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Abstract  27 

The generation time, representing the interval between infections in primary and secondary cases, is 28 

essential for understanding and predicting the transmission dynamics of seasonal influenza, including 29 
the real-time effective reproduction number (Rt). However, comprehensive generation time estimates 30 

for seasonal influenza, especially post the 2009 influenza pandemic, are lacking.  31 

We estimated the generation time utilizing data from a 7-site case-ascertained household study in the 32 
United States over two influenza seasons, 2021/2022 and 2022/2023. More than 200 individuals who 33 

tested positive for influenza and their household contacts were enrolled within 7 days of the first illness 34 
in the household. All participants were prospectively followed for 10 days completing daily symptom 35 

diaries and collecting nasal swabs, which were tested for influenza via RT-PCR. We analyzed these data 36 
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by modifying a previously published Bayesian data augmentation approach that imputes infection times 37 

of cases to obtain both intrinsic (assuming no susceptible depletion) and realized (observed within 38 
household) generation times. We assessed the robustness of the generation time estimate by varying 39 

the incubation period, and generated estimates of the proportion of transmission before symptomatic 40 
onset, infectious period, and latent period.  41 

We estimated a mean intrinsic generation time of 3.2 (95% credible interval, CrI: 2.9-3.6) days, with a 42 
realized household generation time of 2.8 (95% CrI: 2.7-3.0) days. The generation time exhibited limited 43 

sensitivity to incubation period variation. Estimates of the proportion of transmission that occurred 44 
before symptom onset, the infectious period, and the latent period were sensitive to variation in 45 

incubation periods.  46 

Our study contributes to the ongoing efforts to refine estimates of the generation time for influenza. 47 
Our estimates, derived from recent data following the COVID-19 pandemic, are consistent with previous 48 

pre-pandemic estimates, and will be incorporated into real-time Rt estimation efforts.  49 

Introduction  50 

The generation time, a crucial parameter in understanding the dynamics of infectious diseases, is 51 

defined as the time interval between infections in primary and secondary cases. In the context of 52 
seasonal influenza, estimation of the generation time becomes increasingly important for predicting the 53 

trajectory of outbreaks and informed public health decision-making during an influenza season. This 54 
interval represents the time between typical influenza infections, reflecting when most transmission is 55 

likely to happen.  56 

Estimating the generation time is challenging because few investigations can accurately detect the exact 57 
time of infection. The generation time is often inferred from the serial interval, defined as the time 58 

between symptom onsets of primary and secondary cases (Svensson 2007), due to the practicality of 59 
observing symptom onsets rather than infections. However, this alternative measure may not always 60 

approximate the generation time due to its dependence on the incubation period, defined as the 61 
duration from infection to symptom onset, and the possibility of asymptomatic infections.  62 

Accurate estimation of the generation time is important for predicting the real-time effective 63 

reproduction number (Rt), a metric used to describe transmission intensities through time (Gostic, et al. 64 
2020). During the 2023/2024 influenza season, the Centers for Disease Control and Prevention (CDC) 65 

estimated the current epidemic growth status for influenza infections in the U.S. as either growing or 66 
declining based on the Rt (Centers for Disease Control and Prevention 2024) (Centers for Disease 67 

Control and Prevention 2024). For this estimate, the generation time was approximated with a serial 68 
interval from a study by Cowling et al. (Cowling, et al. 2009) that utilized data collected in Hong Kong in 69 

2007, prior to the 2009 H1N1 influenza pandemic.  70 

To improve our understanding of seasonal influenza outbreaks, there is a need for more contemporary 71 
generation time estimates, especially following the COVID-19 pandemic. This analysis provides updated 72 

generation time estimates derived from an influenza household transmission study (Rolfes, et al. 2023) 73 
conducted during the 2021/2022 and 2022/2023 influenza seasons in the U.S. We employ a model using 74 

a published Bayesian data augmentation approach (Hart, Abbott, et al. 2022) (Hart, Maini and 75 
Thompson 2021) (Hart, Miller, et al. 2022) to impute missing event times, including infections and 76 
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symptom onsets of cases, and estimate generation times. We estimate both the intrinsic generation 77 

time, which assumes no susceptible depletion, as well as the realized household generation time 78 
observed within the household setting. We also estimate the serial interval. We derived estimates 79 

across the two seasons, virus types (influenza A and B), and household sizes to understand potential 80 
differences and robustness to model assumptions. The insights gained from these sensitivity analyses 81 

contribute to our understanding of the reliability of our estimates across different data stratifications 82 
and assumptions, providing evidence that the generation time has remained substantially unchanged 83 

over the last decade or two.  84 

We also estimate other transmission parameters, including the proportion of transmission before 85 

symptomatic onset, the infectious period, and the latent period. This helps in assessing pre- and post-86 
symptomatic transmission, thereby providing insights to inform effective disease control strategies. 87 

