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Abstract
SARS-CoV-2 spreads predominantly through superspreading, with a minority of individuals
responsible for the majority of transmission, though the drivers of this heterogeneity are unclear. Here,
we assess the contribution of variation in viral load and daily contact rates to this heterogeneity by
combining viral load and contact survey data in a mathematical model to estimate the secondary
infection distribution. Using data from the BBC Pandemic and CoMix contact surveys, we estimate the
basic reproduction number (R0 = 2.2, 95% CI 2.1-2.2) from first principles and the secondary infection
distribution throughout the pandemic in the UK in 2020, and the effectiveness of frequent and
pre-event rapid testing for reducing superspreading events. We find that individual heterogeneity in
contacts – rather than individual heterogeneity in shedding – drives observed heterogeneity in the
secondary infection distribution. Our results suggest that regular testing every 3 days, or pre-event
testing with a minimum event size of 10, could reduce the mean reproduction number below 1 with
moderate to high levels of uptake (60-80%) for pre-pandemic contact levels. This work demonstrates
the potential for using viral load and contact data to predict heterogeneity in transmission and the
effectiveness of rapid testing strategies for curbing transmission in future pandemics.

Introduction
Transmission of SARS-CoV-2 occurs primarily through superspreading, with 20% of infections
generating around 80% of secondary infections1. A review and meta-regression by Chen et al.2

indicates that substantial variation in the respiratory viral load of individuals infected with SARS-CoV-2
is a driver of overdispersion in secondary infection generation. However, as most studies cited
measured viral load at one point over the course of infection, it is unclear whether this is due to some
individuals being more infectious than others generally (“wrong person” hypothesis) or whether most
individuals pass through a highly infectious period which happens to coincide with a period of high
contact (“wrong time” hypothesis). High contact rates are a prerequisite for infecting a large number of
people, and hence the potential for superspreading should have varied over the course of the
COVID-19 pandemic as contact distributions changed with the enactment and relaxation of
restrictions.

In this paper, we reconstruct the secondary infection distribution of SARS-CoV-2 using a model of
intra- and inter-host heterogeneity in infectiousness derived from viral load trajectories and infectivity
combined with data on reported numbers of daily contacts from two social contact surveys in the UK.
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While previous models of superspreading of SARS-CoV-2 have either fitted to summary data on key
epidemiological metrics, such as the mean reproduction number and distributions of individual-level
numbers of secondary cases from contact tracing studies3, to estimate social contact rates, or
considered a wide range of plausible contact rates4, here we estimate the secondary infection
distribution from first principles using data on social contacts gathered prior to and during the
pandemic in the UK. This allows us to characterise variation in the secondary infection distribution
over time under different levels of restrictions on contacts. We also consider the impact of lateral flow
tests (able to detect individuals with high viral loads when they are most likely to be infectious5,6) taken
regularly or before events on the mean reproduction number and the potential for superspreading with
differing levels of adherence and background contact rates.

The distribution of the number of secondary infections generated by each infectious individual can be
characterised as negative binomial with mean equal to the mean number of secondary infections R
and overdispersion parameter k representing the variation in the number of secondary infections (with
smaller values of k representing greater variation). Even if the mean number of secondary infections
R is below 1, there may still be a considerable probability of one or more secondary infections if k is
small. We estimate the utility of regular rapid lateral-flow antigen tests (LFTs) on reducing R and the
potential for superspreading events (by decreasing variation in numbers of secondary infections, i.e.
increasing k).

Results

Changes in the distribution of social contacts with changes in the
intensity of restrictions
Figure 1A and Table 1 show the proportions of survey participants in the UK reporting more than a
certain number of contacts (5, 10, 20, 50, 100 and 200) in the previous day over time, both
pre-pandemic (BBC Pandemic survey) and from the CoMix survey for the 9 time periods during the
survey with different levels of restrictions. The percentage of individuals reporting more than 20
contacts in a day was substantially lower during the pandemic compared to the pre-pandemic period
(when it was 13.7%), varying from a low of 0.4% during the first lockdown from March to June 2020 to
a peak of 6.1% in September 2020, when restrictions were most relaxed and schools reopened. The
percentage of individuals reporting over 100 and 200 contacts was lower in the pre-pandemic BBC
Pandemic contact survey compared to periods of relaxed restrictions due to differences in the
reporting of high contact events. Overall, people reporting more than 50, 100, or 200 contacts made
up <3% of the total CoMix survey sample.
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Figure 1: Changes in the distribution of social contacts in the UK from pre-pandemic to May 2021. A.
Percentage of participants in the BBC Pandemic and CoMix contact surveys reporting over 5, 10, 20, 50, 100,
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and 200 daily contacts in 2018 (“pre-pandemic”) and nine time periods during the pandemic in the UK between
March 2020 and May 2021. Median and 95% binomial confidence intervals shown. B. Distribution of the number
of reported daily contacts for three indicative timepoints before and during the pandemic in the UK in 2020. C.
Mean and overdispersion parameter, k, of negative binomial distribution fitted to contacts during the different time
periods.

