
1 
 

Cell-Free DNA GWAS Reveals Importance 
of p.Arg206Cys in DNASE1L3 for Non-
Invasive Testing 
Jasper Linthorst1,2,3,6*, Michel Nivard4,5, Erik A. Sistermans1,2,* 
1) Department of Human Genetics, Amsterdam UMC location VU, Amsterdam, The 
Netherlands 
2) Amsterdam Reproduction & Development, Amsterdam, The Netherlands 
3) Amsterdam institute for Immunology and Infectious Diseases, Amsterdam, The 

Netherlands 
4) Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands 
5) Amsterdam Public Health Research Institute, Amsterdam, The Netherlands 
6) Lead contact 
*Correspondence: j.linthorst@amsterdamumc.nl, e.sistermans@amsterdamumc.nl 

HIGHLIGHTS 
• Common variants affect properties of plasma cell-free DNA 

• p.Arg206Cys in DNASE1L3 strongly affects the size of cell-free DNA fragments 

• Fragmentomics-based fetal fraction predictors are affected by p.Arg206Cys 

• Genetics behind cfDNA overlaps with autoimmune and cardiovascular diseases 

SUMMARY 
Properties of cell-free DNA (cfDNA) are intensely studied for their potential as non-invasive 
biomarkers. We explored the effect of common genetic variants on concentration and 
fragmentation properties of cfDNA using a GWAS based on low-coverage whole genome 
sequencing data of 140.000 Dutch Non-Invasive Prenatal Tests (NIPT). Our GWAS detects 
many genome-wide significant loci, functional enrichments for Phagocytes, Liver, Adipose 
tissue, Macrophages and genetic correlations with autoimmune and cardiovascular disease. 
A common (7%) missense variant in DNASE1L3 (p.Arg206Cys), strongly affects all cfDNA 
properties. It increases the size of fragments, lowers cfDNA concentrations, affects the 
distribution of cleave-site motifs and increases the fraction of circulating fetal DNA during 
pregnancy. For the application of NIPT, and potentially other cfDNA-based tests, this variant 
has direct clinical consequences as it increases the odds of inconclusive results and impairs 
the sensitivity of NIPT by causing predictors to overestimate the fetal fraction. 
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INTRODUCTION 
Plasma cell-free DNA (cfDNA) are extracellular DNA fragments present in blood. These 
fragments predominantly originate from the degradation of dead cells, which results in non-
randomly fragmented cfDNA fragments that circulate in plasma. Most cfDNA originates from 
apoptotic hematopoietic cells, but a substantial amount originates from other tissues. 
Changes in the pool of cfDNA can be observed in pathological as well as physiological 
conditions such as growth of a tumor or placenta, tissue damage, presence of a graft and graft 
rejection, microbial infection, or the innate immune response against an infection. Plasma 
cfDNA can easily be obtained from blood, without the risks that are involved with invasive 
procedures. This has enabled the quick adoption of clinical applications such as non-invasive 
prenatal testing (NIPT) and ‘liquid biopsies’ in oncology and transplantation monitoring. 
 
Across these disciplines, applications face very similar challenges, such as distinguishing 
fragments of interest from a background of highly similar cfDNA and making inferences about 
the cell-type composition of the cfDNA pool. To do so, researchers have explored and made 
use of the fragmentation properties of cfDNA molecules, a study referred to as 
‘fragmentomics’1. These properties include, but are not limited to: cfDNA fragment sizes, 5' 
end-patterns, ‘jaggedness’2, ‘preferred ending-sites’3, ‘window-protection scores’4 and many 
others. The predictive potential of these features is attributed to the fact that the non-random 
fragmentation patterns of cfDNA fragments reflect the epigenetic and transcriptomic 
footprints of the cells from which they originate1. 
 
To better understand the mechanisms behind fragmentomics, a model of cfDNA biology has 
been conceived, which mainly focuses on the nucleases involved in the degradation of 
apoptotic cells, and revolves around three main nucleases, DFFB, DNASE1, and DNASE1L35. 
Briefly, during apoptosis, DNASE1L3 and DFFB (also known as DNA fragmentation factor B or 
caspase-activated DNase) first intracellularly cleave chromatin in the internucleosomal linker 
region into large oligo-nucleosomal DNA fragments. After the initial intracellular cleavage, the 
apoptotic cell breaks apart into apoptotic bodies, which are eventually cleared by 
phagocytosis of macrophages. This process predominantly takes place in the liver and spleen. 
The nucleosome-bound DNA fragments that during this process are released into the 
bloodstream are further degraded by secreted circulating enzymes. DNASE1L3 and DNASE1 
account for most of the direct DNase activity in blood, but other circulating enzymes have 
been shown to contribute to this process by releasing nucleosomes from apoptotic bodies, 
such as the Factor VII activating protease (HABP2 or FSAP)6,7 and Factor H8. Neither DNASE1, 
DNASE1L3 or DFFB has a simple consensus cleavage sequence, but DFFB has been shown to 
prefer cleavage of DNA at the center of a 8bp palindromic Purine(R)/Pyrimidine(Y) sequences 
(5’-RRRY|YRRR-3’)9. 
 
Besides diagnostic purposes, plasma cfDNA in vivo is not merely a byproduct of cell-death. It 
has a pro-inflammatory effect, which plays an important role in the innate immune 
response10,11. As part of the innate immune response, Neutrophils, the most abundant 
leukocyte in the bloodstream12, but also Eosinophils and Basophils, can produce Extracellular 
DNA traps, which are often referred to as Neutrophil Extracellular Traps (NETs). NETs are long 
stretches of chromatin and mitochondrial-derived DNA, coated with anti-microbial proteins, 
which are intended to trap and kill pathogenic microbes13. NETs are mostly the result of a 
non-apoptotic cell-death mechanism, referred to as NETosis. It is currently unclear how much 
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cfDNA is attributable to NETs14, specifically under physiological conditions15, but total plasma 
cfDNA concentration measures have been used and validated as surrogate biomarkers for the 
detection of NETs and NETosis in disease16. NETs provide a functional link between cfDNA, 
inflammation, and coagulation17-19, which is often referred to as immunothrombosis, and is 
believed to play a role in many other diseases and pathological conditions, such as 
cardiovascular disease, sepsis, atherosclerosis, thrombosis and cancer. 
 
There is also considerable evidence that cfDNA and NETs play an important role in the 
development of autoimmunity14,11,20. Additionally, impaired clearance of both inter- and 
intracellular DNA has been shown to cause or increase the risk of different autoimmune 
diseases. This mechanism is supported by mouse models and patients with loss-of-function 
variants in nuclease genes. Rare variants in TREX121,22, SAMHD1, ADAR1, DNASE223, DNASE124 
and DNASE1L325-27 are all causally associated with different autoimmune diseases. A common 
missense variant in DNASE1L3, here referred to as R206C, was recently identified as the causal 
variant responsible for the signal on 3p14.3 (often wrongfully assigned to the neighboring PXK 
gene) in Systemic Lupus Erythematosus (SLE)28,29, and also underlies GWAS associations from 
Rheumatoid Arthritis (RA)30 and Systemic Sclerosis (SS)31. Additionally, recent work has shown 
that antibody-mediated inhibition of DNASE1L3 function is a non-genetic mechanism which 
contributes to SLE pathogenicity32. 
 