These insights are crucial for preventing pre-symptomatic transmission through interventions such as 88 
isolation.  89 

Material and methods  90 

Household data  91 

Participants included in this analysis were enrolled in a 7-site case-ascertained household study, the 92 
Respiratory Virus Transmission Network – Sentinel (RVTN-S), conducted in the U.S. over two consecutive 93 

influenza seasons: 2021/2022 and 2022/2023 (Rolfes, et al. 2023). After informed consent was obtained, 94 
the study enrolled individuals identified with influenza infections via polymerase chain reaction (PCR) 95 

testing and their household contacts within 7 days of the initial illness onset within the household. 96 
Households were only enrolled if the index case who first presented for clinical testing was the first 97 

symptomatic or positive person in the household, with no other members of the household 98 
symptomatic on the first day of index case symptoms. Participants, including both index cases and 99 

household contacts, were then prospectively followed for 10 days, during which they completed daily 100 
symptom diaries and collected daily nasal swabs, which were tested for influenza via RT-PCR.  101 

The dataset encompasses detailed information regarding symptoms and viral testing, including four 102 

main variables used in the model: whether individuals tested positive for influenza, their symptomatic 103 
status, dates of positive test results, and dates of symptom onset. Using the test positivity and 104 

symptomatic status, we stratified individuals into three types: symptomatic infected, asymptomatic 105 
infected, and uninfected. Both the dates of positive test results and symptom onset were used as upper 106 

bounds for the date of infection for each individual.  107 

In the primary analysis, we excluded households with multiple co-primary cases, i.e., more than one 108 
individual exhibiting the same date of the earliest symptom onset concurrently. To assess robustness, 109 

we also performed a separate stratified analysis that included households both with and without 110 
multiple co-primary cases.  111 

Estimating the generation time  112 

We employed a Susceptible-Exposed-Infectious-Recovered (SEIR) model with Bayesian data 113 
augmentation, originally developed by Hart et al. (Hart, Maini and Thompson 2021) for analyzing COVID-114 

19 contact tracing data. The model was also used in two subsequent studies of household data in the 115 
United Kingdom (Hart, Abbott, et al. 2022) (Hart, Miller, et al. 2022). The SEIR model, referred to as the 116 

mechanistic model, which includes compartments for asymptomatic, pre-symptomatic and symptomatic 117 
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infectious stages (Hart, Maini and Thompson 2021). Each stage may have different relative 118 

infectiousness, or transmission rates. Upon infection and entry into the non-infectious exposed stage, 119 
individuals may progress to become infectious through one of two pathways: either by remaining 120 

asymptomatic or by developing symptoms following a pre-symptomatic stage. Consequently, 121 
transmissions may occur before symptom onset, depending on the length of the incubation period.  122 

We estimated both intrinsic and realized generation times by integrating data augmentation Markov 123 
Chain Monte Carlo (MCMC) techniques (Hart, Abbott, et al. 2022), to impute infection times and 124 

symptom onset of cases. The intrinsic generation time assumes no depletion of susceptible individuals, 125 
providing an estimate of the time it takes for an infected individual to infect others in the community 126 

with an unlimited supply of susceptible individuals. The realized household generation time reflects the 127 
actual time interval observed within households, restricted by the depletion of susceptible individuals 128 

over time. Susceptible depletion refers to the gradual reduction in the number of individuals within a 129 
population that have not yet been infected with a virus. For example, within the SEIR framework, 130 

members may become infected, develop immunity, and subsequently be removed from the susceptible 131 

pool. Considering this distinction allows for a more thorough understanding of influenza transmission 132 
dynamics, capturing both theoretical and observed aspects of transmission.  133 

We also estimated several other crucial transmission parameters, including the proportion of 134 
transmission before symptomatic onset, the ratio of pre-symptomatic to symptomatic transmission 135 

rates (i.e., relative infectiousness of symptomatic infected individuals before symptom onset compared 136 
to after), as well as the latent period, the pre-symptomatic infectious period, and the symptomatic 137 

infectious period, all under the SEIR framework.  138 

In adapting the model for our influenza study, we used estimates for the incubation period of influenza 139 
A from a systematic review by Lessler et al. (Lessler, et al. 2009). In sensitivity analyses, we explored 140 

variations derived from parallel estimates for influenza B (Lessler, et al. 2009) and for influenza 141 
A(H1N1)pdm09 (Tuite, et al. 2010).  142 

