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Abstract 

 

Background: Mechanisms of progression of diabetic kidney disease (DKD) are not completely 

understood. This study uses untargeted and targeted mass spectrometry-based proteomics in two 

independent cohorts on two continents to decipher the mechanisms of DKD in patients with type 

2 diabetes. 

Methods: We conducted untargeted mass spectrometry on urine samples collected at the time of 

kidney biopsy from Korean patients with type 2 diabetes and biopsy-proven diabetic 

nephropathy at Seoul National University Hospital (SNUH-DN cohort; n = 64). These findings 

were validated using targeted mass spectrometry in urine samples from a Chronic Renal 

Insufficiency Cohort subgroup with type 2 diabetes and DKD (CRIC-T2D; n = 282). Urinary 

biomarkers/pathways associated with kidney disease progression (doubling of serum creatinine, 

≥50% decrease in estimated glomerular filtration rates, or the development of end-stage kidney 

disease) were identified. 

Results: SNUH-DN patients had an estimated glomerular filtration rate (eGFR) of 55 

mL/min/1.73 m2 (interquartile range [IQR], 44–75) and random urine protein-to-creatinine ratio 

of 3.1 g/g (IQR, 1.7–7.0). Urine proteins clustered into two groups, with cluster 2 having a 4.6-

fold greater hazard (95% confidence interval [CI], 1.9–11.5) of disease progression than cluster 1 

in multivariable-adjusted, time-to-event analyses. Proteins in cluster 2 mapped to 10 pathways, 

four of the top five of which were complement or complement-related. A high complement score, 

constructed from urine complement protein abundance, was strongly correlated to 4 of 5 

histopathologic DN features and was associated with a 2.4-fold greater hazard (95% CI, 1.0–5.4) 

of disease progression than a low complement score. Targeted mass spectrometry of the CRIC-
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T2D participants, who had an eGFR of 42 mL/min/1.73 m2 (IQR, 37–49) and 24-hr urine protein 

of 0.48 g (IQR, 0.10–1.87), showed that the complement score similarly segregated them into 

rapid and slow DKD progression groups. In both cohorts, the complement score had a linear 

association with disease progression. 

Conclusions: Urinary proteomic profiling confirms the association between the complement 

pathway and rapid DKD progression in two independent cohorts. These results suggest a need to 

further investigate complement pathway inhibition as a novel treatment for DKD. 

 

Keywords: biomarker; complement; diabetic kidney disease; histopathology; proteomics. 
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Introduction 

 

Diabetic kidney disease (DKD) is a major complication of diabetes, significantly 

contributing to morbidity and mortality worldwide 1, 2. As the leading cause of end-stage kidney 

disease (ESKD) globally, DKD accounts for about half of all ESKD cases, thereby posing a 

significant burden on healthcare systems worldwide 3. Despite recent advances in diabetes 

management, the mechanisms underlying progression (and their respective biomarkers) in 

human DKD remain incompletely understood. Clinically, this translates into highly variable rates 

of disease progression, with some patients experiencing rapid progression leading to ESKD 4, 5. 

This variability presents substantial challenges in clinical practice, as it is currently impossible to 

identify and intervene in patients who are rapid progressors. 

Although extensive research is being conducted, the pathophysiological mechanisms 

responsible for the DKD progression still need to be completely understood. Traditional risk 

factors, such as hyperglycemia, hypertension, and diabetic duration, are recognized 6, 7, but they 

only partially explain the inter-individual differences in disease progression. Prior studies have 

explored various biomarkers, including cytokines and kidney injury-relevant molecules 8-10, but a 

comprehensive understanding that integrates these factors with clinical outcomes remains 

elusive. This knowledge gap hinders the development of precise predictive models and targeted 

interventions that are essential for preventing rapid progression in DKD patients. Therapeutic 

strategies such as renin-angiotensin-system inhibitors, sodium-glucose cotransporter-2 inhibitors, 

and mineralocorticoid receptor antagonists are employed to mitigate DKD progression 11-13. 

However, despite these advances in therapy, it is evident that more targeted therapies are needed 

to improve DKD outcomes. 
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In response to these challenges, -omics technologies, including genomics, transcriptomics, 

metabolomics, and proteomics, emerge as powerful tools for unraveling the complex 

pathobiology of DKD. Recent advances in urinary proteomics have significantly enhanced the 

ability to predict prognosis and analyze subtypes in DKD by revealing the molecular dynamics 

of kidney injury 14, 15. This approach allows for the development of personalized treatment plans 

based on specific molecular profiles. We used comparative proteomic analyses across two 

independent cohorts (South Korea and the US) to identify the pathways associated with rapid 

DKD progression in type 2 diabetes. Utilizing both untargeted and targeted urinary proteomics, 

we found that differential abundance of complement proteins in urine predicted rapid DKD 

progression. This data highlights the importance of the complement pathway as a promising 

source of novel biomarkers for identifying rapid progressors and as a therapeutic target for novel 

DKD interventions. 
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Methods and Materials 

 

Study patients 

From March 2011 to June 2021, 93 patients with type 2 diabetes and biopsy-proven diabetic 

nephropathy were recruited at Seoul National University Hospital (SNUH), referred to as the 

SNUH-DN cohort. Of this group, 29 were excluded due to an estimated glomerular filtration rate 

(eGFR) <30 mL/min/1.73 m2 (n = 25), combined type 1 and type 2 diabetes (n = 2), the presence 

of concomitant nondiabetic glomerular disease (n = 1), or the absence of glomeruli in biopsied 

kidney tissues (n = 1). The remaining 64 patients were included in the final analyses as the 

SNUH-DN cohort after conducting untargeted proteomics. 

