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Abstract 19 

Purpose: To train and evaluate a segmentation-free 3D convolutional neural network (3DCNN) 20 

model for estimating visual field (VF) from optical coherence tomography (OCT) images and to 21 

compare the residual variability of OCT-based estimated VF (OCT-VF) with that of Humphrey Field 22 

Analyzer (HFA) measurements in a diverse clinical population. 23 

Design: Retrospective cross-sectional study. 24 

Participants:  5,351 patients (9,564 eyes) who underwent macular OCT imaging and Humphrey 25 

Field Analyzer (HFA) tests (24-2 or 10-2 test patterns) at a university hospital from 2006 to 2023. 26 

The dataset included 47,653 paired OCT-VF data points, including various ocular conditions. 27 

Methods: We trained a segmentation-free 3DCNN model based on the EfficientNet3D-b0 28 

architecture on a comprehensive OCT dataset to estimate VF. We evaluated the model's performance 29 

using Pearson's correlation coefficient and Bland‒Altman analysis. We assessed residual variability 30 

using a jackknife resampling approach and compared OCT-VF and HFA datasets using generalized 31 

estimating equations (GEE), adjusting the number of VF tests, follow-up duration, age, and clustering 32 

by eye and patient. 33 

Main Outcome Measures: Correlations between estimated and measured VF thresholds and mean 34 

deviations (MDs), and residual variability of OCT-VF and HFA. 35 

Results: We observed strong correlations between the estimated and measured VF parameters 36 

(Pearson's r: 24-2 thresholds 0.893, MD 0.932; 10-2 thresholds 0.902, MD 0.945; all p < 0.001). 37 

Bland‒Altman analysis showed good agreement between the estimated and measured MD, with a 38 

slight proportional bias. GEE analysis demonstrated significantly lower residual variability for OCT-39 

VF than for HFA (24-2 thresholds: 1.10 vs. 2.48 dB; 10-2 thresholds: 1.20 vs. 2.48 dB; all p < 0.001, 40 

Bonferroni-corrected), with lower variability across all test points, severities, and ages, thus 41 

highlighting the robustness of the segmentation-free 3DCNN approach in a heterogeneous clinical 42 
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sample. 43 

Conclusions: A segmentation-free 3DCNN model objectively estimated VF from OCT images with 44 

high accuracy and significantly lower residual variability than subjective HFA measurements in a 45 

heterogeneous clinical sample, including patients with glaucoma and individuals with other ocular 46 

diseases. The improved reliability, lower variability, and objective nature of OCT-VF highlight its 47 

value for enhancing VF assessment and monitoring of various ocular conditions, potentially 48 

facilitating earlier detection of progression and more efficient disease management. 49 

  50 
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Introduction 51 

Visual field (VF) testing is crucial for diagnosing and monitoring various ocular conditions, 52 

particularly glaucoma, a leading cause of irreversible blindness worldwide.1–4 Although the 53 

Humphrey Field Analyzer (HFA; Carl Zeiss Meditec, Jena, Germany) remains the gold standard for 54 

VF assessment, HFA testing is limited by its subjective nature, high test-retest variability, and time-55 

consuming process.1,5 These limitations can lead to delayed detection of disease progression and 56 

complicate clinical decision-making. 57 

Optical coherence tomography (OCT) has revolutionized ophthalmic imaging, providing 58 

high-resolution, objective assessments of ocular structures.6 The relationship between structural 59 

changes observed in OCT and functional deficits measured by VF testing has led to the integration of 60 

