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Abstract 

Background: The temporal relationship between Short-chain fatty acids (SCFAs) and 

hypertensive disorders of pregnancy (HDP) is unclear. This study aimed to examine the 

temporal and probable causal relationship between them. 

Methods: A nested case-control study including 387 pairs of cases with HDP and healthy 

controls was conducted. Seven SCFAs levels in plasma samples drawn at 16-20 gestational 

weeks before HDP were assayed by GC/MS. The individual and joint associations of SCFAs 

with HDP were examined by logistic regression and weighted quantile sum (WQS) 

regression, respectively, followed by two-sample bidirectional Mendelian randomization 

(MR) analysis to test the underlying causality. 

Results: The univariate model found each interquartile increase in plasma valerate was 

associated with a 32.1% (OR=0.679, 95%CI=0.546-0.844) reduction in the risk of HDP, a 

29.4%(OR=0.706, 95%CI=0.548-0.910) reduction in the risk of gestational hypertension 

(GH) and a 39.1% (OR=0.609, 95%CI=0.397-0.935) reduction in the risk of 

preeclampsia/chronic hypertension with superimposed preeclampsia (PE/CH-PE). However, 

after adjustment for covariates, valerate was only associated with the risk of HDP (OR=0.699, 

95% CI=0.516-0.946). In addition, plasma isobutyrate and hexanoate were associated with 

lower risks of HDP and PE/CH-PE. Furthermore, SCFAs co-exposure could reduce the risks 

of HDP and GH. MR showed that plasma acetate (OR=0.784, 95%CI=0.64-0.962), valerate 

(OR=0.575, 95%CI=0.363-0.909) and isovalerate (OR=0.642, 95%CI=0.428-0.963) had 

protective causal effects on GH. Meanwhile, plasma acetate had protective causal effects on 

PE (OR=0.746, 95%CI=0.6-0.927).  
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Conclusions: The study suggested it is necessary to appropriately increase SCFAs levels 

during pregnancy to reduce the risk of HDP. 

Keywords: Hypertensive disorders of pregnancy (HDP); short chain fatty acids (SCFAs); 

Nested Case-Control Study; two-sample bidirectional MR.  
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Introduction 

Hypertensive disorders of pregnancy (HDP), mainly comprised of gestational hypertension 

(GH) and preeclampsia (PE), are not only the leading cause of maternal and fetal mortality 

but also associated with a wide range of disorders for both mothers and infants in later life 
1,2

. 

It is the most common medical disorder occurring during pregnancy, complicating about 3%-

10% of pregnancies and being increasingly prevalent globally, China in particular 
3,4

. 

Identification of more risk factors and biomarkers would undoubtedly improve the prevention 

and management of this debilitating disorder. The fundamental pathogenesis of HDP is 

inadequate adaptive morphological processes at the maternal and fetal interface 
4-6

. Recent 

evidence suggests that gut microbiota, a vast and complex collection of microorganisms, is 

engaged in the adaption of hosting women for their dynamic pregnancy 
7
. As the main 

metabolic end products of gut microbes, short-chain fatty acids (SCFAs) may participate in 

and could be candidate biomarkers for the development of HDP. Indeed, this hypothesis has 

been suggested by several studies. For example, SCFAs have been associated with blood 

pressure and original hypertension in adults without pregnancy 
8,9

. Animal experiments found 

that supplementation of butyrate could significantly reduce blood pressure in rats with PE 
10

. 

Deficiency of butyrate in the circulation was also observed in pregnant women with PE, 

compared with healthy controls 
11

. Circulating levels of other SCFAs, e.g., hexanoate, acetate, 

propionate, isobutyrate, and valerate were also differed between pregnant women with and 

without PE in previous studies, but with mixed results 
11,12

. These results were mainly from 

case-control studies and it is still unclear about the temporal relationship between SCFAs and 

HDP which is critical for causal inference. Therefore, this study aimed to investigate the 
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causal relationship between SCFAs and the incidence of HDP. 

Methods 

Study design 

We conducted a two-step design, specifically, a nested case-control study design was used to 

examine the temporal association between 7 SCFAs in plasma at 16-20 gestational weeks 

(gw) and HDP, followed by a two-sample bidirectional Mendelian Randomization (MR) 

analysis with web-based summarized data to explore the causal relationship between 3 certain 

SCFAs and HDP. 

