takes 1 on a single day, and takes 0 for the remaining days within a month), 

and PES, test be the test sensitivity given a collected sample contains a detectable level of virus. The 

number of polio-positive samples in wastewater (wi,t) is given by  

𝑤𝑖,𝑡~Binomial (𝑛𝑖,𝑡 , 𝐺 (100,000
𝐼𝑖,𝑐,𝑡

𝑁𝑖𝑝𝑐
; 𝜇𝐸𝑆, 𝜎𝐸𝑆) 𝑃𝐸𝑆,𝑡𝑒𝑠𝑡) . (S6)  

It is noted that in each patch, pc% of the population was assumed to be covered by the ES, and we 

separately considered the infectious individuals covered by ES (Ii,c,t) or not (Ii,nc,t) in the compartment 

model. Here Ni denotes the population of all ages at patch i (not limited to children under 5 years 

old).  
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1.3.4 Importation risk distributions   

Importation risk at patch i refers to the probability that WPV1 is introduced to that specific patch and 

importation risk distribution refers to the distribution of importation risk across patches. We 

considered three importation risk distributions, which are denoted as IMP-POP, IMP-AIR, and IMP-

LBC.  

The IMP-POP refers to the ‘Population size’-based importation risk distribution and assumes 

importation risk is proportional to the population size of each patch. Let ri be the importation risk at 

patch I for the IMP-POP scenario and be described as  

𝑟𝑖 =
𝑁𝑖,𝑐

∑ 𝑁𝑖,𝑐𝑖
, (S7) 

where Ni,c denotes the population size of children aged under 5 years old at patch i. 

The IMP-AIR refers to the ‘International airport’-based importation risk distribution and assumes 

importation risk is proportional to international inbound travel volume in 2019 and further considers 

mobilisation from airports, which was approximated by the radiation model given in Equation S2. 

Without considering mobilisation from airports, importation risks would be too confined to a few 

patches, which are sometimes very rural areas and we did not think that importation risk distribution 

is a realistic one. South Africa holds three international airports and their international inbound travel 

volumes in 2019 were 4,342,611 for O.R. Tambo International Airport, 1,156,996 for Cape Town 

International Airport, and 188,243 for King Shaka International Airport (Fig 1D). 

We denote l1, l2 and l3 as the location of a patch with O.R. Tambo International Airport, Cape Town 

International Airport, and King Shaka International Airport, respectively. Let wli be the proportion of 

the inbound travel volume at patch li with international airport i. The importation risk at patch i for the 

IMP-AIR is described as the average of moving rates from three international airports weighted by 

their inbound travel volumes: 

𝑟𝑖 = 𝑤𝑙1𝜋(𝑙1)𝑖 + 𝑤𝑙2𝜋(𝑙2)𝑖 + 𝑤𝑙3𝜋(𝑙3)𝑖. (S8) 

The IMP-LBC refers to the ‘Land border crossing’-based importation risk distribution and assumes 

importation risk is proportional to travelling volume from Mozambique. Here, we assumed poliovirus 

was circulating in Mozambique and importation from Mozambique to South Africa happened via 

land border crossing. Since mobilisation volume data between Mozambique and South Africa is not 

available, we approximated those mobilisations with the radiation model.  

The probability of the presence of poliovirus in patch j in Mozambique was assumed to be 

proportional to the population size of children under 5 years old, and the movement from patch j in 

Mozambique to patch i in South Africa is given by the radiation model between the two countries. 

The importation risk at patch i in South Africa for the IMP-LBC is described as  

𝑟𝑖 =
∑ 𝛼𝑀𝜋𝑗𝑖𝑁𝑗,𝑐𝑗∈𝑆𝑀𝑂𝑍

∑ ∑ 𝛼𝑀𝜋𝑗𝑘𝑁𝑘,𝑐𝑗∈𝑆𝑀𝑂𝑍𝑘∈𝑆𝑍𝐴𝐹

=
∑ 𝜋𝑗𝑖𝑁𝑗,𝑐𝑗∈𝑆𝑀𝑂𝑍

∑ ∑ 𝜋𝑗𝑘𝑁𝑘,𝑐𝑗∈𝑆𝑀𝑂𝑍𝑘∈𝑆𝑍𝐴𝐹

, (S9) 

where SMOZ and SZAF represent the set of patches in Mozambique and South Africa, respectively. 