Regarding the relative infectiousness of asymptomatic infected individuals compared with symptomatic 143 

infected individuals, we assumed a value of 0.57 (i.e., asymptomatic infected individuals were 43% less 144 
infectious than those symptomatic infected) based on the mean estimate from a recent study (Tsang, et 145 

al. 2023), and we also conducted sensitivity analyses using values of 0.11 and 1.54 based on the 146 
corresponding 95% credible interval (CrI).  147 

To compare posterior distributions of estimates, we calculated the overlapping index, a measure of 148 

distribution similarities (Pastore 2018) (Pastore and Calcagnì 2019). A value close to 1 indicates high 149 
similarity, implying no substantial differences, while a value close to 0 indicates low similarity, implying 150 

substantial differences. We compared the estimates of generation time across multiple data 151 
stratifications and sensitivity analyses to the primary results excluding households with multiple co-152 

primary cases.  153 

The model was implemented in R (version 4.3.1) with 1,000,000 Markov chain Monte Carlo iterations, 154 
discarding the initial 20% as burn-in and obtaining posterior distributions by thinning every 100 155 

iterations. The code for the model is available at https://github.com/CDCgov/influenza-156 
generation_time-us.  157 
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Ethics statement  158 

This study was reviewed and approved by the IRB at Vanderbilt University Medical Center (see 45 C.F.R. 159 
part 46.114; 21 C.F.R. part 56.114).  160 

Results  161 

The household data  162 

During the data cleaning process, we excluded 93 individuals who did not have at least two valid PCR 163 

tests and 2 individuals who were the only household members. In the primary analysis, we further 164 
excluded 23 individuals from 6 households that had co-primary cases. The final cleaned dataset, 165 

covering both seasons, comprised 820 individuals from 246 households (Table 1).  166 

As shown in Table 1, more households were enrolled in the 2022/2023 season. In both seasons, 167 
influenza A viruses predominantly circulated. In the 2021/2022 season, influenza A(H3N2) virus was 168 

identified in 78% of individuals, and influenza A(H1N1) virus was identified in 1% of individuals. In the 169 
2022/2023 season, the percentages changed to 64% and 6%, respectively. Since households consisting 170 

of 3 or 4 members were the majority, we stratified the data into two groups: those with 2 or 3 171 
members, and those with 4 or greater, to ensure comparability in quantity.  172 

Data stratifications  Number of 

individuals 

(households)  

Symptomatic 

infected %  

Asymptomatic 

infected %  

Uninfected %  

All data excluding 
households with multiple co-
primary cases (primary 
analysis)  

820 (246)  59.4% (487/820)  7.2% (59/820)  33.4% (274/820)  

Season 2021/2022  308 (90)  59.4% (183/308)  7.5% (23/308)  33.1% (102/308)  
Season 2022/2023  512 (156)  59.4% (304/512)  7.0% (36/512)  33.6% (172/512)  
Influenza A  683 (209)  61.1% (417/683)  7.5% (51/683)  31.5% (215/683)  
Influenza B  137 (37)  51.1% (70/137)  5.8% (8/137)  43.1% (59/137)  
Household size of 2 or 3  393 (152)  62.6% (246/393)  5.3% (21/393)  32.1% (126/393)  
Household size of 4 or 
greater  

427 (94)  56.4% (241/427)  8.9% (38/427)  34.7% (148/427)  

All data including households 
with multiple co-primary 
cases  

843 (252)  60.3% (508/843)  7.0% (59/843)  32.7% (276/843)  

Table 1. Characteristics of household data.  173 

Consistent estimates of the generation time across data stratifications and 174 

parameter assumptions 175 

In the primary analysis using all data excluding households with multiple co-primary cases from both 176 

seasons, we estimated a mean intrinsic generation time of 3.2 (95% credible interval, CrI: 2.9-3.6) days 177 
(Figure 1A, 1B and Table 2). The corresponding mean (intrinsic) serial interval was 3.2 (95% CrI: 2.8-3.5) 178 

days, with a standard deviation (SD) of 2.2 (95% CrI: 1.8-2.6) days. The mean realized household 179 
generation time was 2.8 (95% CrI: 2.7-3.0) days, nearly half a day shorter than the mean intrinsic 180 

generation time.  181 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.17.24312064doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.17.24312064


 6

We found no substantial differences in the mean intrinsic generation time estimates across multiple 182 

data stratifications (Figure 1C and Supplemental Table S1). The overlapping indices for both 2021/2022 183 
and 2022/2023 were high at 71% and 87%, respectively, aligning with the primary analysis above. 184 