Participants 

Suzhou Maternal and Infant Cohort (SMIC) is a hospital-based prospective cohort study 

aiming to examine the effect of environmental factors during pregnancy on the health of 

pregnant women and their offspring. This study was initiated in 2019 by including singleton 

pregnant women aged over 18 years in Kunshan and Industrial Park, respectively. After 

providing written informed consent, all participants received questionnaires and were offered 

free physical examinations, blood cell analysis, and clinical biochemical tests using blood and 

urine specimens during the whole pregnancy, under the principle of voluntary acceptance. 

Antenatal visits were performed every four weeks before 28 gw, every two weeks from 28 to 

36 gw, and every one week after 36 gw until delivery. The protocols of this study were 

approved by the Ethics Committee of Soochow University (NO. ECSU-2019000118). 

Of the sub-cohort including 9447 participants who completed all antenatal examinations from 

Kunshan, 415 individuals developed HDP after 20 gw and 9032 participants remained free of 

HDP during the whole pregnancy. After further excluding participants with a history of heart 
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disease, stroke, chronic kidney disease, or tumors, 403 cases of HDP and 403 age- and parity-

matched healthy controls were randomly selected and their plasma samples obtained at 16-20 

gw were used to measure SCFAs concentrations. After laboratory testing, 16 pairs who failed 

to detect SCFAs were excluded, and 387 pairs in which both cases and controls with available 

data on SCFAs were included in the current analysis. The flow chart for screening subjects is 

shown in Supplementary Figure S1. 

Measurement of blood pressure and the definition of HDP 

Three consecutive sitting blood pressure (BP) measurements (with 30s in-between) were 

taken by trained staff using a digital BP measuring device (HBP-1320, Omron, Japan) at each 

prenatal visit, after resting for at least 30 min. The mean of the three measurements was used 

as the visit BP level. Cases of HDP in our study included GH, PE, and chronic hypertension 

with superimposed PE (CH-PE) 
5
. Participants who were free of hypertension before 

pregnancy but developed hypertension (BP140/90 mmHg) for the first time at 20 gw or later 

without proteinuria were diagnosed with GH. Those with GH complicated with proteinuria, 

maternal end-organ complication, or evidence of uteroplacental dysfunction were diagnosed 

with PE. Participants with hypertension before pregnancy but superimposed on PE were 

diagnosed with CH-PE. No participants suffered from eclampsia in our study. 

Measurement of plasma SCFAs 

Blood samples were collected at 16-20 gw before the development of HDP and frozen at -

80 ℃ until laboratory assay. Plasma levels of seven SCFAs including acetate, propionate, 

butyrate, isobutyrate, valerate, isovalerate, and hexanoate were determined using GC/MS 

method detailed elsewhere 
13

. In brief, after SCFAs extraction with butanol, the preprocessed 
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samples were injected into and transported through the chromatographic column (Agilent HP-

INNOWAX) by the helium carrier using gas chromatography (Thermo Trace 1310). 

Meanwhile, mass spectrometry (Thermo ISQ LT) was used to detect the seven compounds 

using electrospray ionization and selected ion monitoring (SIM). 

Collection of conventional risk factors 

Data on age, education level, parity, and family history of hypertension and diabetes were 

collected through questionnaires by medical staff. Body weight and height were measured 

with the participants wearing light clothes and no shoes. Body mass index (BMI) was 

calculated using the formula of the weight in kilograms divided by the square of height in 

meters (kg/m
2
). Fasting plasma glucose and hemoglobin were measured by standard 

laboratory methods. 

Statistical analysis 

To carefully delineate the role of SCFAs in the development of HDP, we first examined the 

associations between SCFAs and HDP using original data with a nested case-control study 

design, followed by a two-sample MR analysis using summarized data. All data analyses were 

performed using SAS 9.4 software (SAS Institute Inc. Cary, NC) and R software (version 

4.1.2) with a significance level at a P value less than 0.05. 

Case-control analysis 

The baseline characteristics of study participants were presented in HDP cases and their 

matched healthy controls, respectively. To examine the associations between SCFAs and HDP, 

we constructed a conditional logistic regression model in which HDP (y/n) was the dependent 

variable and each SCFA (per quartile increment) was the independent variable, adjusting for 
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maternal education level, BMI, systolic BP, hemoglobin, and fasting plasma glucose at the 

first antenatal visit. Due to the seven compounds assayed participating in HDP through similar 

pathways and interplaying with each other, we applied weighted quantile sum (WQS) 

regression to examine their joint association with HDP by constructing a weighted index to 

estimate the mixture exposure level of SCFAs. The WQS regression model was performed 

using the R package "gWQS". The associations between SCFAs and specific subtypes of HDP 

were similarly examined. 