Most of our current knowledge stems from studies in mice, where nuclease genes were 
knocked-out in order to explain the characteristic patterns of cfDNA. So far, this has resulted 
in a model for cfDNA generation which translated well to humans and has provided crucial 
insights into many aspects of fragmentomics5. Despite this model, there are still many open 
questions concerning cfDNA, which are key to unlocking new insights into cfDNA diagnostics, 
autoimmunity and immunothrombosis15. 
 
In this paper, we aim to contribute to these open questions by performing several genome-
wide association studies (GWAS) on different fragmentation and concentration properties of 
cfDNA. For this, cfDNA sequencing data is used from approximately 140.000 pregnant women 
enrolled in the TRIDENT-2 study which implemented NIPT in The Netherlands33. Data from 
NIPT analyses performed in Amsterdam were used to impute and investigate the association 
between common variants and cfDNA traits, calculated and measured from the same data. 
 
Although a previous study using NIPT collected in China already showed the potential for this 
source of data to perform GWAS34, it wasn’t used to study the biological properties of cfDNA. 
Our study using NIPT data collected in The Netherlands is furthermore characterized by a 
higher per sample sequencing depth and the ability to study the size of cfDNA fragments due 
to the use of paired-end sequencing technology. 
 
We derive estimates for the common SNP heritability of these traits, investigate the genetic 
correlations with disease, explore functional enrichments, report on several genome-wide 
significant loci and the involvement of co-localized genes. On the basis of a single common 
variant, which has the largest effect on all properties of cfDNA, we investigate the causal 
mechanism and the clinical consequences for the implementation of NIPT, which likely 
translate to other forms of cfDNA screening. 
  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.15.24312005doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.15.24312005


4 
 

RESULTS 
Keywords: NIPT, VeriSeq, fetal fraction, cell-free DNA, fragmentomics, DNASE1L3, 
rs35677470, PADI4, PANX1, DFFB 
 

GWAS of cfDNA identifies many genome-wide significant loci 
GWAS was conducted for various measures related to cfDNA concentration and 
fragmentation. Concentration measures involved the total plasma cfDNA concentration, as 
well as the concentration stratified into fetal and mitochondrial origin (Figure 1). 
Fragmentation measures included size distribution, variable length nucleotide (and 
Purine/Pyrimidine) cleave site motifs, and the genomic distribution of cfDNA fragments 
(Figure 2). To assess the importance of these genetic factors in daily clinical practice, GWAS 
was also conducted to study the influence of common genetic variants on inconclusive NIPT 
results and the FF in a plasma sample (Table S1). We discovered many genome-wide 
significant loci and nearly all measures had significant heritability estimates (see Table 1). 
 
It was found that the imputation quality, expressed as the average genotype probability, was 
negatively affected by increased fetal fractions (FF) and the number of sequenced reads in NIPT 
samples. NIPT-derived GWAS for two available maternal phenotypes: height and body mass index 
(BMI), resulted in high genetic correlations (rg) (rg=0.9617 and rg=0.8546 respectively) with 
publicly available GWAS summary statistics from the UK biobank (https://www.ukbiobank.ac.uk/) 
for the same traits, but based on dedicated SNP arrays. 
 
To account for bias introduced by population structure, principal component analysis (PCA) was 
performed. Inspection of the first two PC’s indicated that although we observe large ancestral 
diversity in our dataset, about 87% of our samples overlapped with the EUR super population 
annotation of the 1000 genomes project35. For our cfDNA phenotypes, we observed minor, but 
significant effects amongst the first 17 PC’s. The strongest effect (Pearson r=0.092, p=3.97x10-138) 
was observed for total cfDNA concentrations along the first PC. 

 

R206C in DNASE1L3 affects all properties of cfDNA 
Across all cfDNA GWAS (except the concentration of fetal cfDNA) the strongest and most 
significant effect was observed for a C to A missense variant (rs35677470) in DNASE1L3, which 
changes the Arginine at position 206 into a Cysteine (p.Arg206Cys, here referred to as R206C) 
and has a minor allele frequency of about 7% in the Dutch population. DNASE1L3 encodes an 
endonuclease that is predominantly expressed by macrophages in the liver and is secreted 
into plasma. It has the unique ability to cleave lipid and protein bound DNA, and was 
previously found to be the main determinant of mono-nucleosome sized plasma cfDNA 
fragments. 
R206C had the most significant effect on the size-diversity of circulating cfDNA fragments 
(beta=0.013; se=0.0001; p= 1x10-2791; Figure 2A). The R206C genotype was associated with a 
relative decrease in mono-nucleosome sized fragments and an increase in very short (50-
100bp) and di-nucleosomal fragments (Figure 3A). The R206C genotype has the most 
profound impact on cfDNA fragments over 400bp and thus beyond the size-range of our 
typical NIPT data. 
Upon investigating all motifs up to 8bp (4bp up- and downstream) at cfDNA cleave sites, we 
found that R206C most strongly affected the diversity of 6bp Purine/Pyrimidine cleave-site 
motifs (beta=0.0005, se=5.55x-106; p=1x101588; Figure 2B). The frequency of almost all cleave 
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site motifs was significantly altered by the R206C genotype (Table S2). Likely as a result of 
this, the genomic distribution of cfDNA fragments, as measured by the diversity of the number 
of reads across 50kbp bins throughout the genome, was also significantly altered by R206C 
(Figure 2C). We found the strongest correlations between the R206C genotype and the 
frequency of nucleotide cleave site motifs ‘ACGT’ and ‘AAACATCC’ (Figure 3D). The latter 
aligns with the ‘RRRYRYYY’ Purine/Pyrimidine motif, which was previously identified as the 
preferred cleavage site for DFFB9, whereas the former corresponds to the ‘RYRY’ central core 
of this motif. All other cleave-sites that conformed to this motif also positively correlated with 
the R206C genotype (Figure 3C). Among the 100 strongest correlating motifs, there were 34 
other ‘RRRYRYYY’ Purine/Pyrimidine motifs (Table S2). Amongst the 100 strongest correlating 
motifs, the ‘AAAAAAAA’ motif was the only motif for which the frequency negatively 
correlated with the R206C genotype (Figure 3D and Table S2). 
We found that R206C caused a significant reduction (beta=0.116; se=0.003; p= 1.29x10-263) in 
total plasma cfDNA concentrations (Figure 3E), which despite equimolar pooling of samples 
throughout sequencing runs, also resulted in a significant decrease in the number of 
sequenced cfDNA fragments (Figure 3F). 
 

R206C increases risk of inconclusive NIPT 
As we observed large effects of R206C on all cfDNA properties, we wondered if R206C and 
other variants affected our NIPT screening results during routine clinical practice. We 
performed case/control GWAS to investigate the effect of common SNPs on inconclusive 
screening outcomes. In practice, at our lab, the causes of inconclusive NIPT (after repeated 
sequencing experiments on the same blooddraw) are either related to impaired sequencing 
yield (e.g. less than 5 million uniquely aligned fragments), here defined as type-1, or very low 
FF (<1%), defined as type-2. Type-1 inconclusive NIPT at our facility has a prevalence of 
~0.37%, while type-2 inconclusive NIPT has a prevalence of ~2.25%. 
 