Influenza A data showed a notable high overlapping index of 94%, reflecting its dominance, as influenza 185 
A was identified in 83% of the individuals. Conversely, using the data exclusively from influenza B yielded 186 

a similar mean but with a wider credible interval due to the smaller sample size, i.e., influenza B was 187 
identified in only 17% of the individuals, resulting in a lower overlapping index of 47%. Upon examining 188 

household sizes, although we found slightly longer mean intrinsic and realized household generation 189 
times in smaller households compared to larger ones, the overlapping index for household sizes of 2 or 3 190 

members and 4 or more members were moderately high at 61% and 74%, respectively. Incorporating 191 
households with co-primary cases remained consistent with a moderately high overlapping index of 192 

64%, indicating the similarity between exclusion and inclusion of multiple co-primary cases.  193 

The mean intrinsic generation time exhibited limited sensitivity to variations in the incubation period 194 

(Figure 1D and Supplemental Table S2). In the primary analysis shown above, we used an incubation 195 

period with a mean of 1.55 days and a standard deviation (SD) of 0.66 days by fitting previously 196 
published estimates (Lessler, et al. 2009) to a gamma distribution (Supplemental Figure S1). When 197 

considering a shorter incubation period, which yielded a mean of 0.61 days and a SD of 0.25 days 198 
(Lessler, et al. 2009), the mean intrinsic generation time remained unchanged with an overlapping index 199 

of 86%. Conversely, with a longer incubation period, which yielded a mean of 4.30 days and a SD of 1.25 200 
days (Tuite, et al. 2010), the mean intrinsic generation time increased slightly with an intermediate 201 

overlapping index of 56%.  202 

Our estimates were not sensitive to changes in the relative infectiousness of asymptomatic infected 203 

individuals, due to the limited number of asymptomatic infected individuals in this study (Supplemental 204 
Figure S6). We found no substantial differences in the mean intrinsic generation time estimates 205 

(Supplemental Table S2), as indicated by overlapping indices of 94% and 97% when using the values of 206 
0.11 and 1.54 compared to the primary value of 0.57 (Tsang, et al. 2023).  207 
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208 

Figure 1. (A) Distributions of intrinsic generation time and serial interval using the posterior samples. The lines represent the 209 
median, and the shaded areas denote the 95% credible intervals (CrI). The blue color represents the intrinsic generation time 210 
distribution, while the orange color represents the serial interval distribution. (B) Posterior distribution of mean intrinsic and 211 
realized household generation time. (C) Posterior distributions of mean intrinsic generation time across seasons, virus types, 212 
household sizes, and with multiple co-primary cases. The incubation period, derived from influenza A, had a mean of 1.55 days 213 
and a standard deviation (SD) of 0.66 days (Lessler, et al. 2009). Only for influenza B, we assumed the shorter incubation period 214 
to yield a mean of 0.61 days and a standard deviation (SD) of 0.25 days (Lessler, et al. 2009). (D) Posterior distributions of mean 215 
intrinsic generation time estimated using the full dataset across different incubation periods.  216 

 Mean  SD  

Intrinsic generation time (days)  3.2 (2.9-3.6)  2.1 (1.8-2.5)  

Realized household generation time (days)  2.8 (2.7-3.0)  1.6 (1.5-1.8)  

Serial interval (days)  3.2 (2.8-3.5)  2.2 (1.8-2.6)  

Table 2. Posterior mean (95% CrIs) of estimates in primary analysis using the full dataset. The incubation period, derived from 217 
influenza A, had a mean of 1.55 days and a standard deviation (SD) of 0.66 days (Lessler, et al. 2009). The relative infectiousness218 
of asymptomatic infected individuals compared with symptomatic infected individuals was assumed to be 0.57 (Tsang, et al. 219 
2023).  220 

Sensitivity of other transmission parameters to the incubation period  221 

In our sensitivity analyses, where we varied the assumed incubation period from the mean of 1.55 days 222 

and SD of 0.66 days, we found significant influences on several crucial pre-symptomatic transmission 223 

parameters and the duration of various symptomatic infectious stages (Table 3 and Supplemental Figure224 

S5).  225 

Notably, given the shorter incubation period (mean of 0.61 days and SD of 0.25 days), the proportion of 226 

transmission before symptomatic onset was lower at 3% (95% CrI: 0-6%), and the ratio of pre-227 

symptomatic to symptomatic transmission rates indicated a lower relative infectiousness of 228 

symptomatic infected individuals before symptom onset compared to after. This indicates that the 229 

majority of transmission occurred after individuals developed symptoms. Consequently, this was 230 