Two-sample MR analysis 

To delineate the probable causality underlying the associations between SCFAs and HDP, we 

performed a two-sample bidirectional MR analysis. The summarized genome-wide 

association study (GWAS) data for SCFAs, GH, and PE were obtained from publicly available 

databases. The SCFAs (acetate, valerate, and isovalerate) data were derived from the Estonian 

Genome Center of the University of Tartu Cohort, Finnish Twin Cohort, Helsinki Birth 

Cohort Study, Cooperative Health Research in the Region of Augsburg and so on 
14,15

. Data 

on GH and PE were selected from the Finngen consortium GWAS data including 209980 

European-ancestry participants (https://www.finngen.fi/en). In the MR analysis, independent 

single nucleotide polymorphisms (SNPs) associated with SCFAs, GH, and PE (P < 5×10
-5

, 

linkage disequilibrium [LD] r
2
 < 0.001, F>10) were selected as instrumental variables (IVs). 

Given that obesity and diabetes are the high-impact confounders, SNPs associated with BMI 

and diabetes mellitus (P<10
-5

) were excluded (http://www.phenoscanner.medschl.cam.ac.uk/). 

The causal effect was estimated by inverse variance weighted (IVW), weighted median 

(WM), and MR-Egger regression 
16

. The heterogeneity of the IVs was tested using the 
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Cochran Q test, and a significance threshold for evidence of heterogeneity was set at P <0.05. 

If heterogeneity existed, random-effect IVW models were used. Otherwise, fixed-effect IVW 

models were used. Potential pleiotropy in the IVs was examined by MR Egger. Leave-one-out 

approach was applied to test whether the causal estimate was biased by individual 

instrumental SNP. 

Results 

Characteristics of study participants 

A total of 387 pairs of cases with HDP and age- and parity-matched healthy controls were 

included in the current study (median aged 28 years). Their clinical characteristics are shown 

in Table 1. Compared with healthy controls, cases with HDP were more likely to be less 

educated and have a family history of hypertension, gestational diabetes, overweight or 

obesity, and higher levels of FPG, hemoglobin, and BP at the first antenatal visit (all P<0.05). 

Associations between SCFAs and HDP 

Figure 1 shows the difference in plasma SCFAs levels between cases and controls. Amongst 

the seven SCFAs assayed, valerate was significantly lower in pregnant women with HDP than 

healthy controls (median level: 9 vs. 10 ng/ml, P=0.001). We failed to observe a statistically 

significant difference in the median level of other compounds such as acetate, propionate, 

isobutyrate, butyrate, isovalerate, and hexanoate (all P>0.05). A significant association 

between a higher level of valerate and a lower likelihood of HDP was also found by logistic 

regression (OR=0.679, 95% CI: 0.546-0.844, Table 2). This association persisted even after 

adjusting for maternal education level, BMI, systolic BP, hemoglobin, and fasting plasma 

glucose at the first antenatal visit (OR=0.699, 95% CI: 0.516-0.946). Notably, isobutyrate 
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(OR=0.899, 95% CI: 0.826-0.980) and hexanoate (OR=0.686, 95% CI: 0.508-0.927) were 

also negatively associated with HDP, after adjustment for covariates. 

Although not all SCFAs showed a significant association with HDP, they were jointly 

associated with HDP (OR=0.595, 95% CI: 0.372-0.953), as suggested by the results of the 

WQS regression. This joint association is persistently significant after adjusting for 

conventional risk factors (OR=0.230, 95% CI: 0.105-0.506). The weight for each SCFA in the 

WQS regression is shown in Supplementary Figure S2. The top weight contribution was 

from hexanoate. 

Association between SCFAs and subtypes of HDP 

In addition to HDP, plasma valerate was also significantly associated with subtypes of HDP 

such as GH (OR=0.706, 95% CI: 0.548-0.910) and PE/CH-PE (OR=0.609, 95% CI: 0.397-

0.935), although these associations did not survive after adjustment for conventional risk 

factors (Table 3). Similarly, isobutyrate (OR=0.820, 95% CI: 0.690-0.973) and hexanoate 

(OR=0.508, 95% CI: 0.269-0.959) were also negatively associated with PE/CH-PE, after 

adjustment for covariates. 