The travelling rate from Mozambique to South Africa (αM) would be different from the travelling rate 

between patches in South Africa (α) but is cancelled out in Equation S9.    

The importation risk distributions explained above are visualised in Fig S7.  
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Fig S7. Importation risk distributions in a log10 scale (A) for IMP-POP, (B) IMP-AIR, and (C) 
IMP-LBC.  

  

1.3.5 ES site layout strategies and a patch-level ES population coverage (pc) 

ES site layout strategy determines a sequence of which patches are covered by the ES when we 

increase the number of ES-covered patches. We considered two ES site layout strategies: ES-POP 

and ES-LBC. The ES-POP refers to the ‘Population size’-based ES site layout strategy, and 

assumes the ES is implemented in the descending order of population size of each path. Hence, 

this strategy can cover the largest population size by the ES given the same number of ES-covered 

patches.  

The ES-LBC refers to the ‘Land border crossing importation risk’-based ES site layout strategy, and 

assumes the ES is first implemented in a patch with a high importation risk via land border crossing 

from Mozambique. The importation risk from Mozambique is given as the same in Equation S9. The 

motivation to prepare the ES-LBC is to quantify the effectiveness of the strategic positioning of the 

ES sites against the high importation risks in rural areas. The animations of the incremental ES 

implementation from a single patch to all patches were prepared for both ES-POP and ES-LBC in 

gif-files (S1-2 Video). It is noted that the maximum national ES population coverage was set at 25% 

since we assumed the ES-population coverage in each patch (called a patch-level ES population 

coverage, pc) to be 25%, which reason is explained below.  

We aimed for our simulated ES site layout under the ES-POP to be closely aligned with the 

observed one. The ES site is generally prioritised to be placed in populous areas in the real-world 
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setting. To quantify the similarity between simulated and observed ES layouts in South Africa, we 

first calculated the observed national and district-level ES population coverage (Table S3). Then, we 

varied a patch-level ES population coverage (pc) fixing the simulated national ES population 

coverage to be the same as the observed one, and descriptively compared the simulated number of 

districts with ES sites and the corresponding district-level ES population coverage with the observed 

ones (Table S4).  

We calculated the observed national and district-level ES population coverage using the location 

and ES-covered population of each wastewater plant, which was provided by the National Institute 

of Communicable Diseases in South Africa as of 27 November 2023. The ES-covered population 

was missing for Rooiwai Eastern and Daspoort wastewater plants and we imputed the median ES-

covered population size of 350,000. We finally estimated the observed national ES population 

coverage in South Africa to be 11.3% (Table S3). The median and mean of the district-level ES 

population coverage among districts with ES sites were 30.6% and 22.5%, respectively.  

We simulated the ES layout varying the patch-level ES population coverage (pc) while fixing the 

simulated national ES population coverage to be the observed one of 11.3% (Table S4). When we 

set pc at 100%, the ES sites were too concentrated and simulated district-level ES population 

coverages were much higher than observed ones. We chose pc to be 25% for the main analysis 

considering the dispersion of ES sites and district-level ES population coverages (Table S4 and Fig 

S8).  

Table S3. Approximated ES-covered population size in districts with ES sites in South Africa 
as of 27 November 2023. 