Table 1. Percentage of participants in the CoMix and BBC Pandemic surveys with more than a certain
number of contacts in different time periods in the UK from March 2020 to May 2021, and pre-pandemic in
2017-2018.

Time
period* From To N Over 5 (%)

Over 10
(%)

Over 20
(%)

Over 50
(%)

Over 100
(%)

Over 200
(%)

Pre-pande
mic
(BBC

Pandemic) 01/09/2017 01/12/2018 40162 65.8 38.9 13.7 1.6 0.2 0

Lockdown
1 23/03/2020 03/06/2020 15906 6.6 1.5 0.5 0.1 0.1 0

Lockdown
1 easing 04/06/2020 29/07/2020 10651 8.6 3.3 1.7 0.6 0.3 0.1

Relaxed
restrictions 30/07/2020 03/09/2020 15415 17.6 6.4 3.2 1.3 0.5 0.2

School
reopening 04/09/2020 24/10/2020 20759 16.7 9 6.2 2.1 0.8 0.3

Lockdown
2 05/11/2020 02/12/2020 10008 11.9 6.9 4.9 1.3 0.5 0.2

Lockdown
2 easing 03/12/2020 19/12/2020 5898 16.1 8.1 5.4 1.8 0.8 0.2

Lockdown
3 05/01/2021 07/03/2021 21542 5.6 2.2 1.2 0.4 0.2 0.1

Lockdown
3 +

schools 08/03/2021 31/03/2021 8452 10.8 5.9 3.7 1.2 0.5 0.2

Step 2 +
schools 16/04/2021 16/05/2021 1771 16.6 8 5 1.9 0.7 0.3

*Different pandemic time periods are based on lockdowns and different levels of restrictions.

The estimated mean and overdispersion parameter k (lower values indicating more overdispersion
(variation) in the distribution) of numbers of daily contacts in the UK were lower than that observed
pre-pandemic, with mean daily contacts averaging ~6 during the pandemic compared to ~12
pre-pandemic, and k averaging ~0.6 during the pandemic compared to ~1.5 pre-pandemic, indicating
individuals having on average lower, but more varied, numbers of daily contacts. These values also
changed considerably across the different periods of restrictions in a similar pattern to the proportion
of participants with high numbers of contacts, with the mean number of daily contacts ranging from ~3
during the first lockdown to ~7 when schools reopened in September 2020, with a similar drop during
the third lockdown, but less of a drop during the second lockdown when schools remained open
(Figure 1C). The overdispersion in contacts, k, was similar pre-pandemic and during the first lockdown
(1.5 and 1.6 respectively) then became lower (more varied) following the easing of the first lockdown,
where k averaged ~0.6 (Figure 1C). Stratifying contacts by household/non-household revealed
contact rates within the household remained stable throughout, with changing non-household contact
rates driving much of the variation in the mean and k of daily contacts over the course of the
pandemic (Figure S1). Both the mean and k of out-of-household daily contacts remained lower than
pre-pandemic contact rates. Contact durations in CoMix differed significantly between household and
non-household contacts, with a median duration of 45 minutes (95% CI: 0, 720 minutes) for
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out-of-household contacts compared to 720 minutes (12 hours) (95% CI: 15, 1440 minutes) for
household contacts (Figure S2).