7
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reflected in a shorter latent period of 0.4 (95% CrI: 0.2-0.6) days and pre-symptomatic infectious period 231 

of 0.2 (95% CrI: 0.0-0.4) days, or a longer symptomatic infectious period of 2.6 (95% CrI: 2.3-3.0) days.  232 

Conversely, given the longer incubation period (mean of 4.30 days and SD of 1.25 days), the proportion 233 

of transmission before symptomatic onset was higher at 76% (95% CrI: 65-87%), and the ratio of pre-234 
symptomatic to symptomatic transmission rates was higher. This resulted in a longer latent period of 0.9 235 

(95% CrI: 0.2-1.6) days and pre-symptomatic infectious period of 3.4 (95% CrI: 2.7-4.1) days, while the 236 
symptomatic infectious period was shorter at 1.2 (95% CrI: 0.7-1.9) days.  237 

Incubation period  Shorter  Primary  Longer  

Mean intrinsic generation time 
(days)  

3.2 (2.8-3.6)  3.2 (2.9-3.6)  3.4 (3.1-3.7)  

Proportion of transmission before 
symptomatic onset  

0.03 (0.00-0.06)  0.16 (0.07-0.25)  0.76 (0.65-0.87)  

Ratio of pre-symptomatic and 
symptomatic transmission rates  

0.6 (0.1-1.7)  0.7 (0.2-1.9)  1.3 (0.5-3.2)  

Latent period (days)  0.4 (0.2-0.6)  0.9 (0.2-1.4)  0.9 (0.2-1.6)  

Pre-symptomatic infectious period 
(days)  

0.2 (0.0-0.4)  0.7 (0.2-1.3)  3.4 (2.7-4.1)  

Symptomatic infectious period 
(days)  

2.6 (2.3-3.0)  2.0 (1.7-2.4)  1.2 (0.7-1.9)  

Table 3. Posterior mean (95% CrIs) of estimates of generation time and transmission parameters given different assumed 238 
incubation periods. The primary incubation period, derived from influenza A, had a mean of 1.55 days and a standard deviation 239 
(SD) of 0.66 days (Lessler, et al. 2009). The shorter incubation period, derived from influenza B, yielded a mean of 0.61 days with 240 
a SD of 0.25 days (Lessler, et al. 2009), while the longer incubation period, derived from influenza A(H1N1)pdm09, had a mean 241 
of 4.30 days with a SD of 1.25 day (Tuite, et al. 2010). The relative infectiousness of asymptomatic infected individuals compared 242 
with symptomatic infected individuals was assumed to be 0.57 (Tsang, et al. 2023).  243 

Discussion  244 

Estimates of generation time  245 

This study employed a Bayesian data augmentation approach (Hart, Maini and Thompson 2021, Hart, 246 

Abbott, et al. 2022, Hart, Miller, et al. 2022) to estimate both intrinsic and realized generation times 247 
using data collected from a U.S. household study during the post COVID-19 pandemic influenza seasons, 248 

2021/2022 and 2022/2023. Our findings indicate that the intrinsic generation time, reflecting 249 
transmission dynamics within community settings, ranged from 2.9 to 3.6 days, while the realized 250 

household generation time, restricted to household settings, ranged from 2.7 to 3.0 days. These 251 
estimates of the generation time for influenza fall within the uncertainty bounds of pre-pandemic 252 

studies, including directly using viral shedding data (Carrat, et al. 2008) and other contact tracing data 253 
(Fraser, et al. 2009) (te Beest, et al. 2013) (Lau, et al. 2015), with estimates varying between 2 and 4 254 

days, suggesting that there has not been substantial change since the 2009 H1N1 influenza pandemic. 255 
Additionally, the overlapping indices higher than 70% suggested no substantial differences between the 256 

two influenza seasons.  257 

Both seasons of this study were atypical, being the first seasons since the COVID-19 pandemic, during 258 
which the immunity to influenza had potentially decreased. The 2022/2023 season, in particular, 259 

experienced an early influenza activity peak along with RSV and COVID-19 outbreaks. Despite these 260 
unusual circumstances, both seasons dominated by influenza A(H3N2) were tested in our sensitivity 261 
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analyses, which were based on different parameter assumptions. The generation time estimates 262 

remained similar to those from earlier studies, suggesting that virus transmission dynamics within 263 
households have not changed substantially and may not vary widely between types. However, further 264 

work is needed to fully explore estimates for influenza that were less prevalent in this study (i.e., 265 
influenza B and A(H1N1)).  266 