Province District District-level 

population size 

Wastewater plant 

name 

ES-covered 

population size 

District-level ES 

population 

coverage (%) 

Eastern 

Cape 

Buffalo City 760840 East Bank 141000 22.5 

Gonubie 30400 

Free State Mangaung 826621 Bloemspruit 350000 66.5 

Sterkwater 200000 

Gauteng City of 

Johannesburg  

5540727 Northern 1200000 46.0 

Goudkoppies 500000 

Bushkoppies 850000 

City of 

Tshwane  

3627986 Rooiwal Eastern NA NA 

Daspoort NA 

Ekurhuleni  3739653 Hartebeesfontein 100000 10.7 

Olifantsfontein 100000 

Vlakplaats 200000 

KwaZulu 

Natal 

eThekwini  3587907 Central 350000 18.6 

Northern 316425 

North West Bojanala  1786678 Rustenburg 509000 28.5 

Western 

Cape 

City of Cape 

Town  

4436413 Borcherd's Quarry 380000 18.9 

Zandvliet 460000 
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Table S4. Observed and simulated district-level ES population coverage for the ES-POP 
varying the patch-level ES population coverages (pc) given the simulated national ES 
population coverage was fixed at the observed one (11.3%). 

Province District Observed district-level ES 

population coverage (%) 

Simulated district-level ES 

population coverage (%) 

pc=1.0a pc=0.5a pc=0.25a 

Eastern Cape 

  

  

Buffalo City  22.5   19.6 

Nelson Mandela Bay 0.0  36.0 18.0 

Free State 

  

Mangaung 66.5   15.2 

Thabo Mofutsanyane 0.0   9.7 

Gauteng 

  

  

  

  

Ekurhuleni  10.7  17.5 25.0 

City of Johannesburg  46.0 37.1 50.0 25.0 

City of Tshwane  19.3  12.4 21.2 

West Rand 0.0 56.8 28.4 23.6 

Sedibeng  0.0   17.5 

Kwazulu 

Natal 

  

  

  

eThekwini  18.6 64.2 32.1 22.2 

iLembe  0.0  31.8 19.3 

Umgungundlovu  0.0   8.8 

Amajuba  0.0   9.1 

Western Cape City of Cape Town  18.9 36.7 40.7 22.8 

Cape Winelands  0.0   12.5 

Limpopo Waterberg 0.0   8.6 

Capricorn  0.0   7.9 

Mpumalanga Ehlanzeni  0.0   7.0 

North West Bojanala  28.5   11.6 

Northern 

Cape 

NA NA 
   

a Blank in those columns represents no ES-covered patches. 
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Fig S8. Environmental surveillance (ES) location maps. (A) Observed 17 ES sites in South 
Africa. Data points represent the location of observed ES sites, with each marker style indicating a 
specific range of ES-covered population sizes. The inset displays the expanded view of the areas 
with a high density of ES sites. (B, C) Simulated ES site layout when the simulated national ES 
population coverage was matched with the observed coverage given the patch-level ES population 
coverage was set at 25% (B) for ES-POP and (C) for ES-LBC. Blue squared areas represent 
patches with simulated ES sites. The number of ES-covered patches was 58 for ES-POP and 154 
for ES-LBC.   

 

1.3.6 Model parameter specification 

Parameter values used in our simulations are summarised in  

Table S5. We explained the rationale for the choice of several parameters.  

We chose the basic reproduction number (R0) to be 14 based on the estimation for developing 

countries by Fine et al.1999, which used age-stratified seroprevalence data [17]. This estimated 

value would be higher considering the current hygiene situation in South Africa. In our transmission 

model, the population who were successfully vaccinated and immunised were removed from the 

dynamics. We define the transmissibility accounting for the initial susceptible population as the 

effective reproduction number at the beginning of the simulation for South Africa, Re(0). We 

calculated Re(0) by the product of R0 and EIP in each district and averaged them across districts 

weighted by the population size of each district, and we obtained 1.13 for Re(0).  

Regarding the AFP surveillance-related parameters, the stool adequacy rate refers to two stool 

specimens of sufficient quantity for laboratory analysis, collected at least 24 hours apart, within 14 
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days after the onset of paralysis. The stool adequacy rate in South Africa was reported 53% from 

2016 to 2019 [18]. The procedures of handling samples from polio patients in the laboratory in 

South Africa followed the WHO Polio Laboratory Manual and supplement [18] and its sensitivity of 

polio detection was reported to be 0.97 [19].  