Variation in viral load and infectivity over the course of infection
Analysis by Kissler et al.12 of densely sampled viral load trajectories in individuals infected with
SARS-CoV-2 suggested substantial variation between individuals in the duration of proliferation and
clearance phases of infection, and lowest Ct value (inversely correlated with peak viral load) (Figure
2A). By mapping viral load to infectivity via a logistic function based on viral load and culture
(representing live, infectious virus) from Pickering et al. (Figure 2B), calculating P(infectivity) by day
(Figure 2C), then integrating under the infectivity curve, we can reproduce substantial heterogeneity in
individual infectiousness as reported by Ke et al.6, with a >54-fold difference in individual-level
infectivity between the 2.5% and 97.5% percentiles of the individual-level distribution (0.11 and 6.09,
a.u, respectively) and a shape parameter of a fitted Gamma distribution of 1.55. Individuals had viral
loads high enough to cause infections (had culturable virus) for a median of 2 days (95% CI: 0, 6
days). A substantial proportion (18.7%) were estimated to be infectious for zero days, though the
remainder were infectious for at least one day and theoretically capable of causing superspreading
events (Figure 2).

Figure 2: Variation in viral load progression and infectivity. A. Individual-level viral load trajectories. B.
Logistic model for probability of culturing virus given a certain viral load. C. Probability of infectivity over time. D.
Area under the infectivity curve. E. Distribution of the number of days for which individuals are infectious. Dashed
line in A and B represents the RNA copies/ml required for a 50% probability of culturing virus/infectivity.

Predicting transmission dynamics from heterogeneity in contact rates and viral load
progression
Simulating secondary infections using an individual-based model based on daily contact rates, contact
duration, and daily infectivity derived from viral load (see Methods section), we estimated an R0 (mean
initial reproduction number based on UK pre-pandemic contact rates) of 2.2 (95% confidence interval
(CI) 2.1-2.2), closely matching contemporaneous estimates15. The overdispersion in the initial
reproduction number, k, was estimated at 1.1 (95% CI 1.0-1.1), somewhat higher than other estimates
(less heterogeneous)1,16. Limiting our analysis to 2020 prior to the widespread emergence of more
transmissible variants of SARS-CoV-2 and mass vaccination, during the first national lockdown R was
estimated at 0.4 (95% CI 0.4-0.4) and k at 0.5 (95% CI 0.4-0.6). R rose as lockdown eased (R = 0.6,
95% CI 0.5-0.6) and restrictions were relaxed in the summer of 2020 (R = 1.0, 95% CI 0.9-1.0), before
rising above 1 as schools reopened in the autumn (R = 1.2, 95% CI 1.1-1.2). As with contacts, k
reduced as the pandemic began, indicating more variability in the secondary infection distribution, and
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varied between 0.3 and 0.4 after the first lockdown up to the end of 2020 (Figure 3). A sensitivity
analysis imputing a heavier tail for the BBC Pandemic contact distribution based on the tails of contact
distributions from relaxed restrictions periods during the CoMix survey led to a small increase in our
estimate of R0 from 2.2 to 2.5 and a reduction in k from 1.2 to 0.9 (Figure S3).

Figure 3. Estimates of the mean and dispersion of negative binomial distributions fitted to simulated
secondary infection distributions by time period in 2020. The dispersion parameter k gives an indication of
the variation in the secondary infection distribution, with smaller values corresponding to greater variation and
values less than 1 corresponding to very large variation. Grey boxes in R plot show the average upper and lower
bounds (90% confidence interval) of the consensus estimates published by the Scientific Pandemic Influenza
group on Modelling in the UK for the specified time periods. Shaded bands show 95% bootstrap CIs for the R and
k estimates.

Contribution to heterogeneity in secondary infections due to variation in contact rates
and viral load progression
To investigate the contribution of heterogeneity in contact rates and heterogeneity in viral load
between individuals to variation in the secondary infection distribution, each was either fixed at its
median value or allowed to vary according to the full distribution. If both variables are fixed, then the
secondary infection distribution is approximately Poisson with equal mean and variance (very large
values of k). If contacts are fixed at their mean but viral load is allowed to vary between individuals,
then k is around 2-3. If viral load is fixed at the mean trajectory, but contacts allowed to vary, then
values of k are approximately equal to that of both variable contacts and variable viral load, indicating
that variable numbers of daily contacts, as the denominator in the infection process, are the primary
factor required for superspreading rather than some individuals being much more infectious than
others (Figure 4).
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Figure 4. Estimates of the mean and dispersion of negative binomial distributions fitted to secondary
infection distributions by period, with contact rates and viral load trajectories either set at their median or
allowed to vary. The dispersion parameter k gives an indication of the variation in numbers of secondary
infections, with smaller values corresponding to greater variation and values less than 1 corresponding to very
large variation. Values of k for equal viral load and equal contacts not shown due to being very large (i.e.,
numbers of secondary infections are Poisson distributed). Shaded bands show 95% bootstrap CIs.