Additionally, this study incorporated a subset of patients with type 2 diabetes from the 

Chronic Renal Insufficiency Cohort (CRIC) study, termed CRIC-T2D, consisting of American 

patients with risk factors for cardiovascular disease, progression of chronic kidney disease, and 

mortality. A total of 3,939 patients aged 21–74 with an eGFR of 20–70 mL/min/1.73 m2 were 

enrolled at seven clinical centers throughout the US from June 2003 to December 2008. CRIC 

over-sampled participants with diabetes, who constitute nearly half of the CRIC cohort. This 

study excluded participants with monogenic renal disease, liver cirrhosis, class III or IV heart 

failure, human immunodeficiency virus, cancer, autoimmune disease, polycystic kidney disease, 

pregnant women, recipients of organ or bone marrow transplants, and those receiving 

immunotherapy for primary renal disease or systemic vasculitis within the six months preceding 

recruitment or systemic chemotherapy. 

 

Ethical considerations 
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This study was conducted in accordance with the ethical principles outlined in the 

Declaration of Helsinki and was approved by the institutional review boards (IRBs) of all 

participating institutions. For the SNUH-DN cohort, ethical approval was granted by the IRB at 

SNUH (no. H-2403-066-1519). The CRIC study was approved by the IRBs at all participating 

institutions and was conducted in accordance with the Declaration of Helsinki 16, 17. Urine 

samples and data for the present study were obtained from the CRIC subset housed at the 

NIDDK Central Repository (R01 5R01DK104706). The use of de-identified CRIC samples was 

approved by the IRB at the University of California, Davis. The use of de-identified samples and 

data from the CRIC-T2D subgroup from the NIDDK Central Repository was approved by the 

Human Subjects Division, University of California, Davis. All participants provided written 

informed consent, having been fully informed of the study purpose, the procedures involved, 

potential risks, and their rights as study participants, including the right to withdraw at any point 

without consequence. The confidentiality of patient data was rigorously maintained throughout 

the study. All personal identifiers for SNUH-DN patients were removed, and data was stored 

securely to prevent unauthorized access. CRIC-T2D data and samples were de-identified at the 

NIDDK Central Repository. 

 

Study outcomes 

The primary outcome was the progression of DKD (named kidney disease progression) 

based on any of the following events: a doubling of baseline serum creatinine, a decline greater 

than 50% in the eGFR, or the onset of ESKD. The eGFR was calculated using the Chronic 

Kidney Disease Epidemiology Collaboration equation 18. ESKD was specifically defined as the 
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need for kidney replacement therapy, including hemodialysis, peritoneal dialysis, or kidney 

transplantation. 

 

Study variables 

We collected comprehensive patient data encompassing demographic characteristics, such 

as age, sex, race, body mass index, diabetic duration, and comorbidities of hypertension, 

ischemic heart disease, cerebrovascular disease, retinopathy, and neuropathy. Laboratory findings 

included hemoglobin A1c, eGFR, and random urine protein-to-creatinine ratio (PCR) for the 

SNUH-DN cohort, while the CRIC-T2D cohort included the 24-hour urine protein amount. 

We employed a detailed histopathologic classification system to evaluate kidney biopsies 

from patients diagnosed with diabetic nephropathy in the SNUH-DN cohort. This classification 

system follows the criteria described in the reference paper 19. Each biopsy was required to 

contain at least ten glomeruli for accurate assessment, excluding any incomplete glomeruli along 

the biopsy edges. The glomerular classification was segmented into five categories: class I, 

isolated glomerular basement membrane thickening; class IIA, mild mesangial expansion; class 

IIB, severe mesangial expansion; class III, nodular sclerosis (Kimmelstiel-Wilson lesions); and 

class IV, advanced diabetic glomerulosclerosis with more than 50% global glomerulosclerosis. 

The assessment of interstitial fibrosis and tubular atrophy (IFTA), interstitial inflammation, 

arterial hyalinosis, and arteriosclerosis was also quantified using a four-point or three-point scale 

according to the criteria. 

 

Urine sample collection 
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In the SNUH-DN cohort, urine samples were collected at the time of kidney biopsy. Patients 

were instructed to provide a midstream clean-catch urine sample, which was immediately 

processed to minimize protein degradation. Upon collection, urine samples were centrifuged at 

3000 rpm for 10 minutes to remove cellular debris and then aliquoted into cryovials. The aliquots 

were promptly frozen and stored at –80°C to preserve the integrity of the proteins until 

preparation for proteomics. 

In the CRIC-T2D cohort, 24-hour urine samples were collected at home by study 

participants during their CRIC visit number 3. Participants were instructed to keep the samples at 

4°C during collection. Collections that were less than 500 ml or collected for <22 hours or >26 

hours were repeated. Accepted 24-hour collections were thoroughly mixed, and three 10 ml 

aliquots were obtained. The aliquots were shipped to the CRIC central laboratory on ice packs, 

where they were further aliquoted and stored at –80°C. A portion of these samples was shipped 

to the NIDDK Central Repository when they were sent to a study author (MA). An aliquot of 

these samples was then shipped to the Pacific Northwest National Laboratory on dry ice and 

were prepared for targeted proteomics. 

 

Untargeted proteomics 

Sample preparation 

A volume of 1-2 ml of urine from each participant was concentrated down to 250 µl using a 

centrifugal filter with a molecular weight cutoff of 3 kDa (Millipore, Billerica, MA). Protein 

concentrations were then determined using the Bradford method, employing a commercial kit 

(Bio-Rad, Hercules, CA). For the analysis, 50 µg of protein from each sample was precipitated 

using ice-cold acetone and added at five times the protein volume. The precipitate was 
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redissolved in 50 µl of SDT buffer (comprising 2% SDS, 0.1 M dithiothreitol, in 0.1 M Tris HCl, 

pH 8.0), and subjected to heating at 95°C to denature the proteins. Following denaturation, 

proteins were enzymatically digested utilizing a filter-aided sample preparation approach, 

adapted from previously established methods with some modifications 20. Specifically, proteins 

were transferred to an Amicon 30K filter (Millipore, Billerica, MA) and washed multiple times 

with UA solution (8 M urea in 0.1M Tris-HCl, pH 8.5) through centrifugation. After three 

washes, cysteines were alkylated using 0.05 M iodoacetamide in the UA solution for 30 minutes 

at room temperature in the dark. Subsequent buffer exchanges to 40 mM ammonium bicarbonate 

were performed twice to prepare for enzymatic digestion. Overnight digestion was carried out at 

37°C using trypsin/LysC with a ratio of enzyme to substrate of 1:100. The peptides produced 

were then collected in new tubes through additional centrifugation, and an extra elution step was 

performed using 40 mM ammonium bicarbonate mixed with 0.5 M sodium chloride. The eluted 

peptides were purified and fractionated using custom-made styrene-divinylbenzene reversed-

phase sulfonate-StageTips, employing a gradient of acetonitrile (40%, 60%, and 80%) in 1% 

ammonium hydroxide 21, 22. Following fractionation, peptides were vacuum-dried and stored at –

80°C until further analysis. 