We assumed monthly sampling (every 30 days) from the ES site in each patch for our simulation. 

Most African countries use a grab method to collect samples from wastewater and the sampling 

frequency is often 30 days due to manual labour burdens [20]. Some countries adopted a composite 

method for the ES, allowing daily or weekly sampling. GPEI recommends daily or weekly sampling 

but also accepts monthly sampling [21].  

Table S5. Model Parameters used for our simulation. 

Parameter description Values Reference 

Per-dose vaccine effectiveness for IPV 

assessed by seroconversion 

0.63 [22–24] 

Average effective immune proportion 

(EIP) weighted by population size of 

children under 5 years old 

91.9% Estimated from the population 

data (WorldPop) and vaccine 

coverage data 

Basic reproduction number, R0 14 Assumed 

Effective reproduction number at time 0 

at a national level, Re(0) 

1.13 Estimated  

Latent period, γ1 1/4 days-1 [25] 

Infectious period, γ2 1/15.02 days-1  Estimated [12] 

Transmission rate, β 0.93 Estimated by R0 γ2 

Travelling rates, α 0.05 Assumed 

Age criteria for population Less than 5 years old Assumed 

Birth and removal rate, μ 1/(365*5) Assumed 

Transition rate of the incubation period 

for 6 compartments, σ 

1/3.04 days-1 Estimated [5,13,14] 

Patch-level ES population coverage, pc 0.25 Assumed 

Paralysis-to-infection ratio, pAFP 1/200   [26] 

Probability of seeking healthcare, PH  0.9 Assumed 

Probability of stool sampling when a 

patient visits a hospital,  PAFP, sample 

0.53 [18,27] 

Sensitivity of poliovirus detection when 

stool is tested, PAFP, test 

0.97 [19,28]  
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Sensitivity of poliovirus testing of 

samples from sewage water, PES, test  

0.97 [19,28] 

ES sensitivity LogNormal(μ=0.82 ,σ=1.45) Estimated [16] 

Sampling frequency Every 30 days [20,21]  

 

1.4 Outcome measures 

The detection pattern for each simulation falls into one of the following five patterns (Fig 1).  

1. No detection: neither AFP surveillance nor ES detected the poliovirus circulation.  

2. AFP surveillance only detected polio patients.  

3. AFP surveillance detected the poliovirus circulation earlier than ES.  

4. ES detected the poliovirus circulation earlier than AFP surveillance.  

5. ES only detected the poliovirus circulation.  

Let tAFP and tES be the timing of the first detection through AFP surveillance and ES, respectively. 

The lead time of the first detection through ES over APF surveillance (denoted as LT) is defined as 

tAFP – tES, meaning that a positive value of LT corresponds to the early detection by ES (pattern 4) 

and a negative value of LT corresponds to the early detection by AFP surveillance (pattern 3). The 

lead time can only be calculated for patterns 3 and 4.  

We used the proportion of each detection pattern among simulations with any poliovirus detection 

as the main outcome and excluded no detection pattern to match simulation outcomes with the real-

world observations. To inform the quantitative aspect of early detection, we further classified pattern 

3 into “< -60 LT” and “-60 ~ -1 LT” categories and pattern 4 into “0 – 59 LT”, and “≥60 LT” categories. 

We refer to the “simulated early detection probability” as the proportion of “0 – 59 LT”, “≥60 LT” and 

ES only detection patterns given the poliovirus circulation is detected. 

1.5 Average minimum distance to ES-covered patches and simulated early 

detection probability.  

We quantified the simulated early detection probability varying the number and location of the ES. 

However, our stochastic simulation took a long time and implementation was complex. We therefore 

explored a simple alternative measurement to inform the ES site layout strategy. Given importation 

risk distribution and EIPs in each patch were known, we calculated the weighted average minimum 

distance to the closest ES-covered patch and quantified the relationship between this measure and 

the simulated early detection probability.  