OCT with artificial intelligence (AI) to estimate VF directly from OCT images. Early approaches 61 

often utilized segmentation-based 2D models.7–9 While these models demonstrated valuable insights, 62 

the requirement for manual segmentation or quality checks could be time-consuming and potentially 63 

limit the scalability of the approach. This constraint may have posed challenges in preparing large-64 

scale datasets for model training, which could influence the generalizability of VF estimation 65 

performance. 66 

Recent advancements have led to the emergence of 3D models for VF estimation, 67 

potentially capturing more comprehensive structural information.10,11 Additionally, some 2D 68 

approaches now utilize cross-sectional OCT images without segmentation, offering a simplified 69 

method.12–14 These developments suggest a trend toward more efficient VF estimation techniques, 70 

potentially offering a complementary approach to traditional subjective perimetry through objective, 71 

OCT-based assessments. 72 

To address the limitations of previous methods and capitalize on recent advancements, 73 

building upon our preliminary research published as a Japanese preprint using data from a private 74 
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ophthalmology clinic,15 we adopted a segmentation-free, 3D convolutional neural network (3DCNN) 75 

model to estimate VF from macular OCT images. Our approach eliminates manual segmentation or 76 

labeling, enabling the model to learn from a comprehensive dataset based on disease status without 77 

exclusions. This could improve the model's generalizability and reduce bias from selective data 78 

inclusion. The primary aims of this study are to (1) train and evaluate a segmentation-free 3DCNN 79 

model for objectively estimating VF from OCT images in a diverse clinical population, with a 80 

particular focus on glaucoma, and (2) compare the residual variability of OCT-based estimated VF 81 

(OCT-VF) with that of subjective HFA measurements, potentially offering a more reliable method 82 

for VF assessment.  83 

 84 

Methods 85 

Study Design and Participants 86 

 The Institutional Review Board of Shimane University Hospital approved this retrospective 87 

study (IRB No. KS20230719-3, approved on August 10, 2023), which adhered to the tenets of the 88 

Declaration of Helsinki. The study included all patients who underwent macular OCT imaging and 89 

VF testing at Shimane University Hospital, a tertiary referral center specializing in glaucoma, 90 

between October 1, 2006, and October 19, 2023. Due to the retrospective nature of the study, the IRB 91 

waived the requirement for informed consent. We employed an opt-out approach, posting study 92 

information on the hospital's website and premises to allow patients to decline participation. 93 

 94 

Inclusion Criteria 95 

We included eyes that met the following criteria: (1) availability of at least one macular 96 

OCT scan with a signal strength index (SSI) ≥ 7 and (2) completion of at least one VF test using the 97 

HFA with 30-2, 24-2, or 10-2 test patterns using the Swedish Interactive Threshold Algorithm 98 
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standard protocol. We trimmed the peripheral points for 30-2 VF tests to match the 24-2 pattern. 99 

Consistent with a previous report,8 we excluded VF tests with false-positive, false-negative, or 100 

fixation loss rates ≥ 33% to ensure the data quality for training the 3DCNN model. We included all 101 

eligible eyes regardless of their underlying ocular condition or disease status, ensuring a diverse and 102 

representative dataset. 103 

To address potential artifacts, we implemented automatic exclusion methods for the dataset. 104 

For the upper eyelid artifacts in the 24-2 test pattern, we excluded the VF if the difference in the mean 105 

value of the three nasal points in any two adjacent rows of the top three rows exceeded 8 dB. For lens 106 

rim artifacts, we divided the fields into four quadrants and excluded those where the difference 107 

between the mean outermost and adjacent inner points exceeded 5 dB in three or more quadrants. We 108 

applied these criteria to paired data for model training, validation, and testing via 10-fold cross-109 

validation to reduce the impact of potential artifacts on the model's learning and evaluation process. 110 

While this approach may deviate from real-world clinical scenarios, it allows for consistent 111 

assessment of the model's core performance. 112 

We acquired OCT images using the RS-3000, RS-3000 Advance, or RS-3000 Advance2 113 

OCT device (Nidek, Gamagori, Japan) with a 9 mm × 9 mm macular scan protocol. On the basis of 114 

the manufacturer's recommendation, we chose the SSI threshold of 7 to ensure the reliability of OCT 115 

scans and to exclude those with significant media opacities that could affect image quality. 116 