The seven SCFAs were also jointly associated with GH even after adjusting for conventional 

risk factors (OR=0.740, 95%CI: 0.571-0.933), but the top weight contribution was from 

valerate (Supplementary Figure S3). We failed to observe a significant joint association 

between SCFAs and PE/CH-PE. 

Results of MR analysis 

In the literature, we successfully selected eligible IVs for acetate (13 SNPs), valerate (29 

SNPs), isovalerate (35 SNPs), GH (20 SNPs), and PE (7 SNPs). The summarized data on 
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these IVs are shown in Supplementary Table S1. Data on GH and PE included 8502 GH, 

7212 PE patients and 194266 control pregnant women. 

In the forward MR analysis, acetate, valerate, and isovalerate were considered as the 

exposure, GH and PE were considered as the outcome. The Cochran’s Q statistic and MR-

Egger regression intercept suggested no heterogeneity and horizontal pleiotropy (all P > 0.05) 

(Supplementary Table S2). The IVW model with fixed effect showed that each standard 

deviation (SD) increment in genetically predicted plasma acetate (OR=0.784, 95% CI: 0.640-

0.962, P=0.019), valerate (OR=0.575, 95% CI: 0.363-0.909, P=0.018) and isovalerate 

(OR=0.642, 95% CI: 0.428-0.963, P=0.032) were associated with a decreased risk of GH. 

Each SD increment in genetically predicted plasma acetate was also associated with a 25.4% 

reduction in the risk of PE (OR=0.746, 95% CI: 0.600-0.927, P=0.008). The leave-one-out 

sensitivity analysis showed that the causal effect estimated was not driven by any single SNP 

(Figure 2). 

The reverse MR analysis did not reveal any significant associations between genetically 

determined risk of GH or PE and SCFAs (Supplementary Table S3, Supplementary 

Figures S4-S5).  

Discussion 

Leveraging a nested case-control study in Chinese pregnant women, we for the first time 

found that plasma levels of three SCFAs such as valerate, isobutyrate, and hexanoate at 16-20 

gw were significantly associated with a lower risk of future HDP during pregnancy, as well as 

its subtypes of GH and PE/CH-PE. Although not all SCFAs showed a significant individual 

association with HDP, they were jointly associated with HDP. These associations were also 
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independent of conventional risk factors, e.g., obesity, glucose, and blood pressure at baseline. 

Further, a two-sample MR analysis demonstrated a significant association of genetically 

determined valerate and isovalerate with GH. These findings suggested that deficiency of 

SCFAs, valerate and isovalerate in particular, may precede and contribute to the development 

of HDP through mechanisms beyond these conventional factors. 

In the nested case-control and MR analyses, the types of short-chain fatty acids associated 

with GH and PE were different, which could be due to differences in diet and genetic 

background between the two population. The SCFAs concentration depends on several  

factors, including diet, age, intestinal flora and genotype
17,18

. Meanwhile, diet and host 

genetics are important factors regulating the gut microbiota including SCFAs- producing 

bacteria
19-21

, and diet intervention can rapidly modify the composition of the microflora 

within a few days through direct and indirect mechanisms
22,23

. Compared with healthy 

pregnant women, patients with PE had lower levels of microbial diversity and SCFAs-

producing bacteria 
24

. Chen et al 
25

reported PE patients had obvious dysbiosis with depleted 

beneficial bacteria including SCFAs-producing bacteria Faecalibacterium and Akkermansia 

and enriched opportunistic pathogens, moreover, the gut microbiome from patients with PE 

were transplanted to antibiotic-treated mice, which would provoke a dramatic, elevated 

pregestational blood pressure(BP) and a further increased BP after gestation in recipient mice. 