Our finding that the realized household generation time was shorter than the intrinsic generation time 267 
could be attributed to the depletion of susceptible individuals over time. As household members 268 

become infected and develop immunity, although individuals may still be infectious, there are no 269 
susceptible contacts still exposed to each case. This depletion terminates transmission chains, 270 

diminishing the potential for further infections. This process, along with factors such as closer proximity 271 
and longer exposure times inherent to household settings, can increase the chance of transmission 272 

within households, leading to a shorter observed generation time.  273 

Our updated estimates, particularly for the intrinsic generation time, may be useful for ongoing 274 
modeling efforts which require estimated generation times, such as real-time influenza Rt estimation 275 

(Centers for Disease Control and Prevention 2024) (Centers for Disease Control and Prevention 2024) 276 
(Gostic, et al. 2020). Our estimates are slightly shorter than the serial interval estimated by Cowling et 277 

al. (Cowling, et al. 2009) at 3.6 days (95% confidence interval, CI: 2.9-4.3). This shorter interval suggests 278 
a more rapid spread, potentially leading to higher estimated Rt and emphasizes the need for prompt 279 

and effective interventions to control transmission.  280 

Reliability of other transmission parameters  281 

Comparing our other parameter estimates with prior research, we found the mean serial interval to be 282 
3.2 days, within the 95% CI of 2.9 to 4.3 days reported by Cowling et al. (Cowling, et al. 2009). Our 283 

estimate also falls within the 3-to-4-day range of uncertainty reported in previous household studies 284 
(Cauchemez, Donnelly, et al. 2009, Petrie, et al. 2013, Levy, et al. 2013, Xu, et al. 2015, Cowling, et al. 285 

2010, Suess, et al. 2012, Boëlle, et al. 2011, Tsang, et al. 2016).  286 

We estimated a latent period of less than a day, which is shorter than the 1 to 3 days reported in other 287 

studies (Tuite, et al. 2010) (Cori, et al. 2012). It is possible that this shorter latent period could be 288 

influenced by undocumented exposures outside households. For instance, both the index case and 289 
infected household member may have been exposed to influenza elsewhere, with the index case 290 

developing symptoms before the household member. Consequently, when the household member 291 
becomes sick, we attribute it to the index case within the household, but this infection could have 292 

originated from previous exposure outside the household, which has not been accounted for in this 293 
analysis. Nonetheless, we excluded households with multiple co-primary cases to reduce these effects, 294 

ensuring accurate assessment of transmission dynamics within each household.  295 

Furthermore, there was substantial uncertainty in our estimates for the symptomatic infectious period, 296 

which ranged from 1 to 3 days, given different assumed incubation periods. Likewise, there has been a 297 
wide range of estimates in earlier studies, including those less than a day (Cori, et al. 2012) and more 298 

than 3 days (Tuite, et al. 2010) (Cauchemez, Carrat, et al. 2004).  299 

The estimates of the pre-symptomatic transmission parameters and the duration of various 300 
symptomatic stages should be interpreted with caution due to the inherent uncertainty in accurately 301 

estimating the incubation period. Our estimates incorporated values from various studies based on 302 
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different types or subtypes of influenza (Lessler, et al. 2009) (Tuite, et al. 2010). This variability in the 303 

incubation period contributes to a wide range of pre-symptomatic transmission parameters. Without a 304 
reliable input for the incubation period, accurately determining these transmission dynamics becomes 305 

challenging.  306 

Implications for preventing transmission  307 

Understanding the proportion of transmission that occurs prior to symptoms is critical to informing 308 

effective disease control strategies and assessing the potential impact of post-symptomatic mitigation 309 
measures, such as isolation of cases. We estimated that between 3% and 76% of transmission may occur 310 

before a person develops symptoms. This wide range was influenced by our assumptions of the 311 
incubation period, which were taken from a variety of previously published estimates. Longer incubation 312 

period assumptions yielded higher estimates of the percentage of transmission that occurred before 313 
symptoms. Similarly, attempts to estimate individual-level pre-symptomatic transmission using viral 314 

kinetics data have revealed substantial heterogeneity (Morris, et al. 2024). This highlights that pre-315 
symptomatic transmission of influenza does occur, aligning with findings for other respiratory pathogens 316 

like SARS-CoV-2 (Buitrago-Garcia, et al. 2022).  317 

Given the wide range of pre-symptomatic transmission, relying solely on isolation of symptomatic 318 
individuals may reduce but not eliminate influenza transmission. Although isolation measures initiated 319 

after symptom onset are likely to mitigate at least some influenza spread, given the relatively low levels 320 
of asymptomatic infection and pre-symptomatic transmission among the majority of individuals, there 321 

remains large heterogeneity (Morris, et al. 2024). A layered approach, including isolation of ill or 322 
infected people, maintaining good respiratory hygiene, and promoting influenza vaccination, may be 323 

most effective to reduce transmission within households (Centers for Disease Control and Prevention 324 
2024). This underscores the importance of vaccination as the primary recommendation to prevent 325 

influenza-associated morbidity and mortality, especially for individuals at increased risk of influenza 326 
complications.  327 