GWAS for type-1 inconclusive NIPT resulted in only one genome-wide significant locus: R206C 
(OR=7.03; log(OR)=0.85; log(OR)_se=0.08; p=8.3x10-127). On the basis of our imputed 
genotypes, homozygosity for R206C increases the odds of type-1 inconclusive NIPT results 
~14-fold (Table S1). Our GWAS for type-2 inconclusive results identified 3 loci (Table S1), also 
including the R206C variant in DNASE1L3. However, in this case R206C had a ‘protective’ 
effect as it decreased the odds of NIPT failure due to a too low FF (OR=0.54; log(OR)=-0.27; 
log(OR)_se=0.07; p=6.37x10-19). 
 

R206C increases fetal fraction 
The sensitivity of NIPT is largely dependent on the fraction of sequenced fetal DNA, which is 
derived from the placenta and varies significantly between pregnant women. For this reason, 
the FF is an essential parameter for NIPT. In male-bearing pregnancies, the FF can be derived 
from the sex-chromosomes. To also obtain FF estimates in female-bearing pregnancies, 
fragmentomics-based predictors, such as the VeriSeq (Illumina, San Diego, USA) FF solution36, 
have been developed. The SeqFF37 predictor makes use of the differential genomic37 
distribution, while the VeriSeq predictor also makes use of the differential size38 of maternal 
and fetal cfDNA. 
 
Our findings with respect to the observed ‘protective’ effect of R206C on type-2 inconclusive 
NIPT results had two possible explanations. Either FF was truly increased in NIPT samples with 
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this genotype, indicating a biological effect, or it was the result of the perturbed 
fragmentomics affecting the FF predictors, or a combination of both. 
 
To address this question, we selected only male-bearing pregnancies, where we could use the 
Y chromosome (chrY) as a fragmentomics-free alternative to the SeqFF and VeriSeq 
predictor36 to study FF. We performed GWAS on all three FF measures and found that results 
were highly correlated (LD-score regression based genetic correlation: chrY/ VeriSeq=0.9733; 
chrY/SeqFF=0.9766; VeriSeq/SeqFF=0.9734, Table S1). For all FF measures the most 
significant locus was R206C. While the direction of effect was the same, the estimated effect 
sizes differed significantly. The most significant effect of R206C was observed for the VeriSeq 
predictor (Beta=0.016, se=0.00055, p=2.84x10-190), followed by SeqFF (Beta=0.010, 
se=0.00036, p=1.84x10-176). The effect of R206C on the Y-chromosome derived FF was smaller 
(Beta=0.007, se=0.00033; p=4.14x10-110), but still highly significant. 
 

Fetal fraction increases as a result of decrease in maternal cfDNA 
We evaluated whether the R206C variant affected the fetal fraction by increasing the amount 
of fetal DNA, or by decreasing the amount of maternal DNA, or both. To address this question, 
we stratified the total cfDNA concentration into fetal and maternal concentrations by 
multiplying it with our FF estimates. When we used these measures as GWAS targets, we 
observed a genome-wide significant, cfDNA-decreasing effect of the R206C genotype on both. 
However, the effect on the maternal cfDNA concentration was much stronger than the effect 
on fetal cfDNA, explaining the increased FF. Interestingly, the fetal cfDNA concentration 
GWAS did result in several other more significant loci (Figure 1B). To validate this approach, 
we stratified cfDNA concentrations based on the mitochondrial fraction of cfDNA (which also 
varies and can easily be derived for all cfDNA samples). Using this GWAS we identified many 
genome-wide significant loci (Figure 1C), which functionally implicated mitochondrial 
function and were highly distinct from the loci identified using our total cfDNA concentration 
GWAS, proving the validity of our approach. 
 

Altered fragmentomics contributes to the differences in fetal fraction prediction 
Despite the fact that all three FF measures were highly correlated (Pearson correlation with 
chrY/ VeriSeq =0.87; chrY/SeqFF=0.83; VeriSeq /SeqFF=0.84) and R206C seemed to exhibit a 
true biological effect on FF, we observed significantly different effect sizes, while all studies 
were performed on the exact same dataset. As a result, we wondered whether the altered 
fragmentomics, as a result of common genetic variants, contributed to these differences. To 
investigate this, we calculated the difference between the Y chromosome derived FF and the 
predictions by both VeriSeq and SeqFF, and used these as GWAS targets (Table S1). We 
identified 6 and 4 genome-wide significant hits and obtained heritability estimates of ~11% 
for the difference between Y chromosome derived FF and VeriSeq, and ~4% for the difference 
between Y chromosome derived FF and SeqFF. Indicating that a significant fraction of the 
difference between the methods is not the result of random error, but instead is attributable 
to genetic variation between the samples. Again, the strongest effect was observed for the 
R206C variant on VeriSeq FF predictions (Figure 3G and 3H). For both methods, the R206C 
variant resulted in an overestimation of the FF compared to the chromosome Y based 
estimate. In case of homozygosity for the R206C variant, VeriSeq on average overestimated 
the FF with approximately 4.2%. 
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Targeted genotyping strengthens the association with inconclusive NIPT 
We imputed the R206C genotype with high confidence (INFO score: 0.90269). Nonetheless, 
we validated the imputed R206C genotype using left-over plasma from a total of 63 NIPT 
samples and used digital droplet PCR (ddPCR) for direct genotyping (Table S2). We selected 
26 samples for which we imputed a homozygous R206C allele (11 of which resulted in type-1 
inconclusive NIPT results and 15 with conclusive NIPT results and no detected trisomies), 15 
samples for which we imputed a heterozygous allele and 22 samples for which we imputed 
the wild type allele (all with conclusive NIPT results). Across the four groups samples were 
selected at random. On average we obtained 220 (sd=117) allele counts (droplets that were 
either positive on channel 1 or channel 2) per sample, from which we inferred the most likely 
maternal genotypes based on a simple Bayesian model (see Method details). We found that 
for 57 out of 63 (91%) the imputed genotypes were identical to the ddPCR inferred maternal 
genotypes. In 6 samples we found that ddPCR indicated a heterozygous allele while the 
homozygous allele was imputed. These were all samples from the group of 15 for which 
sufficient sequencing data was generated, and normal conclusive NIPT results were obtained. 
Suggesting that the combined evidence of inconclusive NIPT results and an imputed 
homozygous R206C allele provided additional evidence for the true R206C genotype. We 
indeed found that the effect of imputed homozygosity for R206C in combination with 
inconclusive NIPT results was stronger than the imputed R206C genotype alone (see Figure 
3A,D,E,F,G,H).  
We also found that in this smaller validation set the R206C ddPCR genotype was also 
significantly associated with a lower cfDNA concentration measure, both before (Mann-
Whitney-Wilcoxon test two-sided test, before p=7.822e-03) and after library preparation 
(p=2.471e-03). 
 