The average minimum distance to the closest ES-covered patches (dave) weighted by the 

importation risks is given as  

𝑑𝑎𝑣𝑒 = ∑ 𝑟𝑖 min({𝑑𝑖𝑗; 𝑗 ∈ 𝑆𝐸𝑆)

𝑖

, (S10) 

where ri is the importation risk at patch i for each scenario, dij is the distance between patch i and 

patch j, and SES is the set of patches with the ES.  

Since the regional heterogeneity in vaccination coverage can influence the timing of detection, we 

also consider the average minimum distance weighted by the importation risks and the outbreak 

probability in each patch (dave,w):  
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𝑑𝑎𝑣𝑒,𝑤 =
∑ 𝑟𝑖𝑃(𝑋 ≥ 10; 𝑅𝑒.𝑖) min({𝑑𝑖𝑗; 𝑗 ∈ 𝑆𝐸𝑆})𝑖

∑ 𝑟𝑖𝑃(𝑋 ≥ 10; 𝑅𝑒,𝑖)𝑖

, (S11) 

where 𝑃(𝑋 ≥ 10; 𝑅𝑒,𝑖) denotes the outbreak probability of 10 or more infections occurring given the 

effective reproduction number at patch i at the beginning of the simulation (Re,i), which is given by 

the product of the effective immunisation proportion at patch i (EIPi) and the basic reproduction 

number (R0). We visualised the relationship between dave,w and the simulated early detection ability 

in the main analysis (Fig 5). We arbitrarily chose the value of 10 infections for the cutoff. Assuming 

the branching process and the Poisson distribution as the offspring distribution (i.e. no 

overdispersion), the probability of observing x cases given Re,i follows the Borel-Tanner distribution 

[29–31]. 

𝑃(𝑋 = 𝑥; 𝑅𝑒,𝑖) =
𝑥𝑥−2𝑅𝑒,𝑖

𝑥−1𝑒−𝑥𝑅𝑒,𝑖

(𝑥 − 1)!
. (S12) 

Then, the probability of 10 or more infections occurring is calculated by considering the complement 
of less than 10 infections occurring.   

𝑃(𝑋 ≥ 10; 𝑅𝑒,𝑖) = 1 − ∑ 𝑃(𝑋 = 𝑖; 𝑅𝑒,𝑖)

9

𝑖=1

. (S13) 

The histogram of Re,i in South Africa and the corresponding probability of at least 10 infections 

happening given a single introduction is shown in Fig S9. 

 

Fig S9. Histogram of the effective reproduction number for each patch and corresponding 
outbreak probability with ≥10 infections.  

 

1.6 Simulation implementation.  

We randomly chose a patch for an introduction of WPV1 and simulated the stochastic meta-

population model for 3 years 10,000 times for each scenario. We recorded the number of individuals 
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at each patch in every compartment every day. Using those numbers in each compartment, we 

repeatedly applied the detection process through AFP surveillance and ES, varying the number of 

ES sites. We ended the simulation when one of the following criteria was met: the first poliovirus 

was detected through both surveillance, no polio patients were present, or three years had passed 

from the beginning of the simulation.  

All the analysis was performed in Julia v1.8.3. It took around 5 to 8 hours to complete 10,000 

simulations for one scenario from running the transmission model to running AFP surveillance 

model and ES model. The data and code are deposited on GitHub 

(https://github.com/toshiakiasakura/polio_environmental_surveillance). 

 

2 Supplementary results 

2.1 Characteristics for the top 20 populous patches  

Table S6. Population size and effective immunisation proportion (EIP) for the top 20 
populous patches.  