 

Construction of a peptide spectral library 

To create a peptide spectral library for using match between runs (MBRs) algorithm of 

maxquant, a pooling of urine proteins was performed 23. We combined equal sub-aliquots of 

proteins, each containing 5 µg, to a total of 100 µg. This pooled sample was then subjected to a 

two-step filter-aided digestion process, consistent with the methods previously outlined 21, 24. 

Following digestion, peptides were purified using Oasis HLB solid-phase extraction cartridges to 
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ensure their readiness for high-performance liquid chromatography. For the library construction, 

we utilized 100 µg of these clean peptides and processed them through an Agilent 1260 bioinert 

HPLC system (Agilent, Santa Clara, CA) equipped with a standard analytical column (4.6 × 250 

mm; 5-µm particle size). The peptides were fractionated using a high-pH reversed-phase method, 

employing a flow rate of 0.8 ml/min across a 60-minute gradient. Solvents included 15 mM 

ammonium hydroxide in water (solvent A) and 15 mM ammonium hydroxide in 90% acetonitrile 

(solvent B). We collected 96 separate fractions at 30-second intervals throughout a 48-minute 

period, which were then concatenated into 24 fractions in step-wise manner. Early-, middle-, and 

late-eluting peptides were pooled by mixing every 24th original fraction for the proteome (e.g., 

combining fractions 1, 25, 49, and so on) 25. These concatenated fractions were subsequently 

dried using a vacuum centrifuge and stored at –80°C, ready for analysis by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). 

 

LC-MS/MS analytical procedure 

LC-MS/MS analysis was conducted on a Q-Exactive Plus Quadrupole Orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA), which was interfaced with an Ultimate 

3000 RSLC nano system (Dionex, Sunnyvale, CA) featuring a nanoelectrospray ion source. The 

process incorporated slight modifications from previously established protocols 20, 22. Individual 

peptide fractions from urine samples underwent separation using a dual-column arrangement 

consisting of a C18 trap column (300 µm internal diameter × 0.5 cm, with 3 µm particles and 

100 Å pore size) and a C18 analytical column (50 µm internal diameter × 50 cm, with 1.9 µm 

particles and 100 Å pore size). Prior to injection, dried peptide fractions were dissolved in 

solvent A (2% acetonitrile and 0.1% formic acid). The nano-LC system loaded the samples and 
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applied a chromatographic gradient over 90 minutes, increasing from 8% to 30% of solvent B 

(100% acetonitrile with 0.1% formic acid). The setup operated under a spray voltage of 2.0 kV in 

positive ion mode, and the capillary heater was maintained at 320°C. Mass spectrometric data 

were collected in a data-dependent acquisition format, prioritizing the top 15 most abundant 

precursor ions. The Orbitrap detector analyzed precursor ions across a mass range from 300 to 

1650 m/z, achieving a resolution of 70,000 at m/z 200. Fragmentation was performed via higher-

energy collisional dissociation (HCD) at a resolution of 17,500 for m/z 200, using a normalized 

collision energy setting of 28. The system's ion injection times were set to a maximum of 20 ms 

for survey scans and 120 ms for MS/MS scans. 

 

Label-free quantitative data analysis 

For the analysis of mass spectrometric data, we employed MaxQuant software (version 

1.6.1.0) for label-free quantification 26. MS/MS spectra were meticulously matched against the 

Human UniProt protein sequence database (as of December 2014, containing 88,657 entries) via 

the Andromeda search engine 27. The analysis parameters were carefully selected, with a 

precursor ion tolerance set at 6 ppm for total protein analysis and an MS/MS ion tolerance of 20 

ppm. We designated carbamido-methylation of cysteine as a fixed modification, while N-

acetylation of proteins and methionine oxidation was considered variable modifications. The 

digestion parameter was configured for full tryptic digestion with allowances for up to two 

missed cleavages per peptide, which had to be at least six amino acids long. We rigorously 

maintained a false discovery rate (FDR) of 1% across peptide, protein, and modification levels to 

ensure high data integrity. Additionally, to enhance quantification accuracy across samples, we 

utilized a strategy of matching between runs anchored by the peptide library constructed from 
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pooled urine samples. The Intensity Based Absolute Quantification (iBAQ) algorithm, a 

component of the MaxQuant suite, facilitated the estimation of protein abundances 28. In iBAQ, 

raw intensities were normalized by the count of theoretical peptides, rendering them reflective of 

the proteins' molar quantities. 

 

Targeted proteomics 

Selected reaction monitoring (SRM) 

Assay development was conducted as described in detail previously 29. Briefly, final 

surrogate peptides were selected based on the uniqueness of their occurrence in proteins of 

interest and their presence and chromatographic behavior in shotgun MS/MS data in our prior 

urine proteomics data repository (Supplementary Table 1). Crude synthetic heavy isotope-labeled 

versions of the selected peptides were used to generate MS/MS data in an Orbitrap HCD. This 

data was used to identify the best transitions and optimal collision energy for each transition. 

 

Sample processing and digestion 

Urine samples were processed and underwent LC-MS/MS, as described previously 29. 