Long-read sequencing shows increase in very large cfDNA fragments 
Besides a lower cfDNA concentration, we also found that R206C overall caused a small 
increase in the size of sequenced cfDNA fragments. We therefore hypothesized that the 
reduced enzymatic activity of DNASE1L3 would lead to longer cfDNA fragments in plasma, 
which we cannot observe with NIPT as they are outside the size-range of Illumina sequencing 
technology (>400bp). To investigate this, we used plasma DNA from 55 of the 63 samples for 
which the R206C genotype was previously validated using ddPCR and material was still 
available. This resulted in 20 homozygous R206C, 15 heterozygous and 20 homozygous 
wildtype samples for the R206C allele, which were simultaneously sequenced on a single 
PromethION (Oxford Nanopore, London, UK) 2 flowcell. 
On average we obtained 1.66 million reads per sample. By pooling samples we observed an 
additive effect of the R206C genotype on the frequency of very long cfDNA molecules (Figure 
3B). Despite the fact that all genotypes were validated using ddPCR and incorrectly imputed 
genotypes should therefore not play a role, we still found that the effect was stronger in the 
group with inconclusive NIPT results. 
The reduction in short mono-nucleosome fragments, which we observed previously from the 
NIPT short-read data (Figure 3A) was also apparent in the long-read sequencing data (Figure 
3B). One sample, which was homozygous for the R206C allele and had conclusive NIPT results, 
exhibited a highly distinct fragment-size distribution and was therefore excluded from our 
analyses. Despite equimolar pooling of cfDNA quantities, we still observed that the R206C 
allele significantly decreased the number of sequenced cfDNA molecules. 
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Other genome-wide significant variants implicate nucleases, phagocytes and NETs  
Our GWAS also identified many other genome-wide significant loci (Table S1). Beyond 
DNASE1L3, the classic model of cfDNA biology features two other genes: DFFB and DNASE1. 
While we did not observe an effect on cfDNA from common variants near DNASE1, we did 
observe highly significant associations between intronic variants (lead SNP rs34141819) in 
DFFB and the motif-diversity of cfDNA cleave sites. Beyond its effect on cleave-site motifs, 
this variant did not have a significant effect on the size-distribution or concentration of cfDNA 
(Figures 1 and 2), which is in line with previous work in DFFB-deficient mice5. The motif-
diversity GWAS also identified a third highly significant association with variants in the 
Pannexin-1 (PANX1) gene (rs4753126 and rs1138800), of which rs1138800 encodes for a gain-
of-function variant (Panx1-400C) and was previously associated with enhanced platelet 
reactivity39. The PANX1 gene is a widely expressed cell-membrane channel that during 
apoptotic cell death is involved in the formation of membrane protrusions and the release of 
ATP into the extracellular space, which acts as a ‘find-me’ signal for macrophages. The same 
variant in PANX1 was also significantly associated with all other concentration and 
fragmentation properties of cfDNA. 
Variants were also identified in or near other genes that were previously associated with 
cfDNA biology, such as Complement Factor H (CFH) and Hyaluron Binding Protein 2 (HABP2). 
HABP2, also known as Factor-7 activating protease (FSAP), is involved in the release of 
nucleosomes from late apoptotic cells7. In this gene we observed a missense variant with a 
minor allele frequency of 3%, called the Marburg 1 polymorphism40, which also has a 
relatively large effect on the fragmentation patterns of cfDNA. Resulting in a relative increase 
in short (<166bp), but a decrease in both mono- and multi-nucleosomal fragments. 
Beyond digestion by blood-circulating nucleases, the clearance of apoptotic bodies and cfDNA 
is further regulated by their uptake by macrophages in the liver and spleen15. We detect 
multiple genome-wide significant loci across multiple cfDNA traits, near macrophage 
scavenger receptors MSR1, COLEC12, STAB1 and STAB2, which can bind to exposed ligands 
on the surface of apoptotic cells and play an important role in the recognition and uptake of 
cellular debris from apoptotic cells. We also detect a block of variants in high linkage, which 
span the genes Transportin-1 (TNPO1) and the Fer/CIP4 domain-only protein 2 (FCHO2), 
FCHO2 is involved in clathrin-mediated endocytosis and is predominantly expressed in 
macrophages and Kupffer cells. 
Several loci seem to link cfDNA to neutrophils and the NETosis cell-death pathway. Protein-
arginine deiminase type-4 (PAD4) is involved in the citrullination of histones, which plays an 
important role in the decondensation of chromatin during NETosis and the formation of 
neutrophil extracellular traps (NETs). The PAD4 locus mainly affects the concentration of 
cfDNA. Another locus that mostly affect cfDNA concentrations is upstream of SERPINA3 and 
a cluster of other serine protease inhibitor genes. SERPINA3 is an inhibitor of chymotrypsin-
like proteases, such as Cathepsin G and neutrophil elastase, which are expressed in 
neutrophils, are abundantly present in NETs and have roles in both the formation and 
degradation of NETs. Our GWAS also detects a block of variants in high-LD which spans the 
genes: GSDMA/PSDM3/CSF3/MED24, which affects both the concentration and 
fragmentation patterns of cfDNA. This locus has previously been associated to eosinophil 
counts and asthma. Within this locus Gasdermin-A (GSDMA) is a plasma membrane channel 
related to pyroptosis, a regulated inflammatory cell-death mechanism, while the Granulocyte 
colony-stimulating factor (CSF3), encodes a protein that stimulates the bone marrow to 
produce granulocytes such as neutrophils and eosinophils. 
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Furthermore, we find a strong association between a common missense variant (rs6992333) 
in Plectin (PLEC) and multiple cfDNA traits. Plectin is a widely expressed protein which links 
the three main components of the cytoskeleton as well as the plasma membrane. Although 
the specific role of PLEC in cfDNA biology is not fully understood, Plectin was found to be a 
substrate for caspases, contributing to the cytoskeletal rearrangements during apoptosis41. 

 

Variants that specifically affect circulating placental DNA 
We identified multiple variants that were specifically associated with the concentration of 
fetal derived cfDNA fragments. Amongst these were variants in NOD-like receptor family pyrin 
domain containing 13 (NLRP13) and Stabilin-1 (STAB1). The missense variant in NLRP13 was 
previously associated with offspring birth weight42, while STAB1 is a receptor expressed on 
placental macrophages and has a function in clearing apoptotic cells at the feto-maternal 
interface43. STAB1 double knockout-mice were previously found to suffer from defects in 
placental development, which was explained by the role of this gene in remodeling the spiral 
arteries during placental development44. 
 

Genes that affect the concentration of mitochondrial cfDNA 
As mentioned previously, to validate the approach to distinguish total amounts of fetal and 
maternal cfDNA in plasma samples, we performed a similar analysis to investigate variants 
that affected the amount of mitochondrial cfDNA (mtcfDNA). The analysis resulted in several 
genome-wide significant loci. These loci are interesting as mtcfDNA is a highly potent 
inflammatory trigger45. Besides the association of R206C in DNASE1L3, which caused an 
increase in the amount of mtcfDNA in plasma, the second most significant locus was observed 
near the membrane associated phospholipase A2 (PLA2GA). PLA2GA plays an important role 
in regulating vascular inflammation. The lead-variant in our GWAS is in high-linkage with 
rs4744, a protein truncating mutation, which was previously associated with variable serum 
levels of PLA2GA and c-reactive protein. The third most significant locus was found near 
Ankyrin Repeat and LEM Domain Containing 1 (ANKLE1). ANKLE1 is an endonuclease46, 
colocalizes to mitochondria and was recently found to cleave mitochondrial DNA during 
erythropoiesis47. 
 

Heritability estimates and genetic correlations 
Besides exploring the genes in loci with a relatively large effect, we also explored the joined 
effect of thousands of loci with relatively small effects on cell-free DNA. We used LD-score 
regression48 to calculate the common SNP heritability (h2) of all cfDNA traits and found 
significant heritability estimates for almost all (Table 1). The highest heritability estimates 
were observed for FF, the size and 6bp Purine/Pyrimidine cleave-site motif diversity of cfDNA 
fragments. For our GWAS studies of cfDNA, we observed multiple significant genetic 
correlations with the risk of different systemic autoimmune (such as SLE, Rheumatoid 
Arthritis and Primary biliary cholangitis) and cardiovascular diseases (such as Stroke and 
Coronary Artery disease), see Table S3. 
 