Longitu

de 

Latitude District of each patch Population 

size aged 

under 5 

years old  

Cumulative 

proportion 

(%) 

EIPd Unimmunised 

population 

aged under 5 

years old 

27.77 -26.15 West Rand 88395 3.1 94.9 4508 

18.57 -33.82 City of Cape Town 66488 5.5 94.7 3516 

30.83 -29.79 eThekwinia 55556 7.4 90.3 5408 

28.15 -25.96 City of Johannesburg 51209 9.2 93.4 3369 

27.96 -26.15 City of Johannesburg 48254 10.9 93.4 3175 

30.83 -29.60 iLembe 46696 12.6 75.4 11483 

18.57 -34.01 City of Cape Townb 40666 14.0 94.7 2151 

18.37 -33.82 City of Cape Town 40057 15.4 94.7 2118 

27.96 -25.96 City of Johannesburg 37234 16.7 93.4 2450 

27.96 -25.39 City of Tshwane 35821 18.0 94.5 1983 

28.15 -26.15 Ekurhulenic 35621 19.3 94.1 2110 

25.47 -33.82 Nelson Mandela Bay 34878 20.5 91.5 2962 

27.77 -26.34 West Rand 27991 21.5 94.9 1427 

27.96 -25.77 City of Tshwane 25726 22.4 94.5 1424 

28.15 -25.58 City of Tshwane 25023 23.3 94.5 1385 

27.77 -26.54 Sedibeng 24300 24.1 91.9 1965 

27.77 -25.96 West Rand 20628 24.9 94.9 1052 

28.34 -25.58 City of Tshwane 19920 25.6 94.5 1103 

28.34 -26.15 Ekurhuleni 19597 26.3 94.1 1161 

18.37 -34.01 City of Cape Town 17993 26.9 94.7 952 
a Closest patch to King Shaka International Airport among the patches in this table. The rank of population 

size in King Shaka International Airport's patch is 61st. 
b Cape Town International Airport is in this patch. 
c Tambo International is in this patch. 
d Effective immunisation proportion. 
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2.2 Simulation results under a single patch setting.  

We simulated a stochastic SEIR model in a single patch to differentiate between the effects of 

parameters on the simulated early detection ability of ES attributable to spatial components and 

those stemming from model behaviours in a single patch. We employed the same model without a 

meta-population framework using the parameters listed in Table S5. We chose 100,000 population 

size of children aged under 5 years old and set the population size of all ages as 100,000 divided by 

the patch-level ES population coverage (pc).  

We visualised the simulated cumulative detection probability over time for the AFP surveillance 

(dotted lines) and ES (solid lines) in Fig S10. Additionally, we visualised the proportion of any 

detection of the poliovirus circulation among all simulations including no detection pattern, and the 

proportion of each detection pattern given poliovirus circulation is detected (excluding no detection 

pattern).  

Theoretically, ES-related parameters (sampling frequency, ES sensitivity, patch-level ES population 

coverage) do not influence the simulated cumulative probability of detection for AFP surveillance, 

which was confirmed by our simulations. Regarding population size, as the population size of 

children under 5 years old increased, the simulated cumulative probability for AFP surveillance also 

increased since the absolute value of patients with poliovirus became larger. On the other hand, the 

simulated cumulative probability for ES decreased because we assumed ES sensitivity was 

dependent on the incidence rate and a larger denominator resulted in the lower incidence rate. 

We re-estimated ES sensitivity parameters with the simulated first detection timing through ES using 

Equation S5 to validate our assumption that ES sensitivity is proportional to the incidence rate of 

infectious individuals (Fig S11). We did not include simulated negative environmental samples for 

the estimation. Through this procedure, we illustrated higher ES sensitivity estimates for a large 

population size and lower ES sensitivity estimates for a small population size. This model behaviour 

is consistent with other estimates using the wastewater sample data [32].  
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Fig S10. Sensitivity analysis of parameters in a single patch setting. (A) Simulated cumulative 
detection probabilities. Solid lines and dotted lines represent simulated probability for ES and AFP 
surveillance, respectively. (B) Simulated probability of detection through either AFP surveillance or 
ES among all simulations including no detection pattern (%). (C) The proportion of each detection 
pattern (%) given poliovirus circulation was detected.  
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Fig S11. Dose-response curves for estimated ES sensitivity parameters under different 
population sizes of children under 5 years old (Nc) in a single patch setting.  