Briefly, urine samples were thawed on ice, run through a 10 kDa prewashed (50 mM AMBIC, 

i.e., NH4HCO3, pH 8.0) Amicon ultrafiltration column, and underwent buffer exchange with 

AMBIC twice. The final urine protein concentration was determined using the BCA protein 

assay. Urea was added to the urine sample to a final concentration of 8 M, followed by reduction 

with 500mM DTT to a final concentration of 10 mM, brief sonication, and incubation at 37°C for 

1 hour while shaking. Alkylation was performed by adding IAA to a final concentration of 40 

mM and incubation for one hour at 37°C in the dark while shaking. The sample was then diluted 
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ten-fold with digestion buffer, and trypsin was added to a protein/trypsin ratio of 50:1 (w/w), 

followed by incubation at 37°C for 3 hours. Digestion was stopped by adding TFA to a final 

concentration of 0.1%. The tryptic digest was separated using SPE C18 columns, preconditioned 

using methanol and then SPE conditioning buffer, and washed with SPE washing buffer. 

Peptides were eluted from the SPE C18 columns with 1ml SPE elution buffer and, dried under a 

reduced vacuum using a speed vac and redissolved in MS-grade water. The peptide concentration 

was determined using the BCA protein assay, and peptide samples were stored at –80°C until 

further use. Heavy isotope-labeled peptide standards were mixed in a single 1 ml stock solution, 

having been reconstituted at 1000 fmol/ml per peptide in 0.1% TFA in water. The digested 

peptide mix and the heavy peptide stock were combined while shaking and advanced to LC-

SRM analysis. 

 

LC-SRM analysis and quantification 

The urine sample/heavy peptide mixes were analyzed using the final transition list, derived 

from the orbitrap HCD MS/MS, and optimized in one typical urine sample. LC-SRM was 

performed using a nanoACQUITY UPLC system coupled online to a TSQ Vantage triple 

quadrupole mass spectrometer. The peak area ratios (PAR) of endogenous transitions and heavy 

internal standard transitions represent the molar ratios between the amounts of endogenous and 

heavy internal standard peptides. The PARs were calculated using Skyline software 30. The data 

was imported into a Skyline file, peak boundaries for each peptide were manually verified for 

each dataset, and detection and optimal transition (for best peak area ratio, PAR) were confirmed 

for each peptide. Protein concentration was calculated using the equation below. 

Target protein concentration  ng
mL� 
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� L
H � C�����,   �	
�� � C������,   �	
�� � C������� � 400 µL � MW � 10
� ng

fg  � 10 mL 

where L/H is PAR of endogenous (L) to heavy isotope-labeled internal standard peptide (H), 

Cheavy, LC-SRM is the molar concentration of heavy internal standard peptides (fmol/μl) in the 

final LC-SRM solutions; MW is the molecular weight of targeted protein (Da or g/mol); Cdigest, 

LC-SRM is the mass concentration of total protein digest (μg/μl) in the final LC-SRM solutions; 

and Cprotein is mass concentration of total protein (μg/μl) in the 400 μl concentrated retentate from 

10 ml of original urine. 

 

Proteomics data processing and analysis 

The proteomic data obtained using label-free quantification of urine proteins were initially 

processed using the Seurat package (version 5.0.3) 31. These values were normalized for urine 

dilution by indexing (division) by urine creatinine, and then log2 transformed for further 

normalization using the NormalizeData function from the Seurat package. Finally, for each 

identified protein, the normalized data was scaled using the ScaleData function from the Seurat. 

Unsupervised clustering techniques were utilized to group proteins based on their expression 

patterns, and the FindNeighbor function and RunUmap function were used to create cluster 

groups and to draw UMAP, respectively. Gene names related to each protein were identified 

using the UniProt accession numbers 32. Differentially expressed proteins between rapid and 

slow progressors were identified (FindMarkers function). Using the UniProt database, proteins 

with well-documented gene associations were selected for pathway analysis, and differentially 

represented pathways were identified using WikiPathways 33. 

 

Complement scores 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 17, 2024. ; https://doi.org/10.1101/2024.08.15.24312080doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24312080


Complement score� �  !Normalized expression�& �  Modi'ier&(/*
�

���

 

The complement score was devised to evaluate the prevalence of complement pathway 

proteins in urinary proteomics data. We identified the proteins involved in the complement 

pathway by referencing the Kyoto Encyclopedia of Genes and Genomes database 34. The list of 

complement proteins used for scoring is presented in Supplementary Table 2. The average 

protein expression of denoted genes was calculated based on the assumption of previous studies 

35-37. Additionally, we formalized the distinction between activators and inhibitors. For each 

patient, this score was calculated by taking the mean of the normalized abundance of identified 

complement proteins, adjusted for their functional roles: inhibitory proteins were assigned a 

modifier of –1, and activating proteins a modifier of 1. The formula used was: 

 

 

where i denotes the sample number, and j is the individual complement protein. The continuous 

variable complement score was binarized into low vs. high complement score bins by the median 

value. 

 

Statistical analysis 

Descriptive statistical analyses were conducted on patient information. For continuous 

variables with a normal distribution, data are presented as the mean ± standard deviation, and for 

those without a normal distribution, as medians with interquartile ranges (IQR). The 

Kolmogorov-Smirnov test was used to assess the normality of the data distribution. Categorical 

variables are shown as percentages. Comparison of categorical variables was performed using 

either the chi-square test or Fisher’s exact test, while continuous variables were compared using 
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either Student’s t-test or the Mann-Whitney U test, depending on their distribution. When 

comparing multiple groups for continuous variables, analysis of variance (ANOVA) was used, 

with the groups treated as ordinal variables. Pairwise comparisons were conducted with 

Bonferroni correction. 

Survival analysis was employed to investigate the association between variables and the risk 

of kidney disease progression. The hazard ratio (HR) and corresponding 95% confidence 

intervals were calculated using the Cox proportional hazards regression model. Variables 

included in the model were selected based on clinical relevance, such as age, sex, body mass 

index, diabetic duration, and baseline kidney function. Adjusted survival curves were then 

generated to visualize the differences in adjusted cumulative survival between the two groups 

using the adjustedCurves package 38. Additionally, penalized spline regression was utilized to 

further elucidate the relationship between complement scores and kidney disease progression. All 

statistical analyses were conducted using the R program (version 4.2.2). A two-sided P value of 

less than 0.05 was considered statistically significant. 
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Results 

 

Baseline characteristics in the SNUH-DN cohort 

This cohort had a mean age of 53.3 ± 11.1 years, with 71.9% male subjects. Hypertension 

was present in 92.2% of the subjects, and the median duration of diabetes was 10 years (IQR, 4–

14 years). Diabetic retinopathy and neuropathy were observed in 54.7% and 29.7% of all patients, 

respectively. The median hemoglobin A1c was 7.2% (IQR, 6.6–8.4), while the median PCR and 

eGFR values were 3.1 g/g (IQR, 1.7–7.0) and 55 mL/min/1.73 m² (IQR 44–75), respectively.  