Finally, we used the stratified or partitioned heritability approach of LD-score regression to 
determine heritability estimates for different functional genome annotations49. We used the 
cell/tissue type specific genome annotations from the baseline model v2.249. When we 
investigated different cfDNA concentration GWAS results, we observed moderate, but 
significant enrichment for heritability in regions that are expressed (or in specific chromatin-
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states) in Phagocytes, Liver, Adipose tissue, and (adipose tissue) Macrophages (Table S3), all 
known to be involved in cfDNA biology. 
 

DISCUSSION 
A considerable amount of variation in cfDNA properties can be observed within the general 
population. The factors that influence these properties are incompletely understood. Our 
study shows that a significant proportion of this variation can be attributed to genetic 
variation in the form of common SNPs. 
 

DNASE1L3 R206C: clinical implications 
The largest contribution of a single variant is observed for R206C, a missense variant in 
DNASE1L3. In the Dutch population this variant has an allele frequency of ~7%. This has 
consequences for clinical use of NIPT, as this variant causes an increase in FF. Furthermore, 
the differential fragmentation of cfDNA as a result of this variant causes predictors to 
overestimate the FF. To illustrate, in homozygous carriers of the R206C variant, VeriSeq on 
average predicts the FF to be ~4.2% higher than the FF that can be inferred from the Y 
chromosome. The reason the VeriSeq FF predictor is more affected than the SeqFF predictor 
may results from the fact that only VeriSeq uses the size of cfDNA fragments to predict FF, 
and the R206C variant most strongly affects this property of cfDNA. VeriSeq likely uses the 
fact that placenta-derived cfDNA fragments are slightly shorter than cfDNA fragments derived 
from other cells38. While we observe a strong increase in long cfDNA fragments, we also note 
that R206C seems to cause a relative increase in short fragments (<140bp, see Figure 3A). 
Other applications of prenatal cfDNA screening, which also employ this characteristic to 
distinguish between maternal and placental origins, may therefore be affected by R206C as 
well50-53. 
The increased size of circulating cfDNA fragments, in combination with a reduced cfDNA 
concentration, decreases the number of sequenced fragments in R206C carriers. cfDNA 
sequencing of homozygous carriers of this variant frequently resulted in less than 5 million 
sequenced cfDNA fragments (10 million reads), less than half of what is generally obtained, 
despite equimolar pooling of samples. At our facility, homozygosity for this variant  accounted 
for a ~14x increased odds of receiving type-1 inconclusive NIPT results. We conclude that this 
is a conservative estimate as this risk calculation was based on imputed genotypes, which 
upon ddPCR based validation, were found to contain a considerable amount of genotyping 
errors. However, when these errors are accounted for, we find that there still is significant 
variability in the size-distribution when comparing samples with and without conclusive NIPT 
results and the same genotype. This either suggests a polygenic effect, for which we did not 
find any obvious evidence, or potentially a non-genetic effect on DNASE1L3 function. In this, 
we note that the impaired function of DNASE1L3 may also be autoantibody-mediated32,54. 
The impaired function of DNASE1L3 may also provide a causal link for the observation by 
others that autoimmune diseases are overrepresented in inconclusive NIPT samples55 and 
that immune-mediated diseases can be predicted from NIPT data56.  
So far, at our facility we found evidence for one case of trisomy 18 with inconclusive NIPT 
results as a consequence of the mother being homozygous for the R206C variant. Generally, 
caution is warranted in interpreting wgs-based NIPT results from R206C carriers, as in the case 
of VeriSeq (and likely also other implementations) the overestimated fetal fraction is used in 
the statistical test to determine a fetal genomic aberrations. This in combination with the 
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reduced sequencing yield, suggests an increased odds for false negative screening results. To 
counter this, efforts should aim to further improve both sequencing yields from low cfDNA 
input concentrations and WGS-based FF predictors. Either by explicitly accounting for the 
R206C genotype, or to employ a genome-wide polygenic scoring algorithm to boost 
predictions. 
Although much of the observed increase in FF amongst R206C carriers seems to be 
attributable to difficulties of predictors in modelling the differential cfDNA fragmentation 
patterns, we do observe a smaller, but highly significant effect on FF through Y-chromosome 
based estimates. We pose that this observation may underlie a true biological effect, which 
is in line with recent work that found that by impairing the clearance of cfDNA by means of 
antibodies or liposomes, could significantly improve the sensitivity of circulating tumor DNA 
tests57. Alternatively, it was also found that in DNASE1L3-/- mice, pregnancy with DNASE1L3+/- 
fetuses, could partially reverse the aberrant cfDNA profile58. Also in humans, differences 
between the maternal and fetal genotype may therefore play a role. Unfortunately, these 
samples typically have very low cfDNA input concentrations, which makes it hard, even with 
targeted approaches, to study the fetal genome from cfDNA. 
These findings are also relevant for other forms of non-invasive screening, such as liquid 
biopsies59. Also those that depend on methylation signatures of cfDNA60, as it was previously 
shown that DNASE1L3 prefers cleavage at methylated CpGs and complete DNASE1L3 
deficiency resulted in altered cfDNA methylation profiles61. 
 

DNASE1L3 R206C: lowered cfDNA concentration 
It was previously found that R206C impairs the secretion of DNASE1L3, and thereby limits the 
enzymatic activity of DNASE1L3 in plasma29. We find that this impaired secretion results in 
decreased cfDNA concentrations of our plasma DNA sequencing libraries. From our validation 
tests we find that, also in R206C carriers, the cfDNA concentration before and after library 
preparation are highly correlated, suggesting that the observation is not caused by the library 
preparation protocol. We therefore propose that the impaired secretion of DNASE1L3 causes 
DNA fragments to remain in incompletely cleared cellular debris (e.g. NETs, extracellular 
vesicles, exosomes, micro vesicles, apoptotic bodies or immune complexes), which are either 
disposed of by alternate biological pathways or during the centrifugation stage of plasma 
extraction. 
 

Contribution of NETs to cfDNA 
Most cfDNA molecules in plasma have been shown to derive from apoptotic hematopoietic 
cells. However, under specific pathological conditions, alternative cell-death mechanisms 
such as NETosis, are increasingly recognized as contributors to the pool of plasma cfDNA (e.g. 
autoimmune disease, thrombosis, infections etc.). In these studies, cfDNA concentrations are 
often used as a proxy to study NET formation. Our study amongst the general population of 
healthy pregnant women detects a locus near the PADI4 gene which plays an important role 
in the initiation of NET formation, which suggests that NETs also contribute to the cfDNA pool 
under physiological conditions. 
 

Nuclease genes and cfDNA: two nucleases and PANX1 
GWAS on cleave-site motifs at the extremes of cfDNA molecules revealed three highly 
significant loci in the genome, including DFFB and DNASE1L3. The third locus resides within 
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the PANX1 genes, which encodes a membrane channel through which ATP is released during 
cell-death. As PANX1 is widely expressed in different cell types and has not been characterized 
as an endonuclease itself, we pose that PANX1 may mediate the amount of extracellular DNA 
cleavage by circulating nucleases. Interestingly, we also find that as a result of R206C, the 
impaired DNASE1L3 activity results in an increased frequency of DFFB-preferred cleave-sites 
motifs. Suggesting that the relative frequency of ‘RRRYRYYY’ cleave-sites motifs in cfDNA can 
be employed as a biomarker for DNASE1L3 activity. 
 