 

2.3 Two alternative visualisations for the main analysis  

We limited the x-axis for Fig 2 to 160 for the interpretability of the results, and here we visualised the 

same results where the x-axis represents the national ES population coverage (Fig S12). The 

national ES population coverage was obtained by the product of the percentage of the population in 

ES-covered patches and the patch-level ES population coverage (pc). Therefore, the maximum 

value of the ES population coverage is matched with our parameter choice for pc (i.e. 25%). It is 

noted that the maximum number of ES-covered patches of 1502 corresponds to the national ES 

population coverage of 25%, and 160 ES-covered patches were close to the plateau of the 

simulated early detection probability.  

We further calculated the proportion of each detection pattern by including the “no detection” pattern 

(Fig S13) whereas we did not include the “no detection” pattern in the main text figures. Differences 

in the proportion of the “no detection” pattern would be attributable to the ES layout strategy and 

heterogeneity in the effective reproduction number in each path (Fig S9).  
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Fig S12. Proportion of each detection pattern (%) against national ES population coverage 
for 6 scenarios. The blue-coloured area under the black dotted lines represents the simulated early 
detection probability, consisting of early detection of ES over AFP surveillance and ES only 
detection. LT denotes the lead time of poliovirus detection through ES over AFP surveillance.     

 

Fig S13. Proportion of each detection pattern (%) including the no detection pattern against 
the number of ES-covered patches for 6 scenarios. The non-coloured area represents the 
simulated probability of detecting poliovirus circulation neither through AFP surveillance nor ES. The 
blue-colours area under the black dotted lines represents the simulated early detection probability. 
LT denotes the lead time of poliovirus detection through ES over AFP surveillance.    
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2.4 Sensitivity analysis on the patch-level ES population coverage for 

different scenarios  

We conducted the sensitivity analysis of the patch-level ES population coverage (pc) for the other 5 

scenarios as well as the main text (Fig 4). We found a similar trend in Fig S14-S15 as in Fig 4. That 

is, the simulated early detection probability was robust against the number of ES-covered patches 

but had a large variation against the national ES population coverage.  

 

Fig S14. Sensitivity analysis of the patch-level ES population coverage, pc, for the ES-pop 
scenarios. (A, B, C) For the IMP-AIR/ES-POP scenario. (C, D, F) For the IMP-LBC/ES-POP 
scenario. Simulated early detection probability is plotted (A, D) against the number of ES-covered 
patches, (B, E) against the percentage of the population in ES-covered patches, and (C, F) against 
the national ES population coverage. The data points represent simulations where the national ES 
population coverage of the simulated ES layout aligns with the current coverage in South Africa 
(11.3%), under pc of 25% (blue), 50% (orange) and 100% (orange). The national ES population 
coverage is given by the product of pc and the percentage of the population in ES-coverage 
patches. It is noted that the maximum number of ES-covered patches is 1502 and the x-axis for (A, 
D) is limited to a maximum value of 160.  
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Fig S15. Sensitivity analysis of the patch-level ES population coverage, pc, for the ES-LBC 
scenarios. (A, B, C) For the IMP-POP/ES-LBC scenario. (D, E, F) For the IMP-AIR/ES-LBC 
scenario. (G, H, I) For the IMP-LBC/ES-LBC scenario. Simulated early detection probability is 
plotted (A, D, G) against the number of ES-covered patches, (B, E, H) against the percentage of the 
population in ES-covered patches, and (C, F, I) against the national ES population coverage. The 
data points represent simulations where the national ES population coverage of the simulated ES 
layout aligns with the current coverage in South Africa (11.3%), under pc of 25% (blue), 50% 
(orange) and 100% (orange). The national ES population coverage is given by the product of pc and 
the percentage of the population in ES-coverage patches. It is noted that the maximum number of 
ES-covered patches is 1502 and the x-axis for (A, D, G) is limited to a maximum value of 160. 
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