Modeling details and limitations  328 

While our reliance on household data might introduce limitations, such as the presence of multiple co-329 
primary cases, sensitivity analyses confirmed the robustness of our generation time estimates to various 330 

data stratifications and model assumptions. Nevertheless, there are several limitations to our study.  331 

First, we did not account for vaccination status. This omission is less likely to impact our estimates for 332 
influenza given similarities in viral load dynamics between infected vaccinated and unvaccinated 333 

individuals (Morris, et al. 2024) (Suess, et al. 2012). Nevertheless, it is possible that different vaccination 334 
statuses could be associated with different generation time estimates.  335 

Second, we did not account for potential exposures outside households. When we excluded household 336 

members who did not have at least two valid PCR tests, the household sizes were reduced in our 337 
analysis. While this might not directly affect our generation time estimates, it could lead to an 338 

overestimation of overall infectiousness due to the absence of unobserved uninfected members.  339 

Third, it is essential to acknowledge the influence of the COVID-19 pandemic on our influenza data. 340 
Generalizing these findings to pre-pandemic or post-pandemic periods should be done with caution. 341 

During the period when this study was conducted, individuals may have been more likely to adopt 342 
preventive measures against transmission within the home, such as self-isolating, practicing good 343 
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respiratory and hand hygiene, wearing masks, and reducing contact with household members. These 344 

non-pharmaceutical interventions, alongside changes in human behavior and heightened awareness of 345 
infection control, could have impacted the spread of influenza.  346 

Conclusions  347 

Through comprehensive data collected during the 2021/2022 and 2022/2023 influenza seasons in the 348 

U.S., we provide updated estimates of the generation time, essential for informing influenza modeling 349 
and public health strategies. Despite the significant changes in public behavior and preventive measures 350 

due to the COVID-19 pandemic, our study did not detect substantial changes in the generation time of 351 

influenza since the 2009 influenza pandemic. This finding is particularly significant given that the study 352 
period followed the extreme measures implemented to prevent COVID-19, which also reduced the 353 

transmission of influenza and other respiratory infections. Our findings contribute to our understanding 354 
of influenza transmission dynamics within households and underscore the importance of ongoing 355 

research for effective outbreak management.  356 

  357 
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Supplementary material  554 

The incubation period distribution  555 

The incubation period distribution was modeled using estimates for influenza A from a systematic 556 

review by Lessler et al. (Lessler, et al. 2009), with a mean of 1.55 days and a standard deviation (SD) of 557 

0.66 days. These estimates were fitted to a gamma distribution to characterize the distribution of the 558 

incubation period (Supplemental Figure S1).  559 

560 

Figure S1. Incubation period distribution. The black circles and blue lines represent the data (Lessler, et al. 2009), and the (A) 561 
cumulative distribution function and (B) probability density function of a gamma distribution fitted to the data.  562 

The observed household serial interval of single infection pairs  563 

We found that the observed household serial interval, calculated without modeling, solely using data 564 

from households with single infection pairs (i.e., single primary case to single secondary case) and 565 

without potential transmission chains, had a mean of 3.7 days (and a SD of 2.3 days). This was longer 566 

than the mean intrinsic serial interval of 3.2 (95% CrI: 2.8-3.5) days when considering households of all 567 

sizes with all potential transmission chains (Table 2). This does not necessarily indicate that the intrinsic 568 

value was shorter than the realized household one. Rather, it is mainly due to the restriction of single 569 

infection pairs or mostly smaller household sizes of 2 members.  570 

In the main text, we found slightly longer mean intrinsic and realized household generation times in 571 

smaller households compared to larger ones (Figure 1C and Supplemental Table S1). Larger households 572 

with more exposure and potential transmission chains could have a shorter interval, while smaller 573 

households could have a longer interval.  574 

Specification of parameters for the mechanistic model  575 

In the mechanistic model (Hart, Abbott, et al. 2022), two parameters, namely the ratio of the mean 576 

latent and incubation period and the mean symptomatic infectious period, were estimated directly 577 

(Supplemental Figure S2), while the proportion of transmission before symptomatic onset was 578 

calculated by weighting the pre-symptomatic period by the ratio of pre-symptomatic and symptomatic 579 

transmission rates and dividing it by the sum of the (pre-symptomatic and symptomatic) infectious 580 

periods. The mean latent and mean pre-symptomatic periods were calculated by dividing the incubation581 

period by the ratio of mean latent and incubation period.  582 
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 583 