Limitations, Open challenges and future work 
Our work demonstrates the power of using widely available NIPT sequencing data to study 
the genetics behind cfDNA, a complex biological phenotype. Provided that phenotypical data 
is available, imputed variants from NIPT data offers and excellent opportunity to also study 
other complex traits and diseases. However, several challenges remain. For example, 
imputation accuracy should be further improved, specifically for variants with lower allele-
frequencies. This is something that may be addressed by expanding reference datasets, but 
more importantly for the application of NIPT data is that current imputation models do not 
account for the paternal haplotype that is present in NIPT data. There is great potential for 
imputation methods that are not only faster and able to handle larger reference sets, but also 
specifically tailored to impute variants from NIPT data which is more complex, but also richer 
than typical whole-blood sequencing data. 
Our study investigated the genetic architecture of cfDNA using a population of Dutch 
pregnant women. While future research should address other populations of individuals and 
pathological and non-pregnancy conditions, our work provides a basis for further 
improvements in non-invasive testing. 
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FIGURE LEGENDS 
Figure 1: Manhattan plots for GWAS of stratified cfDNA concentration measures 
Manhattan plots for (stratified) cfDNA concentration measures. For visualization purposes, 
gene annotations are limited to the strongest genome-wide significant associations to 
prevent overlapping labels. Loci were annotated with the nearest gene name up to a max 
distance of 100kb. Gene names are plotted in red when the variant intersected with the 
coding sequence of the gene. Variant associations with the concentrations of total (A), fetal 
(B) and mitochondrial (C) cfDNA. See also Table S1. 
 

Figure 2: Manhattan plots for GWAS of fragmentomics measures 
Manhattan plots for cfDNA fragmentation measures, using the VeriSeq FF measure as an 
additional covariate. For visualization purposes, gene annotations are limited to the strongest 
genome-wide significant associations to prevent overlapping labels. Loci were annotated with 
the nearest gene name up to a max distance of 100kb. Gene names are plotted in red when 
the variant intersected with the coding sequence of the gene. Variant associations with the 
diversity of cfDNA fragment sizes (A), 6bp Purine/Pyrimidine motifs (B) and the 50kbp 
bincounts across the genome (C). See also Table S1. 
 

Figure 3: The effect of R206C on cfDNA 
The effect of the imputed R206C genotype on the fragment size distribution of short cfDNA 
fragments (A). The effect of the ddPCR validated R206C genotype on the fragment size 
distribution of short and long (B) cfDNA fragments using long-read sequencing in the 
validation cohort of 55 samples. The colored line corresponds to the mean across each pool 
of samples, the shaded colored band corresponds to a 2 SD confidence interval (A and B). 
Boxplot showing the distribution of correlation coefficients between imputed R206C 
genotypes and nucleotide cleave-site motif frequencies that adhere to the RRRYRYYY motif 
(C). Boxplot showing the strongest positive and negative correlating 8bp cleave-site motifs 
(D). Boxplots showing the effect of the imputed R206C genotype on total cfDNA 
concentrations (E), uniquely aligned sequence (F), FF estimates (G), and differences in FF 
estimates with respect to the Y chromosome (H). See also Table S2. 
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TABLES 
TABLE 1: Overview of all cfDNA GWAS results 

Category Phenotype Description N samples Genome-
wide 
significant 
loci a 

LD score regression 
intercept b 

LD score regression 
h2 c 

Calibration Height Maternal height 140,962 424 1.1586 (0.0188) 0.3792 (0.0197) 

BMI Maternal BMI (at time of 
blooddraw) 

140,955 140 1.1356 (0.0153) 0.2938 (0.0125) 

Concentration Total cfDNA 
concentration 

The total concentration of 
cfDNA in the sequencing 
library 

128,437 52 1.1231 (0.0111) 0.1744 (0.0156) 

Maternal 
cfDNA 
concentration 
(chrY) 

The concentration of 
maternal derived cfDNA in 
the sequencing library 

66,048 14 1.0645 (0.0103) 0.1978 (0.0199) 

Fetal cfDNA 
concentration 
(chrY) 

The concentration of fetal 
derived cfDNA in the 
sequencing library 

66,048 10 1.0258 (0.0092) 0.1114 (0.0116) 

Mitochondrial 
cfDNA 
concentration 

The concentration of 
mitochondrial cfDNA in the 
sequencing library 

129,100 22 1.0351 (0.0106) 0.0523 (0.0092) 

Fragmentation Fragment size 
diversity 

Diversity of cfDNA fragment 
size distribution 

128,826 60 1.1075 (0.0113) 0.1550 (0.0854) d 

Genomic 
distribution 

Bincount 
diversity 

Diversity of cfDNA 
fragments in 50kbp bins 
across the genome 

129,123 26 1.2261 (0.0161) 0.0245 (0.0151) d 

Nucleotide 
cfDNA cleave 
site motifs 

2bp 
nucleotide 
cleave sites 

Diversity of the 1bp 
nucleotide motifs up- and 
downstream of cfDNA 
fragment start and end sites 

129,123 9 1.0616 (0.0096) -0.0005 (0.0045) d 

4bp 
nucleotide 
cleave sites 

Diversity of the 2bp 
nucleotide motifs up- and 
downstream of cfDNA 
fragment start and end sites 

129,123 55 1.1075 (0.0119) 0.1186 (0.0326) 

6bp 
nucleotide 
cleave sites 

Diversity of the 3bp 
nucleotide motifs up- and 
downstream of cfDNA 
fragment start and end sites 

129,123 26 1.1065 (0.0122) 0.0288 (0.0094) 

8bp 
nucleotide 
cleave sites 

Diversity of the 4bp 
nucleotide motifs up- and 
downstream of cfDNA 
fragment start and end sites 

129,123 21 1.1066 (0.0126) 0.0133 (0.0064) 

Purine/Pyrimidi
ne cleave site 
motifs 

2bp 
Purine/Pyrimi
dine cleave 
sites 

Diversity of 1bp 
Purine/Pyrimidine motifs 
up- and downstream of 
cfDNA fragment start and 
end sites 

129,123 10 1.0357 (0.0097) 0.0553 (0.0135) 

4bp 
Purine/Pyrimi
dine cleave 
sites 

Diversity of 2bp 
Purine/Pyrimidine motifs 
up- and downstream of 
cfDNA fragment start and 
end sites 

129,123 57 1.1434 (0.0141) 0.1884 (0.0576) 

6bp 
Purine/Pyrimi
dine cleave 
sites 

Diversity of 3bp 
Purine/Pyrimidine motifs 
up- and downstream of 

129,123 60 1.1341 (0.0132) 0.1969 (0.0633) 
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cfDNA fragment start and 
end sites 

8bp 
Purine/Pyrimi
dine cleave 
sites 

Diversity of 4bp 
Purine/Pyrimidine motifs 
up- and downstream of 
cfDNA fragment start and 
end sites 

129,123 26 1.1013 (0.0119) 0.0277 (0.009) 