Impact of rapid testing (regular testing vs. pre-event testing)
Finally, we assessed the hypothesis that if those with the highest viral loads are most likely to cause
superspreading events, and lateral flow tests are most sensitive for those with the highest viral loads,
then lateral flow tests should be able to prevent superspreading events, here defined as infecting over
10 contacts. We modelled regular (1-, 3-, and 7-day frequency) and pre-event lateral flow testing
(before meeting >10, >20, >50 others) to determine the comparative effectiveness of rapid testing to
control transmission. We considered three indicative timepoints before (BBC Pandemic) and during
(1st lockdown (March-June) and the reopening of schools (September 2020)) the pandemic, and
varied the rate of uptake or adherence to the specified policy. For pre-pandemic levels of contacts,
uptake must exceed 60% to reduce R below 1 if testing daily and must be above 80% if testing every
3 days, but even 100% uptake will not reduce R below 1 if testing weekly (Figure 5A). For lockdown
levels of contacts, testing does not appreciably reduce R below its already low level. For contact rates
equivalent to those under relaxed restrictions with schools open, testing every 3 days will reduce R
below 1 if uptake exceeds 50% (Figure 5A). Pre-event testing acts similarly, with high uptake
necessary to reduce R below 1 for pre-pandemic levels of contact, but is effective in reducing R below
1 even if testing only when attending events with more than 20 others for moderate levels of
adherence during relaxed restrictions with schools open (Figure 5B). Both regular testing and
pre-event testing reduce the rate of superspreading as defined as the proportion of individuals
infecting over 10 others; however, there is also a substantial increase in the proportion of individuals
that infect no one. This results in a decrease in k (greater overdispersion in the secondary infection
distribution) (Figure 5).
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Figure 5: Effect of testing on R, k, and the proportion infecting over 10 or 0 others for varying levels of
uptake/adherence and background contact rates. A. Regular testing. B. Pre-event testing.
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Discussion
Using an individual-based model incorporating viral load trajectories and reported daily contacts, we
find that we can reconstruct secondary infection distributions for SARS-CoV-2 from first principles
over the course of the pandemic in the UK in 2020, closely matching contemporaneous estimates.
Daily contact rates became both lower on average (from ~12 per day to ~6 per day) and more
overdispersed during the pandemic in the UK in 2020 as some individuals maintained high contact
rates (e.g., essential workers) while others had their number of daily contacts reduced to zero (those
working from home). This drove a decrease in the mean number of secondary infections per infected
individual (reproduction number), but an increase in the dispersion in the reproduction number. Our
estimates of the degree of overdispersion in the reproduction number are similar to those reported by
other authors, which are mostly between 0.3 and 0.616,18.

Contact heterogeneity was found to contribute more to superspreading than heterogeneity in viral
load, as the number of contacts an individual makes places an upper limit on the number of people
they can infect, and, despite some individuals having much higher infectious potential than others,
most infected individuals pass through a high viral load period, with >80% estimated to have viral
loads capable of infecting many others on at least one day of their infection. This indicates that
superspreading is likely more a case of “wrong place, wrong time” than “wrong person”. Hence if
reductions in contact rates can be targeted specifically at infected individuals during this window of
high infectivity (e.g., by daily testing of their contacts19) then this may result in reductions in
transmission while minimising the burden of quarantine. Other studies investigating the
superspreading nature of SARS-CoV-2, such as that of Goyal et al.3 have come to similar
conclusions. Our study differs in that we investigate the impact of changes in contact heterogeneity
using real-world contact distributions from before and during the pandemic and estimate
infectiousness and LFT detectability using linked data analyses13. Our use of reported heterogeneity
in viral load trajectories12 also contributes to a wider estimated distribution for the number of days
individuals are likely infectious, which closely matches empirical daily sampling6 and human challenge
studies5.