 117 

Data Acquisition and Preprocessing 118 

To reduce variability, we constructed time-based regression lines for each VF test point and 119 

used them as target values for training the 3DCNN model. For eyes with five or more VF tests, we 120 

calculated VF thresholds and mean deviations (MDs) corresponding to the OCT acquisition date 121 

using these regression lines. We set the "validity period" for these eyes as 30 days × the number of 122 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.17.24312150doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.17.24312150
http://creativecommons.org/licenses/by/4.0/


7 

 

VF tests (n), with an upper limit of 240 days. For eyes with two to four VFs, we also constructed 123 

regression lines but limited the "validity period" to 90 days, and we did not extend the regression lines 124 

beyond the first and last VF tests; instead, we fixed the values at these endpoints. This approach aimed 125 

to reduce variability while minimizing potential errors from extrapolation. We excluded data pairs if 126 

the interval between the OCT scan and the most recent VF test exceeded the calculated validity period. 127 

We set positive regression slopes to zero to account for the progressive nature of glaucomatous VF 128 

loss. We included the data for eyes with a single VF test if an OCT scan was performed within 90 129 

days of the VF test date. 130 

We assigned missing data points a mask value of 1. During training, we limited VF 131 

thresholds to 0 to 33 dB, and MDs to 0 to -33 dB, setting values outside these ranges to the respective 132 

upper or lower limits. We included all eligible paired data from eyes with multiple OCT scans and 133 

VF tests in the analysis. 134 

  135 
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Figure 1. Schematic representation of the segmentation-136 

free 3D convolutional neural network model architecture. 137 

We based the model on the EfficientNet3D-b0 architecture 138 

and added a 30% dropout layer to mitigate overfitting. The 139 

input consists of standardized 224 × 224 × 128 OCT 140 

images, and the output includes estimated VF thresholds 141 

and MDs for both 24-2 and 10-2 test patterns. OCT = 142 

optical coherence tomography; VF = visual field; MD = 143 

mean deviation. 144 

 145 

 146 

  147 
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Model Architecture and Configuration 148 

We based the segmentation-free 3DCNN model used in this study on the EfficientNet3D-149 

b0 architecture,16 and added a 30% dropout layer to mitigate overfitting. Figure 1 presents a schematic 150 

representation of the model architecture. We trained the model from scratch using the comprehensive 151 

OCT dataset, which included scans from patients with glaucoma and other ocular conditions, without 152 

any exclusions based on disease status. Table S1 provides an overview of the population 153 

characteristics for the dataset used to train the 3DCNN model. 154 

We standardized the OCT images to 224 × 224 × 128 resolution and normalized them via 155 

min-max normalization. For the HFA24-2 and HFA10-2 datasets, we applied z-score normalization 156 

using the mean and standard deviation of the training dataset to ensure consistent data scaling. The 157 

model's output consisted of estimated VF thresholds (52 points for the 24-2 test pattern and 68 points 158 

for the 10-2 test pattern) and their respective MDs. 159 

We horizontally flipped the left eye data and combined them with the right eye data. 160 

Following a previous report,9 we consistently applied vertical flipping as a data augmentation 161 

technique across all phases (training, validation, and testing). During the testing phase, the estimation 162 

accuracy improved by averaging the results of both the original and vertically flipped inputs for each 163 

OCT image. 164 

We trained the model via the Adam optimizer with a mini-batch size of 4, incrementally 165 

adjusted the learning rate from 6e-4 to 1e-3 over three epochs and then decreased it to 6e-4 over five 166 

epochs. We trained to minimize the mean squared error between the estimated and measured VF data. 167 

To account for missing data points, we multiplied the backpropagation calculation by (1 - mask) 168 

during training, ensuring that the model's learning was unaffected by gaps in the VF data. 169 