NIPT Screening 
outcome 

Type-1 NIPT failure due to too little 
sequenced reads 

96,043 1 0.973 (0.0063) 0.0013 (0.005) d 

Type-2 NIPT failure due to a too low 
fetal fraction 
(independent of BMI) 

96,043 3 0.9941 (0.006) 0.0173 (0.0036) 

Fetal fraction 
estimates 

chrY FF Fetal Fraction in male 
bearing pregnancies, 
derived from the Y 
chromosome 

37,868 23 1.1148 (0.0101) 0.4813 (0.0256) 

VeriSeq FF Fetal Fraction in male 
bearing pregnancies, 
predicted from 
fragmentomics 
(proprietary) 

37,868 18 1.0936 (0.01) 0.4397 (0.0403) 

SeqFF Fetal Fraction in male 
bearing pregnancies, 
predicted from 
fragmentomics (binned 
counts) 

37,868 16 1.0748 (0.0096) 0.4205 (0.0317) 

VeriSeq - chrY Difference in FF estimates 
between chrY  and VeriSeq 

37,868 8 1.0227 (0.0085) 0.1343 (0.0417) 

SeqFF - chrY Difference in FF estimates 
between chrY  and SeqFF 

37,868 5 1.0044 (0.0084) 0.0528 (0.0154) 

 
a Number of independently associated loci above the genome-wide significance threshold 
(p<5x10-8), obtained from ‘clumping’ analysis. 
 
b LD-score regression intercept (estimates the inflation in variant test statistics) after using for 
20PCs as covariates, followed by standard deviation in parentheses. 
 
c LD-score regression heritability estimates (the estimated amount of variation in the 
phenotype that can be explained by the imputed SNPs) followed by standard deviation in 
parentheses. 
 
d Not significant at a 5% significance threshold. 
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STAR★Methods 
 

RESOURCE AVAILABILITY 

Lead contact 
Further information and requests concerning resources should be directed to Jasper 
Linthorst (j.linthorst@amsterdamumc.nl). 
 

Materials availability 
This study did not generate new unique reagents. 
 

Data and code availability 

• Unfiltered GWAS summary statistics are made available through locuszoom: 
o Fragment size diversity: 

https://my.locuszoom.org/gwas/443494/?token=132c7e351ba84717a3f0032
99cd8d1f3 

o Cleave-site motif diversity: 
https://my.locuszoom.org/gwas/416825/?token=50123122e9b347909414a1
aa2ae032dd  

o Bincount diversity: 
https://my.locuszoom.org/gwas/694315/?token=feef59a3e58f41ff8c14f5336
ed808fc  

o Total cfDNA concentration: 
https://my.locuszoom.org/gwas/310546/?token=5f45fdc6ab774947872221c
b25fdeb4f 

o Fetal cfDNA concentration: 
https://my.locuszoom.org/gwas/964912/?token=a8891852aa1b4143b242a2
5b1af521a0 

o Mitochondrial cfDNA concentration: 
https://my.locuszoom.org/gwas/326281/?token=399f7ffd26504c3faf965a70
80477173 

• Individual imputation and sequencing data will not be made publicly available. 

• All other data is available through the Supplementary Tables or upon request to the 
lead contact. 

 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS  
We used low-pass whole-genome sequencing data from about 140,000 Dutch pregnant 
women from the general obstetric population collected in the Amsterdam UMC (region 
Amsterdam and the northern provinces of The Netherlands) between 2018 and 2021 as part 
of the TRIDENT-2 study33. Written informed consent was obtained from all participating 
women. Approval for the study was granted by the Dutch Ministry of Health, Welfare, and 
Sport (license 1017420-153371-PG) and the Medical Ethical Committee of VU University 
Medical Center Amsterdam (No. 2017.165). Samples in which trisomies were detected, and 
women that did not consent to the use of their data for scientific research were excluded 
from the analyses. 
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METHOD DETAILS 
 

Sample collection 
Blood draws were scheduled at or after 11+0 weeks of gestation. Sampling was performed 
at different service locations across the Netherlands. Blood was drawn in two 10 mL cfDNA 
BCT CE tubes (Streck) and shipped at room temperature by courier or regular mail in specific 
transport containers. Time between blood collection and plasma isolation was five days at 
most. 
 

Short-read cfDNA sequencing 
Plasma isolation, cfDNA extraction, library preparation, quantification and sequencing were 
performed in accordance with the VeriSeq NIPT method (Illumina, San Diego, USA). Briefly, 
upon isolation of cfDNA from 1ml of plasma, samples were paired-end sequenced using 36bp 
on an Illumina NextSeq500. Raw base call files were de-multiplexed, and adapters were 
trimmed using bcl2fastq (2.17.1.14). All sequencing data was produced across several 
NextSeq500 sequencers at the Amsterdam UMC. 
 

Long-read cfDNA sequencing 
DNA was extracted from 3 to 4ml left-over plasma using QIAsymphony DSP Circulating DNA 
Kit (protocol: circDNA3 CR22161 ID2686). The sequencing library preparation protocol SQK-
NBD114.96 was used in combination with the NEB Next Companion Module (E7180S). Several 
modifications were made to the original protocol. 
For DNA end repair in step 8, both the 20°C and 65°C steps were extended to 30 minutes 
each. During native barcode ligation in step 6, all DNA (15µL) was added, necessitating 
adjustments to all volumes: 5µL barcode and 20µL Blunt/TA Ligase Master Mix (total 40µL). 
Then in step 8 incubation was carried out for 4.5 hours at 20°C followed by overnight 
incubation at 4°C instead of the usual 20-minute incubation. In step 9, 4µL EDTA (clear cap) 
was added instead of 1µL. In step 10, pooled samples (~2.1mL) were placed in a single 5mL 
tube. In step 12 the reaction was then split into two 2mL tubes for a 0.8x (800µL Ampure per 
tube) cleanup, instead of the standard 0.4x. Finally, during step 20, an eluate volume of 62µL 
was obtained in one tube, double the usual volume, necessitating the doubling of reagents 
for the ligation of the NA adapter. For adapter ligation and clean-up, the duration of step 7 
was extended to 90 minutes, and 40µL was used instead of 20µL in step 9. Sequencing was 
performed on the ONT Promethion 2 Solo with a FLO-PRO114M Flowcell (version R10.4.1). 
Sequencing was performed for approximately 24 hours before the flow cell was washed with 
the Flow Cell Wash Kit (EXP-WSH004) and reloaded with fresh samples. Sequencing was 
stopped after 72 hours. Basecalling was performed using Dorado (version 7.2.13) with the 
dna_r10.4.1_e8.2_400bps_sup (v4.3.0) model. 
 

Processing sequencing data 
In case multiple sequencing datasets were available for the same woman, the dataset which 
resulted in most sequencing data was included. Sequencing data was aligned to the human 
reference genome GRCh38 (excluding alt and unplaced contigs) using BWA-mem. Duplicate 
reads were filtered using Samblaster. Samples for which less than 5 million reads could be 
uniquely aligned, were excluded from the analyses. On average we sequenced 22 million, 
36bp paired-end reads per sample. 
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Imputation of genetic variants 
Approximately 8 million SNPs with a MAF greater than 1% were selected from the Human 
Reference Genome Consortium dataset62 using bcftools63. These variants were transferred to 
GRCh38 coordinates using CrossMap64 and subsequently assigned to 25MB blocks across the 
human genome. All samples were simultaneously imputed for each of these blocks using 
QUILT65. QUILT version 0.1.9 was run with the following parameters: nGen=100 and 
buffer=100.000. The Human Reference Genome Consortium dataset62 was used as a 
reference. 
 