We hypothesised that lateral flow testing, by detecting individuals with high viral loads when they were
most infectious, would reduce transmission through reducing the potential for superspreading. This
manifested as a decrease in the proportion infecting over 10 others and a substantial increase in the
proportion infecting zero others. This, perhaps counter-intuitively, resulted in a decrease in k as the
relative increase in those infecting zero others exceeded the decrease in those infecting many others
(here, over 10 others). Hence, assessment of superspreading solely via the metric of the
overdispersion parameter k may conceal changes in both the upper and lower tail of the secondary
infection distribution. Both regular testing and pre-event testing were effective in reducing R given
high enough frequency or a low enough event size threshold, respectively, as long as uptake or
adherence was high. Testing had the highest relative impact on transmission when contact rates were
high (e.g., at pre-pandemic levels) as there were more potentially preventable exposures, meaning
rapid testing could reduce R below the growth threshold of 1 while otherwise maintaining relatively
normal contact rates. In contrast, testing during lockdown would have less impact as R was already
below 1. This indicates that testing could be an effective, minimally disruptive intervention to reduce
transmission if uptake/adherence could be maximised through incentivising use.

Our analysis has some limitations. The CoMix contact survey was designed to be comparable to
previous contact surveys in the UK, namely the BBC Pandemic7,8,14 and POLYMOD10 surveys.
However, previous surveys required participants to list contacts individually to include other
information such as contact age, sex, occupation, meaning that it was difficult to include mass
contacts such as those made at a large gathering, thus truncating the true contact distribution. From
18 May 2020 the CoMix survey introduced the option to record mass contacts as a count rather than
listing each contactee in a separate entry. This means pre- and early pandemic contact distributions
are not directly comparable to those conducted later. However, we conducted a sensitivity analysis to
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check how this could impact our estimates of numbers of secondary infections, by imputing a heavier
tail for the BBC Pandemic contact distribution based on the tails of the contact distributions during
periods of relaxed restrictions in the CoMix survey, and observed only a small increase in our estimate
of R0 and a small reduction in k. We assume that the probability of shedding infectious virus is equal
to the probability of culturing virus, which in turn is dependent on intra-host viral load kinetics over the
course of infection13,20. We focus on an index case and their infections in one other generation, which
may underestimate second order effects that considering a full contact network structure would
capture6. We do not consider other interventions that may have an additional impact on R, such as
vaccination, contact tracing, or self-isolation upon symptom onset. We also do not consider the impact
of variants with increased transmissibility, and hence limit our analysis to 2020 before the widespread
emergence of Variants of Concern such as Alpha, Delta, and Omicron. We assumed within-household
contacts for each individual were the same each day, whereas out-of-household contacts were
sampled randomly for each individual per day, which may underestimate the overall contact rates and
hence infection potential of specific individuals. We assume that self-isolating individuals are unable to
fully self-isolate from their household members as reported by the majority of those surveyed by the
ONS in England in April 202121; further decreases in R may be possible if self-isolating individuals
isolate themselves from household members.

Our results suggest superspreading for SARS-CoV-2 can be best explained as a random sample from
the tail of the contact and shedding distribution: it occurs when an infected individual makes a high
number of contacts during a highly infectious period lasting approximately 2 days on average, with
over 80% of infected individuals being sufficiently infectious on at least one day to be capable of
causing a superspreading event, given they make a high number of contacts. Changes in the number
of contacts observed throughout the pandemic in the CoMix contact survey were able to explain
changes in the reproduction number, with contact rates becoming more heterogeneous during the
pandemic given lockdowns and changes in working practices. For future pandemics, regular or
pre-event lateral flow testing may be an efficient way to target individuals when most infectious and
hence minimise the burden of non-pharmaceutical interventions while maximising reduction in
transmission rates, provided uptake is moderate to high.

Methods

Contact data

BBC Pandemic survey
The BBC Pandemic contact survey was conducted between September 2017 and December 2018 as
part of a BBC Four documentary and involved over 40,000 participants (full details are published
elsewhere7,8). Participants used an app to record their personal basic demographic information and
the number of social contacts they made during the previous 24-hour period, as well as information
such as the contact’s age, type of interaction, and setting (home, work, school, other).