Details of histopathologic features are provided in Table 1. 

 

Proteomic clustering in the SNUH-DN cohort 

Unsupervised clustering of the iBAQ-normalized urine protein abundances from the SNUH-

DN cohort identified two distinct clusters, designated as clusters 1 and 2 (Figure 1A). Heatmap 

of iBAQ-normalized urine proteins that were abundant and scarce in clusters 0 and 1 are 

illustrated in Supplementary Figures 1A and B, respectively. These data showed that of the 1,877 

identified proteins, 71 and 85 were significantly abundant and scarce in cluster 2, compared to 

cluster 1, after the Bonferroni adjustment, respectively. Many of the abundant proteins mapped to 

the complement pathway, either complement activators such as complement factor D (CFD), 

component 2 (C2), component 8 beta chain (C8B), component 6 (C6), and component 5 (C5) 39, 

or complement inhibitors such as complement factor H (CFH) and serpin family G member 1 

(SERPING1) 40, 41. Conversely, among the scarce proteins, CD55 and CD59 act as complex 

inhibitors 42, while the protein C receptor (PROCR) functions indirectly as a complement 

inhibitor 
43. 
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Kidney disease progression within one year after biopsy occurred in 6 out of 24 subjects 

(25%) with urine proteins in cluster 2, and 2 out of 40 subjects (5%) in cluster 1. Compared to 

subjects in cluster 1, those in cluster 2 had a 4.62-fold (95% CI, 1.86–11.50) greater hazard of 

DKD progression in multivariable time-to-event (Cox proportional hazard) regression, adjusted 

for age, sex, body mass index, hypertension, diabetic duration, PCR, and eGFR (Table 2). The 

adjusted cumulative incidence of DKD progression displayed more rapid kidney disease 

progression in cluster 2 than in cluster 1 (Figure 1B). These results indicate that the unsupervised 

clustering of urine proteins was able to segregate subjects into two clusters, displaying slower 

and more rapid DKD progression. Notably, the accelerated DKD progression in cluster 2, 

compared to cluster 1, was associated with high glomerulosclerosis scores in the paired kidney 

biopsies from these subjects (Figure 1C). 

 

Different enrichment in complement proteins 

Pathway analysis identified a notable enrichment of complement and related pathways in 

cluster 2 (Figure 2A and Supplementary Table 3). The volcano plot of differentially abundant 

proteins highlighted that complement activators, including CFD, component 3 (C3), C5, C6, and 

C8B, and some complement inhibitors, including CFH, complement factor I (CFI), and clusterin 

(CLU), were prominently ranked in cluster 2. Conversely, other complement inhibitors (CD55 

and CD59) were scarce in cluster 2 (Figure 2B). Detailed information regarding the proteins 

related to the complement pathway is included in Supplementary Table 2. The heatmap with the 

normalized abundance of complement proteins depicted that complement pathway-related 

proteins were more prominently altered in cluster 2 than in cluster 1 (Figure 2C). 
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Complement score and kidney disease progression in the SNUH-DN cohort 

To comprehensively assess the effect of complement proteins, we calculated a complement 

score that considers their expression levels and modifies their contribution by their roles in 

pathway activation (activators or inhibitors). The overall median complement score for all 

samples was 0.28 (IQR, 0.08–0.62), with a range from –0.25 to 0.92. Cluster 2 had a median 

complement score of 0.69 (IQR, 0.51–0.76), while cluster 1 had a median score of 0.14 (IQR, 

0.01–0.28) (P <0.001) (Figure 3A). Based on the median score of 0.28 from all samples, we 

divided the patients into high (>0.28) and low (≤0.28) complement score groups (Supplementary 

Figure 2). 

Patients with high complement scores had a 2.41-fold (1.07–5.40) higher risk of kidney 

disease progression than those with low scores, after adjustment for demographic and clinical 

variables (Table 3). Multivariable-adjusted cumulative incidence of DKD progression also 

demonstrated a significant difference between the high and low complement groups (Figure 3B). 

Notably, in multivariable-adjusted spline regression, the association between the complement 

score and the hazard of DKD progression was linear (Figure 3C). 

To eliminate the potential contribution of the urine creatinine denominator to the outcome, a 

sensitivity analysis was conducted using the urine abundance of proteins without normalization 

for urine creatinine. These analyses yielded the same results, with cluster 2 and the high 

complement score group both significantly associated with rapid DKD progression, compared to 

cluster 1 and the low complement score group, respectively (Supplementary Figure 3). 

 

Histopathologic correlation with complement scores in SNUH-DN cohort 
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In the SNUH-DN cohort, which included paired urine and kidney tissues from the same 

individuals, urine complement scores were significantly correlated with three of five features 

used to classify DKD: glomerular lesions, interstitial fibrosis and tubular atrophy (IFTA), and 

arteriolar hyalinosis. The correlation between complement score and interstitial inflammation did 

not reach statistical significance. Urine complement score was not correlated with 

arteriosclerosis in this sample set (Supplementary Figure 4). 

 

Baseline characteristics in the CRIC-T2D cohort 

The association between urinary complement proteins and kidney disease progression was 

examined in an independent cohort: the CRIC-T2D. The CRIC-T2D cohort (Table 4), 

comprising 282 patients, was a majority (62%) male group with a mean age of 60.8 ± 7.5 years. 

Of these patients, 51.8% were non-Hispanic black and 30.1% were non-Hispanic white. 