GWAS analyses 
GWAS analyses and PCA were performed using Plink266. The first 20 PC’s were used as 
covariates for all GWAS. Samples were not filtered out on the basis of the inferred ancestry. 
Additionally, BMI is known to affect FF67, and FF in turn can be predicted from fragmentomic 
features37. Where applicable, we therefore used BMI and FF (calculated by VeriSeq) as 
covariates to study all other traits. For LD-score regression, the resulting summary statistics 
were filtered for MAF>0.05 and INFO>0.6. Additionally, for visualization (in Figures 1 and 2) 
we filtered sites for which the allele frequency estimated from the overall ‘sequencing pile-
up’ differed more than 0.2 from the imputed allele frequency. All cfDNA phenotypes were 
filtered by removing outliers that were more than 5 standard deviations away from the mean 
value. In case multiple concentration measurements were available for a plasma sample we 
used the mean of these values. To account for the right-tailed distribution of cfDNA 
concentration measures, data was log-transformed before GWAS analysis. All reported effect 
sizes and p-values are reported with respect to the log-transformed data. We used the 
clumping procedure as implemented in Plink (version 1.9) to report independently associated 
loci. Despite the use of strict clumping parameters (clump-p1=5e-8, clump-p2=5e-5, clump-
kb=1000, clump-r2=0.01), the effect of the R206C variant on many cfDNA traits was so strong 
that variants up to 5Mbp up- and downstream were ignored in our search for other 
independent associations. As inconclusive NIPT results at our department were handled 
differently from the start of 2021, only samples up to 2021 were included in the related 
GWAS. 
 

Fragmentomics measures 
We calculated fragmentomics features from the sequencing data itself. To derive cfDNA 
fragment-size distributions, we used the insert-size of paired-end sequenced fragments,  
computed by samtools68 stats in the range of 50 to 600bp. The genomic distribution of cfDNA 
fragments was calculated using samtools and bedtools69 (subcommand coverage). Cleave-site 
motifs were obtained using pysam70 (https://github.com/pysam-developers/pysam). 
 

Diversity measures: entropy calculation 
Calculated fragmentomics measures result in a distribution of values for each sample. To 
perform GWAS, we calculated measures of diversity71 (normalized Shannon entropy) for each 
of these distributions. Briefly, we compute this measure as follows: 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = ∑ (
−𝑃𝑖  ∗  log( 𝑃𝑖)

log(n)
)

𝑛

𝑖=1
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Where n is the number of measures in the distribution and 𝑃𝑖 is the frequency of the i th 
measure. 
 

Fetal fraction calculations 
Fetal fractions were computed in three different ways: VeriSeq, SeqFF and based on the Y-
chromosome. The VeriSeq FF method is proprietary and details about the method are 
undisclosed36. The SeqFF model was built on a dataset that was aligned to the GRCh37 
assembly, it was therefore only run on a subset of our data for which alignments to this 
assembly were already available. To infer FF from the Y-chromosome we adopted the method 
referred to as DEFRAGb in 72. Briefly, the median read count in 1MB bins across the Y-
chromosome (excluding PAR regions and bins 0-2Mb, 9-14Mb, 20-21Mb and 25-59Mb) is 
divided over the median count in 1MB bins across the autosomes (excluding the 
chromosomes 13,18 and 21), and multiplied by 2. To select pregnancies where the fetus was 
male, we selected the top 51.22% of the samples with the largest Y-chromosome based FF 
estimate. This selection is in line with the 105 to 100 male-to-female birth ratio in The 
Netherlands and corresponded to a minimal chrY-based FF estimate of 2.2%. 
 

Targeted R206C genotyping 
Bio-rad digital droplet digital PCR (ddPCR) was used to perform targeted genotyping of the 
R206C SNP. Probes were designed through the online Bio-Rad Mutation Detection assay. DNA 
extraction was performed using the QIAsymphony DSP Circulating DNA Kit (protocol: 
circDNA3 CR22161 ID2686). We used 4ul of the resulting DNA for ddPCR assays. 
 
We designed two probes targeted at the wildtype (reference) allele and the R206C allele 
(alternative). Our ddPCR experiments therefore resulted in an observation of the number of 
reference alleles and a number of alternative alleles, corresponding to the number of positive 
droplets on either channel-1 or channel-2, which was measured by the level of fluorescence.   
 
To determine the most likely maternal and fetal genotype (G) given an observation (O) from 
a ddPCR experiment, we proceed as follows. 
 
We first define O as a 2-tuple describing the ddPCR observation of allele counts, e.g. (5,11) 
refers to an observation in which the reference allele was observed 5 times, while the 
alternative allele was observed 11 times. O0 refers to the reference allele, and O1 refers to the 
alternative allele. 
 
The fetal and maternal genotype G are represented by a 3-tuple describing the maternal and 
fetal genotype, in which G0 refers to the inherited maternal allele, G1 refers to the non-
inherited maternal allele and G2 refers to the inherited paternal allele. We use 0 to denote 
the reference allele and 1 to denote the alternative allele, (0,1,1) would present the case 
where both mother and fetus are heterozygous, but the alternative allele was transmitted 
through the paternal genome. 
 
Now the likelihood of O given G can be derived as follows: 
 

𝑃(𝑂|𝐺) = (1 − 𝐹𝐴)𝑂0 × 𝐹𝐴
𝑂1  
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Where, FA is the expected frequency of the alternative allele under G. Which can be derived 
from: 

𝐹𝐴 =  (𝐺0 × 0.5)  + (𝐺1 × (0.5 − α × 0.5)  + (𝐺2 × α × 0.5) 
 
Where α represents the fetal fraction, which can either be inferred from the Y-chromosome 
in case of male-bearing pregnancies or a fragmentomics predictor. Alternatively, we chose to 
use a default value of 0.05. 
 
To simplify, we assumed a uniform prior probability (P(G)) across all 8 possible genotypes 
(0.53). The estimated minor allele frequency of a variant in the population could be used here 
as well for a more accurately model, but this did not change our results. 
 
The marginal probability (P(O)) can be obtained by summing over the product of prior and 
likelihood for all possible genotypes. 
 
Now, the posterior probability (P(G|O)) of the maternal and fetal genotype at a bi-allelic 
variant can be derived from Bayes formula: 
 

𝑃(𝐺|𝑂) =  
𝑃(𝐺) × 𝑃(𝑂|𝐺)

𝑃(𝑂)
 

Iterating over all 8 possible genotypes can determine the most likely genotype. The most likely 
maternal genotype (the number of alternative alleles in the maternal genome) then 
corresponds to G0+G1, while the most likely fetal genotype corresponds to G0+G2. 
 
Note that this model only holds for non-surrogate pregnancies, and in cases where both 
mother and fetus are heterozygous, this model cannot distinguish whether the allele was 
inherited through the maternal or paternal genome as FA would be identical. 

SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 
 

Table S1 
Genome-wide significant loci from cfDNA GWAS, related to Figures 1 and 2 and Table 1. 
 

Table S2 
Effect of R206C on cleave-site motifs and validation cohort, related to Figure 3. 
 

Table S3 
Results of LD-score regression: genetic correlations and partitioned heritability, related to 
Table 1. 
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