CoMix survey
The CoMix survey was a behavioural survey launched on 24th of March 2020 to gather social and
behavioural data to aid the response to the COVID-19 pandemic. The contact survey was based on
the POLYMOD contact survey10. The sample was broadly representative of the UK adult population.
Participants were invited to respond to the survey once every two weeks. Weekly data was collected
by running two alternating panels. Parents completed the survey on behalf of children (17 years old or
younger). Participants recorded direct, face-to-face contacts made on the previous day, specifying
certain characteristics for each contact including the age and sex of the contact, whether contact was
physical (skin-to-skin contact), and where contact occurred (e.g. at home, work, while undertaking
leisure activities, etc.). Full details have been published elsewhere9.
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From the 24th May 2020 onwards, the CoMix survey included the ability to record an estimated mass
contacts count in situations where it would be infeasible to record the detailed information of all
contacts made, such as large gatherings. Since the BBC Pandemic survey did not include this option,
and this potentially truncated the true contact distribution, we conducted a sensitivity analysis of the
effect on R and k of imputing a heavier tail for the BBC Pandemic contact distribution. We did this by
fitting a negative exponential distribution to the number of individuals reporting over 250 contacts in
relaxed restrictions time periods ("Relaxed restrictions", "School reopening" and "Step 2 + schools")
from the CoMix data and sampling proportionally from this distribution for the BBC Pandemic
contacts.

Analysis of social contact data
We calculated the percentage of participants reporting more than 5, 10, 20, 50, 100, and 200 contacts
in the 24-hour period prior to filling in the survey for nine indicative time periods between March 2020
and May 2021 representing different levels of restrictions (as defined in previous work9,11).

We compared contact distributions (overall and stratified by household/out of household) for the BBC
Pandemic survey (here referred to as Pre-pandemic) and CoMix surveys9,11. For plotting contact
distributions, we calculated the percentage of participants in each time period who reported a certain
number of contacts to account for differences in numbers of participants per time period. We fitted
negative binomial distributions to numbers of daily contacts in the different time periods to estimate
the mean and dispersion of the contact distributions.

Reconstruction of secondary infection distribution
To predict the distribution of individual-level transmission at different points in time, we simulated
10,000 individual respiratory viral load trajectories of index cases over the course of infection as a
piecewise function defined by a proliferation phase (days from exposure to peak), a clearance phase
(days from peak to cessation) and a peak viral load, with these three parameters drawn from
distributions given in Kissler et al. 202112 (Figure 6). Viral load (in cycle threshold (Ct) units) was
assumed to be Ct 40 (negative) at exposure and cessation of shedding, with a peak viral load of Ct
20.2 (95% CI: 18.7, 21.7). All parameters were assumed to be normally distributed. We then
estimated the probability of infectiousness for a given viral load (in Ct) by fitting a logistic regression
model to the probability of culturing virus at that viral load13, producing an infectiousness trajectory
(Figure 2).
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Figure 6: Schematic of the model. The viral load and number of daily contacts (circles) varies from person to
person and over time, influencing the number of secondary infections (stratified by household (outlined) and
non-household (no outline)) they generate. The viral load at time of testing also determines the likelihood they will
test positive and subsequently isolate.

To simulate secondary infections, we first randomly sampled a number (and duration) of contacts from
empirical contact distributions (the BBC Pandemic contact survey7,8,14 and CoMix contact survey9)
such that each index case had a certain number of household contacts and certain number of daily
non-household contacts (work, school and “other” contacts). Each household and non-household
contact had a duration, defined as the proportion of a 24-hour period spent at home or outside of the
home respectively, also independently sampled from the CoMix survey (Figure S2). Household
contacts were sampled once per index case, whereas non-household contacts were sampled daily.
The infection process for each contact was modelled as Bernoulli with the probability of infection
equal to the infectiousness of the index case on the day of contact multiplied by the duration of
contact (see Supplementary Material for further details). We assumed uniform susceptibility of
individuals in the model which does not vary by, for example, age.

We then estimated the corresponding R (mean number of secondary infections) and k (overdispersion
in the number of secondary infections) by fitting a negative binomial distribution to the numbers of
secondary infections across all individuals. 95% percentile bootstrap confidence intervals (CIs) for the
R and k estimates were calculated by bootstrapping the simulated numbers of secondary infections
with 1000 bootstrap samples, calculating R and k for each bootstrap sample and then finding the 2.5
and 97.5 percentiles of the distributions of the bootstrap estimates.

Simulation of interventions
We estimated the impact of regular testing every 3 days with LFTs, with detection calculated by fitting
a logistic regression model to the probability of detection with LFTs given viral load13, and individuals
self-isolating at home upon their first positive test (i.e, we reduced the number of work, school and
casual contacts to zero after the date of the positive test while leaving home contacts unchanged).

The code and data for this study can be found at https://github.com/bquilty25/superspreading_testing.
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