Hypertension and cardiovascular disease were identified in 93.6% and 46.5% of the participants, 

respectively. The median 24-hour urine protein and eGFR were 0.48 g (IQR, 0.10–1.87) and 42 

mL/min/1.73 m² (IQR, 37–49), respectively. The median follow-up duration was 9.7 years (IQR, 

6.3–12.0). 

 

Complement Score in the CRIC-T2D cohort 

In the CRIC-T2D cohort, targeted urinary proteomics was used to quantify 12 complement 

proteins, including complement activators such as factor B (CFB), C3, component 4 (C4), C5, 

C6, component 7 (C7), component 8, alpha chain (C8A), and component 9 (C9), and inhibitors 

such as CD59, CFI, clusterin, and CFH-related protein 2 (Supplementary Table 2 and 

Supplementary Figure 5). The complement score was calculated for each participant as described 
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in the Complement scores section. The median complement score for all participants was 1.07 

(IQR, 0.42–2.10), ranging from –0.76 to 3.04. Based on this median value, the participants were 

divided into groups with high (>1.07) and low (≤1.07) complement scores (Figure 4A). The 

median complement scores for the high and low groups were 2.16 (IQR, 1.63–2.45) and 0.41 

(IQR, 0.17–0.68), respectively. The group with high scores had a 2.51-fold (95% CI, 1.76–3.57) 

higher risk of kidney disease progression than the low score group, after adjustment for age, sex, 

body mass index, hypertension, ethnicity and race, 24-hour urine protein, and eGFR (Figure 4B 

and Table 5). Multivariable-adjusted spline regression revealed a linear association between the 

complement score and the hazard of DKD progression (Figure 4C). 
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Discussion 

 

We used untargeted and targeted mass spectrometry to investigate the association between 

complement proteins and DKD progression in the SNUH-DN and CRIC-T2D cohorts. 

Unsupervised clustering of proteins identified in untargeted urinary proteomics from the SNUH-

DN cohort revealed two groups with different kidney outcomes. Pathway analysis revealed a 

marked prominence of complement proteins in the group with rapidly progressive DKD. 

Complement scores, constructed based on the abundance and function of complement proteins, 

were associated with histopathologic severity and pace of DKD progression. These results were 

replicated in the CRIC-T2D cohort, where high complement scores similarly correlated with 

rapid progression. Together, these findings underscore the potential of urinary complement 

proteins as predictive biomarkers for kidney disease progression and the pathway as a target for 

therapeutic intervention in DKD. 

While agents, including renin-angiotensin-system inhibitors, sodium-glucose cotransporter-

2 inhibitors, and mineralocorticoid receptor antagonists, have improved kidney outcomes in 

DKD patients, a significant number still experience rapid disease progression 44, 45. The 

underlying pathophysiology contributing to this residual risk may involve the complement 

pathway, characterized by an imbalance between activators and inhibitors 46, 47. High urine levels 

of complement proteins in DKD, comparable to those in autoimmune glomerulonephritis, have 

been associated with worse kidney outcomes 48, 49. Even in patients with biopsy-confirmed DN, 

the association of complement proteins with worse outcomes has been observed 50, 51. Our results 

support and extend these findings and highlight the importance of further exploring the 

involvement of the complement pathway in DKD progression. 
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We add strengths to prior studies in several ways. Firstly, we combined the use of 

untargeted and targeted proteomics. Employing untargeted proteomics enabled an unbiased 

examination of the urinary proteome, leading to the initial identification of an increase in 

complement pathway proteins. Targeted proteomics was then utilized to validate these 

observations. Secondly, to our knowledge, this is the first study to replicate the association 

between urine complement components and DKD progression in two independent cohorts. 

Thirdly, our approach goes beyond examining individual complement proteins and measures a 

complement score, which accounts for both activator and inhibitor functions, similar to 

methodologies in previous studies that used expression levels of molecules involved in specific 

pathways for scoring 36, 37. This approach allowed both a qualitative and quantitative analysis by 

categorizing patients into high and low complement score groups and using spline regression to 

analyze the shape of the association between the complement score and the hazard of disease 

progression. 

We identified several complement activators, such as CFD, C3, C4, C5, C6, C8, and 

mannan-binding lectin serine protease 1 and 2, that were elevated in patients with rapid kidney 

disease progression. Upregulation of several complement proteins (e.g., C3, component 5 alpha 

chain (C5A), mannan-binding lectin serine protease 1 and 2) has been noted in rats receiving a 

high-fat diet combined with low-dose streptozotocin 52. Previous human data on DKD identified 

C4 and C8 as significant risk factors for ESKD and all-cause mortality 49. Inhibiting these 

activators may serve as a therapeutic intervention, as one previous study showed that an inhibitor 

targeting the C5A receptor attenuated kidney fibrosis in streptozotocin-treated mice 53. The 

monoclonal antibody targeting C5, eculizumab, is an established clinical intervention in atypical 

hemolytic uremic syndrome and also tried in glomerulonephritis such as immunoglobulin A 
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nephropathy and anti-neutrophil cytoplasmic antibody-mediated vasculitis 54, 55. As a C3 inhibitor, 

pegcetacoplan, originally effective for paroxysmal nocturnal hematuria, is currently undergoing 

clinical trials as a treatment for C3 glomerulopathy and immune complex-mediated 

membranoproliferative glomerulonephritis 
56, 57. The time is approaching to examine complement 

inhibition as a novel treatment in DKD. 

We observed an increase in some complement inhibitors (e.g., CFH, CLU, and CFI) and a 

drop in others (CD55, CD59) in rapid progressors. These findings are consistent with previous 

studies, which have noted similar patterns of increase in other inhibitors alongside decreased 

CD55 during DKD progression 51. The increased complement inhibitors may suggest a 

compensatory response to an activated complement pathway, perhaps displaying an inadequate 

regulatory mechanism that is insufficient to counterbalance the activation of the complement 

pathway 49. CD55 depletion exacerbates DKD in an animal model.58 Low urine CD59 was 

associated with an increased risk of ESKD, cardiovascular complications, and all-cause mortality 

in patients with DKD49, 59, and overexpression of CD55 and CD59 attenuated kidney damage in 

ischemia-reperfusion injury mouse models 60. Accordingly, CD55 and CD59 may exhibit a 

different pattern and thus play different roles in complement regulation compared to other 

complement inhibitors, which showed a compensatory increase in DKD. 