 170 

Model Training and Evaluation 171 
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We employed a 10-fold cross-validation approach, randomly dividing patients into training, 172 

validation, and test sets at an 8:1:1 ratio. This patientwise split ensured that data from the same patient 173 

did not appear in more than one set, preventing data leakage and allowing unbiased model evaluation. 174 

We selected the epoch that showed the best performance on the validation set to evaluate the model's 175 

performance on the test set, ensuring the use of the model's optimal weights for the final assessment. 176 

We calculated the mean absolute error (MAE) and Pearson's and Spearman's correlation 177 

coefficients to assess the relationships between the estimated and measured VF parameters. We used 178 

Bland‒Altman plots to evaluate the agreement between the estimated and measured MDs. 179 

Additionally, we analyzed the relationships between the MAE and VF severity, refractive errors, and 180 

individual test points to assess the model's performance across different clinical scenarios and VF 181 

regions. 182 

 183 

Residual Variability Analysis Preparation 184 

To assess the clinical applicability and reliability of our OCT- VF model, we prepared 185 

datasets to compare the variability between OCT-VF and measured HFA. We used the trained 186 

3DCNN model to estimate VF values for all available macular OCT images with an SSI ≥ 7. We 187 

selected the model for estimation on the basis patient ID, assigning patients in the test set of the 10-188 

fold cross-validation to their corresponding model and patients not included in any fold to a randomly 189 

selected model. We included all HFA tests in the analysis, regardless of their false-positive rates, 190 

false-negative rates, fixation loss rates, upper eyelid artifacts, or lens rim artifacts. This approach 191 

ensured that the comparison reflected real clinical scenarios. To further refine the comparison 192 

between the OCT-VF and HFA measurements, we excluded eyes with fewer than 5 VF tests from 193 

both groups. Additionally, to ensure a fair comparison, we included only eyes common to the OCT-194 

VF and HFA groups in the analysis, excluding eyes unique to either group. 195 
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 196 

Statistical Analysis 197 

We employed a jackknife resampling approach to compare the residual variability between 198 

the OCT-VF and HFA measurements. We calculated residuals for each eye by iteratively excluding 199 

one data point, fitting a regression line (at each test point for 24-2 and 10-2 test patterns), computing 200 

the residual for the excluded point, and then calculating mean residuals. We used generalized 201 

estimating equations (GEE) models to compare the mean residuals between the OCT-VF and HFA 202 

datasets, adjusting for the number of tests, follow-up duration, age, and clustering by eye and patient. 203 

We visualized relationships between VF severity, age, and residual variability via boxplots with 204 

regression lines. We created heatmaps to assess the spatial distribution of mean residuals across VF 205 

test points for the OCT-VF and HFA datasets. 206 

Figure 2 shows the flowchart of the study design, outlining the data acquisition, 207 

preprocessing, model training, residual variability analysis preparation, and statistical analysis steps. 208 

We applied only the automated exclusion criteria described above, with no additional manual 209 

exclusions. We performed statistical analyses using Python (version 3.11.2) with scikit-learn (version 210 

1.41.post1) and statsmodels (version 0.14.2) packages. We implemented the deep learning model 211 

using PyTorch (version 2.01). 212 
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213 

Figure 2. Flowchart of the study design and data processing. This diagram illustrates the steps 214 

involved in data acquisition, preprocessing, model training, residual variability analysis preparation, 215 

and statistical analysis. HFA = Humphrey Field Analyzer; OCT = optical coherence tomography; SSI 216 

= signal strength index; FP = false positive; FN = false negative; FL = fixation loss. 217 

 218 

  219 
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Results 220 

Model Performance in Estimating Visual Field 221 

 The 3DCNN model demonstrated a high correlation between the measured and estimated 222 

VF parameters for 24-2 and 10-2 test patterns (Table S2 and Fig. S3). Pearson's correlation 223 

coefficients (r) were high for both VF thresholds and MDs (24-2 thresholds r=0.893, MD r=0.932; 224 