Figure S2. Posterior and prior distributions of estimated parameters. Solid and dashed lines represent posterior and prior 584 
distributions, respectively.  585 

Variability in estimates across data stratifications  586 

Although the generation time or serial interval of influenza B may be longer than that of influenza A 587 
(Levy, et al. 2013), this was not the case in our findings from the two seasons (Supplemental Table S1, 588 

Figure S3 and S4). However, we note that the mean intrinsic generation time exhibited a wider credible 589 
interval when using data exclusively from influenza B compared to influenza A, which likely reflects the 590 

dominance of influenza A during the study timeframe and the smaller sample size of influenza B.  591 

Data stratifications  Mean intrinsic generation time 

(95% CrIs)  

Overlapping index (%, 

compared to the primary 

analysis)  

All data excluding households with 
multiple co-primary cases 
(primary analysis in Table 1)  

3.2 (2.9-3.6)  100  

Season 2021/2022  3.3 (2.8-4.0)  71  

Season 2022/2023  3.2 (2.8-3.6)  87  

Influenza A  3.2 (2.9-3.6)  94  

Influenza B  3.2 (2.3-4.5)  47  
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Household size of 2 or 3  3.4 (2.9-4.0)  61  

Household size of 4 or greater  3.1 (2.7-3.6)  74  

All data including households with 
multiple co-primary cases  

3.1 (2.7-3.4)  64  

Table S1. The posterior mean (95% CrIs) of mean intrinsic generation time across seasons, virus types, household sizes, and with 592 
multiple co-primary cases. The incubation period, derived from influenza A, had a mean of 1.55 days and a standard deviation 593 
(SD) of 0.66 days (Lessler, et al. 2009). Only for influenza B, we assumed the shorter incubation period to yield a mean of 0.61 594 
days and a standard deviation (SD) of 0.25 days.  595 
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596 

Figure S3. Posterior distributions of parameters across data stratifications: (A) seasons, (B) virus types, (C) household sizes, and 597 
(D) with multiple co-primary cases.  598 
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599 

Figure S4. Posterior distributions of parameters across data stratifications: (A) seasons, (B) virus types, (C) household sizes, and 600 
(D) with multiple co-primary cases.  601 
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Sensitivity analyses  602 

Similar to the sensitivity analyses using the full dataset, we found that the incubation period had a 603 
limited effect on the intrinsic generation time when exclusively using data from households circulating 604 

influenza A (Supplemental Figure S6, Panel B) or households circulating influenza B (Supplemental Figure 605 
S6, Panel C).  606 

Consistent with the previous study (Hart, Abbott, et al. 2022), assuming a higher relative infectiousness 607 

of asymptomatic infected individuals resulted in slightly lower estimates of the overall infectiousness of 608 
infectors (Supplemental Figure S6, Panel D).  609 

Sensitivity analyses  Mean intrinsic generation time 

(95% CrIs)  

Overlapping index (%, 

compared to the primary 

analysis)  

Primary analysis (in Table 1)  3.2 (2.9-3.6)  100  

Longer incubation period  3.2 (2.8-3.6)  86  

Shorter incubation period  3.4 (3.1-3.7)  56  

Lower relative infectiousness  3.2 (2.9-3.6)  94  

Higher relative infectiousness  3.2 (2.9-3.6)  97 
Table S2. The posterior mean (95% CrIs) of mean intrinsic generation time given different incubation periods or relative 610 
infectiousness of asymptomatic infected individuals. The primary incubation period, derived from influenza A, had a mean of 611 
1.55 days and a standard deviation (SD) of 0.66 days (Lessler, et al. 2009). For the shorter incubation period derived from 612 
influenza B, we assumed a mean of 0.61 days and a SD of 0.25 days (Lessler, et al. 2009). For the longer incubation period 613 
derived from influenza A(H1N1)pdm09, we assumed a mean of 0.61 days and a SD of 0.25 days (Tuite, et al. 2010).  614 
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615 

Figure S5. Posterior distributions of parameters given different assumptions: (A-C) incubation periods, and (D) relative 616 
infectiousness of asymptomatic infected individuals. Panel (A) presents results obtained using data from households with both 617 
influenza A and B, whereas Panels (B) and (C) present results obtained using data solely from households with influenza A and B,618 
respectively.  619 
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620 

Figure S6. Posterior distributions of parameters given different assumptions: (A-C) incubation periods, and (D) relative 621 
infectiousness of asymptomatic infected individuals. Panel (A) presents results obtained using data from households with both 622 
influenza A and B, whereas Panels (B) and (C) present results obtained using data solely from households with influenza A and B,623 
respectively.  624 
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