Although the study provides valuable insights, there are certain limitations that warrant 

further examination. As with other human studies, except randomized controlled trials, it is 

challenging to confirm causality and elucidate the underlying mechanisms solely based on our 

findings. We did not examine the trend of changes in complement proteins over time, which 

limits our understanding of their dynamics. Additionally, we did not identify the source of the 

complement proteins. While the liver is considered a major source of complement proteins, the 
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kidney may also contribute significantly, especially in the context of injury and inflammation 36, 

61. Furthermore, the present cohorts primarily consisted of patients with reduced eGFR or 

advanced stage of DKD, hindering the application of the results to those with earlier stages of 

DKD. 

We find a significant association between the complement pathway and rapid DKD 

progression in two independent populations. Our findings highlight urine complement proteins as 

potential biomarkers of pathway status and the complement pathway itself as a potential 

therapeutic target. Comparable findings in two ethnically dissimilar cohorts suggest that current 

observations are likely generalizable. By integrating various complement proteins and validating 

the results in an independent cohort, we provide robust evidence for the involvement of the 

complement pathway in rapidly progressive DKD. These findings lay the foundation for its 

clinical application and advocate for continued research into complement-targeting interventions 

to improve outcomes in the complex landscape of DKD. 
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Figure legends 

 

Figure 1. Unsupervised clustering based on untargeted proteomics in the SNUH-DN cohort. 

A. Uniform manifold approximation and projection (UMAP) plot with two distinct clusters 

(clusters 1 and 2). B. Multivariable-adjusted cumulative incidence of kidney disease progression 

according to clusters, after adjustment for age, sex, body mass index, hypertension, diabetic 

duration, urine protein-to-creatine ratio, and eGFR. C. Sankey plot illustrating the relationships 

among glomerular classes, clusters, and kidney disease progression within one year. 

 

Figure 2. Complement pathway and kidney disease progression in the SNUH-DN cohort. A. 

Pathway analysis of the differentially abundant proteins in cluster 2 compared to cluster 1. B. 

Volcano plot of the differentially abundant proteins in cluster 2 compared to cluster 1. The 

dashed line denotes the threshold of significance. Red and blue dots represent proteins increased 

and decreased in cluster 2, respectively, compared to cluster 1. C. Heatmap of protein abundance 

for urinary complement components according to clustering and complement function. 

 

Figure 3. Complement score and kidney disease progression in the SNUH-DN cohort. A. 

Bar plot of complement score in clusters 1 and 2. ***P <0.001. B. Multivariable adjusted 

cumulative incidence of kidney disease progression according to complement score groups after 

adjustment for age, sex, body mass index, hypertension, diabetic duration, urine protein-to-

creatinine ratio, and eGFR. C. Penalized spline regression according to complement score after 

adjusting for age, sex, body mass index, hypertension, diabetic duration, urine protein-to-

creatinine ratio, and eGFR. 
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Figure 4. Complement score and kidney disease progression in the CRIC-T2D cohort. A. 

Bar plot of complement score in high and low score groups. ***P <0.001. B. Multivariable-

adjusted cumulative incidence of kidney disease progression according to complement score 

groups after adjustment for age, sex, body mass index, race, hypertension, 24-hour urine protein, 

and eGFR. C. Penalized spline regression according to complement score after adjusting for age, 

sex, body mass index, race, hypertension, 24-hour urine protein, and eGFR. 
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Table 1. Baseline characteristics of the SNUH-DN cohort 

Variables 
Total 

(n = 64) 
Cluster 1 
(n = 40) 

Cluster 2 
(n = 24) 

P 

Age (years) 53.3 ± 11.1 52.1 ± 10.9 55.2 ± 11.5 0.282 

Male (%) 71.9 75.0 66.7 0.667 

Body mass index (kg/m²) 25.0 ± 3.3 25.2 ± 3.1 24.7 ± 3.5 0.594 

Hypertension (%) 92.2 95.0 87.5 0.355 

Diabetic duration (years) 10 (4–14) 8 (2–12) 11 (4–20) 0.278 

Diabetic retinopathy (%) 54.7 52.5 58.3 0.846 

Diabetic neuropathy (%) 29.7 30.0 29.2 1.000 

Ischemic heart disease (%) 7.8 12.5 0 0.148 

Cerebrovascular disease (%) 4.7 2.5 8.3 0.551 

Hemoglobin A1c (%) 7.2 (6.6–8.4) 7.2 (6.6–7.6) 7.4 (6.8–8.9) 0.178 

PCR (g/g) 3.1 (1.7–7.0) 2.2 (1.2–3.6) 7.1 (4.9–9.5) <0.001 

eGFR (mL/min/1.73 m²) 56 (44–75) 61.2 (48–85) 43 (33–60) <0.001 

Glomerular classification (%)     

I 14.1 17.5 8.3 0.003 

IIA 12.5 17.5 4.2  

IIB 32.8 42.5 16.7  

III 12.5 10.0 16.7  

IV 28.1 12.5 54.2  

Interstitial fibrosis and Tubular atrophy (%)     

0 4.7 7.5 0.0 <0.001 

1 35.9 47.5 16.7  

2 46.9 45.0 50.0  

3 12.5 0.0 33.3  

Interstitial Inflammation (%)     

0 10.9 17.5 0.0 0.044 

1 84.4 80.0 91.7  

2 4.7 2.5 8.3  

Arteriolar hyalinosis (%)     

0 25.0 35.0 8.3 0.052 
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1 28.1 22.5 37.5  

2 46.9 42.5 54.2  

Arteriosclerosis (%)     

0 25.0 27.5 20.8 0.674 

1 35.9 37.5 33.3  

2 39.1 35.0 45.8  

Follow-up time (years) 6.2 (2.4–7.8) 7.1 (4.9–8.4) 2.7 (1.1–5.1) <0.001 

PCR, random urine protein-to-creatinine ratio; eGFR, estimated glomerular filtration rate. 
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Table 2. Association between cluster and kidney disease progression in the SNUH-DN cohort 