10-2 thresholds r=0.902, MD r=0.945; all p < 0.001), indicating high accuracy in estimating both 225 

pointwise VF thresholds and global VF parameters. The Bland–Altman analysis demonstrated 226 

satisfactory overall concordance between the estimated and measured MDs, with minimal mean 227 

differences. Nevertheless, all analyses showed slight proportional biases (Fig. S4). 228 

The model demonstrated consistent performance across various VF damage levels, 229 

including advanced cases (Fig. S5). The model's estimation accuracy remained relatively stable across 230 

various OCT focus values, indicating the minimal impact of refractive errors on performance (Fig. 231 

S6). The spatial distribution of MAE for each test point showed generally consistent estimation 232 

accuracy across most test locations in 24-2 and 10-2 test patterns, with some regional variations 233 

observed (Fig. S7). 234 

 235 

Residual Variability Analysis using Generalized Estimating Equations (GEE) 236 

Table 3 presents the mean residuals and standard deviations for HFA and OCT-VF datasets. 237 

For both 24-2 (n = 3384 eyes) and 10-2 (n = 1602 eyes) test patterns, the OCT-VF group showed 238 

lower mean residuals than the HFA group. For thresholds, OCT-VF vs. HFA mean residuals were 239 

1.10 vs. 2.48 dB for 24-2, and 1.20 vs. 2.48 dB for 10-2. For MDs, OCT-VF vs. HFA mean residuals 240 

were 0.82 vs. 1.34 dB for 24-2, and 0.87 vs. 1.22 dB for 10-2. We used GEE models to compare the 241 

mean residuals between the OCT-VF and HFA datasets, adjusting for the number of tests, follow-up 242 

duration, and clustering by eye and patient (Table S4). In all four analyses, the OCT-VF group 243 
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exhibited significantly lower mean residuals than the HFA group (all p < 0.001). We applied a 244 

Bonferroni correction to account for multiple comparisons (adjusted significance level: 0.05/4 = 245 

0.0125); all p values remained significant after correction. 246 

 247 

Table 3. Population characteristics and residual variability analysis results for the HFA and OCT-248 

VF datasets 249 

Characteristics HFA24-2 

OCT-VF  

24-2 

HFA10-2 

OCT-VF  

10-2 

Number of patients 1852 1852 889 889 

Number of eyes 3384 3384 1602 1602 

Age (years) 67.1 ± 13.8 68.5 ± 13.9 67.5 ± 13.8 67.8 ± 13.8 

Mean deviation (dB) -8.58 ± 8.47 -9.33 ± 8.36* -11.4 ± 9.7 -11.9 ± 9.4* 

Threshold residuals (dB) 2.48 ± 2.14 1.10 ± 0.89 2.48 ± 2.46 1.20 ± 1.02 

MD residuals (dB) 1.34 ± 0.95 0.82 ± 0.66 1.22 ± 0.92 0.87 ± 0.69 

Number of tests 12.4 ± 7.6 11.2 ± 4.7 9.7 ± 4.5 12.8 ± 4.5 

Follow-up duration (days) 2776 ± 1593 1950 ± 1091 2024 ± 973 1979 ± 1049 

HFA = Humphrey Field Analyzer; OCT = optical coherence tomography; OCT-VF = OCT-based 250 

estimated visual field; MD = mean deviation. The values are presented as the means ± standard 251 

deviations. 252 

*Estimated values from OCT-VF models. 253 

 254 

 255 

Relationship between VF Severity and Residual Variability 256 

Figure 8 presents boxplots with cubic regression lines illustrating the relationship between 257 

VF severity (horizontal axis, dB) and residual variability (vertical axis, dB) for HFA and OCT-VF 258 

datasets. The figures compare the performances of HFA and OCT-VF methods for 24-2 (Fig. 8a and 259 

8c) and 10-2 (Fig. 8b and 8d) test patterns. In all figures, the cubic regression lines for the OCT-VF 260 
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dataset generally lie below those of the HFA dataset, indicating lower residual variability across most 261 

levels of VF severity. 262 

 263 

 264 

Figure 8. Comparison of residual variability between HFA measurements and OCT-VFs across VF 265 

severity levels. (A) 24-2 thresholds (pointwise values), (B) 10-2 thresholds (pointwise values), (C) 266 

24-2 MD, and (D) 10-2 MD. The horizontal axis represents VF severity, and the vertical axis 267 

represents residual variability. Each panel shows boxplots of residuals for each severity increment, 268 

along with cubic regression lines. In all panels, the cubic regression lines for the OCT-VF dataset 269 

generally lie below those of the HFA dataset, indicating lower residual variability across most levels 270 

of VF severity for OCT-VF. 271 

HFA = Humphrey Field Analyzer; OCT = optical coherence tomography; OCT-VF = OCT-based 272 

estimated visual field; VF = visual field; MD = mean deviation. 273 

 274 

 275 

  276 
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Heatmaps of Residual Variability for Each Test Point 277 

Figure 9 presents heatmaps of residual variability for each test point in the HFA (Fig. 9a, 278 

9c) and OCT-VF (Fig. 9b, 9d) datasets. We displayed the heatmaps in a two-dimensional arrangement 279 

mimicking the spatial layout of the VF tests. Figures 9a and 9b show heatmaps for 24-2 test pattern 280 

thresholds, whereas Figures 9c and 9d show heatmaps for 10-2 test pattern thresholds. We 281 

horizontally flipped the left eye data and integrated them with the right eye data. 282 

The values in the HFA heatmaps range from 2.15 to 3.05. In contrast, the values in the OCT-283 

VF heatmaps range from 0.99 to 1.34, demonstrating substantially lower residual variability for the 284 

OCT-VF dataset across all test points.  285 

 286 

 287 

Figure 9. Heatmaps of residual variability for each test point. (A) HFA 24-2, (B) OCT-VF 24-2, (C) 288 

HFA 10-2, and (D) OCT-VF 10-2. The color scale represents the magnitude of residual variability at 289 

each test point. OCT-VF shows consistently lower residual variability than HFA measurements across 290 

all test points, with values ranging from 0.99 to 1.34 dB for OCT-VF compared with 2.15 to 3.05 dB 291 

for HFA measurements. We horizontally flipped the left eye data and integrated them with the right 292 

eye data. 293 

HFA = Humphrey Field Analyzer; OCT = optical coherence tomography; OCT-VF = OCT-based 294 

estimated visual field. 295 

 296 
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Relationship between Age and Residual Variability 297 

 Analysis of the relationship between age and residual variability for HFA and OCT-VF (Fig. 298 

S10) revealed that residual variability increased with age for both methods across all measures. 299 

However, OCT-VF demonstrated consistently lower residual variability than HFA across all age 300 

groups, with a less pronounced increase in variability with age. This was particularly evident for 301 

threshold measurements. The difference in residual variability between HFA and OCT-VF widened 302 

with increasing age. 303 

 304 

Discussion 305 

This study demonstrates that a segmentation-free 3DCNN model trained on a 306 

comprehensive OCT dataset can estimate VF with significantly lower residual variability than HFA. 307 

Using regression-based target values for OCT-VF model training inherently reduces variability 308 

compared with raw HFA data. However, this approach's effectiveness depends on the model's 309 

estimation accuracy, which our results show to be high. Indeed, our model exhibited strong 310 

correlations between estimated and measured VF parameters, with consistent performance across 311 

various levels of disease severity, VF test patterns (24-2 and 10-2), and refractive errors. This robust 312 

performance addresses challenges reported in previous studies regarding severe VF loss estimation,10–
313 