 Univariable Multivariable* 

Variables HR (95% CI) P HR (95% CI) P 

Cluster 2 (vs. 1) 4.63 (2.16–9.93) <0.001 4.62 (1.86–11.50) 0.001 

Age (per 1 year) 1.01 (0.98–1.03) 0.759 0.94 (0.90–0.98) 0.004 

Female (vs. male) 0.47 (0.20–1.08) 0.074 0.27 (0.10–0.70) 0.007 

Body mass index (per 1 kg/m2) 0.93 (0.83–1.04) 0.224 0.88 (0.78–0.99) 0.039 

Hypertension (vs. none) 1.14 (0.35–3.74) 0.827 1.03 (0.29–3.68) 0.964 

Diabetic duration (per 1 year) 1.02 (0.98–1.07) 0.380 1.00 (0.95–1.05) 0.969 

PCR (per 1 g/g) 1.16 (1.08–1.25) <0.001 1.16 (1.06–1.28) 0.002 

eGFR (per 1 mL/min/1.73 m2) 0.98 (0.96–0.99) 0.006 0.99 (0.97–1.00) 0.142 

*Adjusted for age, sex, body mass index, hypertension, diabetic duration, proteinuria, and estimated glomerular 
filtration rate. 
HR, hazard ratio; CI, confidence interval; PCR, random urine protein-to-creatinine ratio; eGFR, estimated 
glomerular filtration rate. 
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Table 3. Association between complement score and kidney disease progression in the SNUH-

DN cohort 

 Univariable Multivariable* 

Variables HR (95% CI) P HR (95% CI) P 

High complement score (vs. low) 2.67 (1.37–5.18) 0.004 2.41 (1.07–5.40) 0.033 

Age (per 1 year) 1.00 (0.98–1.03) 0.759 0.95 (0.91–0.99) 0.011 

Female (vs. male) 0.47 (0.20–1.08) 0.074 0.30 (0.11–0.79) 0.015 

Body mass index (per 1 kg/m2) 0.93 (0.83–1.04) 0.224 0.88 (0.78–1.00) 0.050 

Hypertension (vs. none) 1.14 (0.35–3.74) 0.827 0.89 (0.25–3.11) 0.852 

Diabetic duration (per 1 year) 1.02 (0.98–1.07) 0.380 1.03 (0.98–1.08) 0.311 

PCR (per 1 g/g) 1.16 (1.08–1.25) <0.001 1.14 (1.03–1.26) 0.010 

eGFR (per 1 mL/min/1.73 m2) 0.98 (0.96–0.99) 0.006 0.99 (0.97–1.00) 0.142 

*Adjusted for age, sex, body mass index, hypertension, diabetic duration, proteinuria, and estimated glomerular 
filtration rate. 
HR, hazard ratio; CI, confidence interval; PCR, random urine protein-to-creatinine ratio; eGFR, estimated 
glomerular filtration rate. 
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Table 4. Baseline characteristics of the CRIC-T2D cohort 

Variables 
Total 

(n = 282) 
No progression 

(n = 101) 
Progression 

(n = 181) 
P 

Age (years) 60.8 ± 7.5 61.8 ± 7.3 60.3 ± 7.5 0.103 

Male (%) 62.4 58.4 64.6 0.365 

Body mass index (kg/m²) 34.7 ± 7.6 34.7 ± 8.2 34.7 ± 7.2 0.997 

Race and ethnicity     

Other 18.1 11.9 21.5 0.105 

White non-Hispanic 30.1 34.7 27.6  

Black non-Hispanic 51.8 53.5 50.8  

Hypertension (%) 93.6 91.1 95.0 0.297 

Cardiovascular disease (%) 46.5 44.6 47.5 0.724 

Hemoglobin A1c (%) 7.1 (6.3–8.1) 7.0 (6.2–7.8) 7.1 (6.4–8.2) 0.128 

24-hour urine protein (g) 0.48 (0.10–1.87) 0.10 (0.05–0.38) 1.03 (0.30–3.30) <0.001 

eGFR (mL/min/1.73 m²) 42 (37–49) 43.7 (38–48) 41 (35–49) 0.031 

Follow-up time (years) 9.7 (6.3–12.0) 9.7 (5.2–12.0) 9.7 (6.5–12.0) 0.668 

eGFR, estimated glomerular filtration rate. 
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Table 5. Association between complement score and kidney disease progression in the CRIC-

T2D cohort 

 Univariable Multivariable* 

Variables HR (95% CI) P HR (95% CI) P 

High score (vs. low) 3.76 (2.74–5.16) <0.001 2.51 (1.76–3.57) <0.001 

Age (per 1 year) 0.98 (0.96–1.00) 0.120 1.00 (0.97–1.02) 0.720 

Female (vs. male) 1.02 (0.75–1.38) 0.903 1.21 (0.87–1.68) 0.263 

Body mass index (per 1 kg/m2) 1.00 (0.98–1.02) 0.682 1.00 (0.97–1.02) 0.822 

Race and ethnicity (vs. other)     

White non-Hispanic 0.55 (0.36–0.49) 0.707 0.79 (0.51–1.23) 0.296 

Black non-Hispanic 0.01 (0.84–1.03) 0.070 0.96 (0.65–1.42) 0.839 

Hypertension (vs. none) 1.60 (0.82–3.13) 0.171 1.71 (0.87–3.37) 0.121 

24-hour urine protein (per 1 g) 1.31 (1.25–1.37) <0.001 1.23 (1.17–1.30) <0.001 

eGFR (per 1 mL/min/1.73 m2) 0.97 (0.96–0.99) 0.003 0.99 (0.97–1.01) 0.263 

*Adjusted for age, sex, body mass index, race and ethnicity, hypertension, 24-hour proteinuria, and estimated 
glomerular filtration rate. 
HR, hazard ratio; CI, confidence interval; eGFR, estimated glomerular filtration rate. 
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