14 highlighting the model's potential as a reliable tool for assessing and monitoring VF defects in a 314 

diverse clinical population.  315 

Compared with HFA, the markedly reduced residual variability of OCT-VF has significant 316 

implications for managing various ocular conditions affecting the VF. Our analysis via generalized 317 

estimating equations revealed that, compared with HFA, OCT-VF results in significantly lower 318 

residual variability for 24-2 and 10-2 test patterns, even after adjusting for potential confounding 319 

factors and applying a Bonferroni correction for multiple comparisons. This enhanced consistency 320 
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could enable earlier detection of disease progression and more timely intervention, potentially 321 

slowing vision loss in patients with glaucoma and other conditions. 322 

The lower variability observed in OCT-VF across various disease severities underscores the 323 

objectivity and reliability of this approach. Our findings demonstrate that OCT-VF provides more 324 

consistent results than HFA does, particularly when estimating pointwise sensitivities. This improved 325 

reliability is a crucial strength of our study, as it suggests that OCT-based methods could offer more 326 

accurate assessments of VF damage, enhancing clinical decision-making and patient management. 327 

The spatial analysis of residual variability, as illustrated in our heatmaps, further supports the superior 328 

performance of OCT-VF. These visualizations demonstrate reduced variability at each test point for 329 

both the 24-2 and 10-2 test patterns, indicating the potential of OCT-VF to provide more reliable VF 330 

sensitivity measurements across the entire tested area. Furthermore, analysis of age-related effects 331 

revealed that while residual variability increased with age for both methods, OCT-VF maintained 332 

relatively lower variability across all age groups, with the difference widening in older populations. 333 

This underscores the robustness of OCT-VF in maintaining reliability across diverse patient 334 

demographics. 335 

Our study has the potential to significantly impact ophthalmic practice, particularly 336 

glaucoma management. Various patient-related factors, such as proficiency, age, and cognitive 337 

function, often influence the reliability of traditional subjective VF testing. 1,5,17 By utilizing objective 338 

OCT-based methods, we aim to mitigate the impact of these factors while providing a reliable 339 

assessment of functional damage. This approach could complement or potentially replace HFA 340 

testing in certain clinical scenarios, reducing the burden on patients and healthcare systems. 341 

Our segmentation-free approach eliminates manual segmentation, enabling efficient 342 

utilization of large-scale, real-world OCT datasets for model training and validation. This approach 343 

allows the model to learn effectively without requiring specific clinical information such as disease 344 
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diagnoses or visual acuity data. This versatility could accelerate the development of AI-based tools 345 

for assessing VF defects in various ocular conditions, potentially broadening their applicability in 346 

diverse clinical settings. 347 

Our study has several limitations. First, despite the use of a large and diverse OCT dataset, 348 

we did not categorize or analyze data on the basis of specific clinical factors (e.g., disease type, visual 349 

acuity, VF defect pattern), limiting our insights into the model's performance for specific conditions. 350 

Second, the single-center nature of our study may restrict the generalizability of our findings. Future 351 

research should validate our results via external datasets and explore the model's performance across 352 

diverse patient populations and healthcare settings. Finally, we did not directly assess the impact of 353 

reduced variability on clinical decision-making or patient outcomes. Further studies are needed to 354 

evaluate how the improved reliability of OCT-VF translates into more effective management 355 

strategies and better visual function preservation in glaucoma and other VF-affecting diseases. 356 

In conclusion, our segmentation-free 3DCNN model has the potential to estimate visual 357 

fields with significantly lower residual variability than HFA in a diverse clinical population. The 358 

improved reliability and consistency of OCT-based estimated visual fields highlight their potential as 359 

a valuable tool for assessing and monitoring visual field defects in various ocular conditions, 360 

particularly glaucoma. As we refine and validate this approach, AI-based tools may become integral 361 

for managing glaucoma and other ocular conditions affecting the visual field, enabling earlier 362 

detection of progression, more efficient monitoring, and ultimately, better preservation of visual 363 

function. 364 

  365 
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