In additional, some studies found the low serum levels of acetate and butyrate were associated 

with preeclampsia development
26,27

. A study conducted by Jin et al
28

 demonstrated that the 

fecal, serum, and placental levels of propionic acid and butyric acid were significantly 

reduced in PE patients, and the abundance of Akkermansia which was negatively correlated 
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with BP and urine protein was obviously decreased in patients with PE in contrast to normal 

late-pregnant women. Further oral administration of Akkermansia muciniphila, propionate, or 

butyrate to preeclamptic rats can significantly alleviated the symptoms of PE. Another study
12

 

found the fecal levels of butyric and valeric acids were significantly decreased in patients with 

PE, and oral administration of butyrate to lipopolysaccharide(LPS) induced pregnant rats with 

hypertension could reduce the BP in these rats. However, not all the research findings are 

consistent. Li et al.
11

 reported the PE group had significantly higher levels of acetate, 

propionate, isobutyrate, and valerate than that in controls. The difference may be attributed to 

heterogeneity in subjects, regions and their diets. Currently, majority of researches focus on 

the relationship between SCFAs and PE, while studies on the relationship between SCFAs and 

GH is less reported.                                                                                                                                                                                                                                                          

SCFAs as the final significant metabolites of the gut microbiota plays an important role in 

host metabolism, immunity, and nutrition absorption
11

. The role of SCFAs in preventing 

pregnancy-induced hypertension may be related to its inhibitory effect on inflammation which 

plays an important role in the development of HDP
29-31

. SCFAs are sensed by specific G 

protein-coupled receptors (GPCRs) including GPR41/Ffar3 and GPR43/Ffar2, which are 

expressed in the gastrointestinal tract, adipose tissues, immune cells, and the autonomic 

nervous system, and regulate host energy homeostasis
32,33

.  SCFAs specifically bind GPCRs, 

to inhibit the generation of T helper cells, thereby reducing the expression of nuclear factor-

κB and the synthesis of pro-inflammatory factors such as interleukin-1β, interleukin-4, 

interleukin-5, interleukin-6 and tumor necrosis factor-α
34-36

. More importantly, by activating 

GPCRs, SCFAs can also increase the expression of regulatory T cells and the synthesis of 
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anti-inflammatory factors γ interferon and interleukin-10 in the body
37,38

.  

Advantages and disadvantages  

Existed research on SCFAs and HDP is insufficient, especially the study on the relationship 

between SCFAs and GH is limited. Our nested case-control study and MR analysis provide 

new evidence. In addition, MR is a powerful tool to assess causality, which can avoid biases 

commonly presented in observational studies.  In our MR study, exposure data were extracted 

from the most recently published largest GWAS to detect causal effects. Furthermore, 

sensitivity analyses were performed to guarantee the satisfaction of model assumptions. 

Of course, our study has some limitations. For example, the nested case-control study is 

hospital-based, and dietary information or fecal samples for each participant were not 

collected, and therefore could not explore the complete association among dietary intake, gut 

microbiome and circulating metabolites. Secondly, the research participants come from 

multiple hospitals in one region, and the extrapolation of the results to other regions is 

unknown. Thirdly, in MR study, only three types of SCFAs datasets were obtained in GWAS, 

and all GWAS data came from European population. Whether findings in our study would be 

consistent in other population remained to be investigated. 

Conclusions  

In general, our nested case-control study confirms that plasma valerate level is a protective 

factor for HDP. And SCFAs co-exposure also can reduce risk of HDP. Besides, the large 

sample MR analysis indicates that plasma acetate, valerate and isovalerate may be causally 

negatively associated with a risk of GH, and acetate causally associated with a lower risk of 

PE. Therefore, our study suggests that it is necessary to appropriately increase the level of 
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SCFAs during pregnancy to reduce the risk of HDP. 
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Table 1. Clinical characteristics of study participants according to HDP 

Variables Case (n=387) Control (n=387) P 

Maternal age, years 28 (25 - 31) 28 (25 - 31) 0.930 

Parity, times 2(1-3) 2(1-3) 0.350 

Education level, n (%)   <0.001 

≤ Middle school 111 (27.54) 71 (17.62)  

High school 104 (25.81) 82 (20.35)  

≥ College 188 (46.65) 250 (62.03)  

Family history of hypertension (n, %) 25 (6.46) 0 (0.00) <0.001 

Family history of diabetes (n, %) 4 (1.03) 3 (0.78) 0.704 

Gestational diabetes (n, %) 64(16.54) 1(0.26) <0.001 

Indicators at the first antenatal visit     

BMI (n, %)   <0.001 

    ≤23.9 kg/m
2
 209(54.0) 316(81.7)  

    24.0 to 27.9 kg/m
2
 106(27.4) 57(14.7)  

    ≥28.0 kg/m
2
 72(18.6) 14(3.6)  

Fasting plasma glucose (mmol/L), (M, QL-

QU) 
4.64 (4.38-4.95) 4.51(4.29-4.80) <0.001 

Hemoglobin (g/L), (M, QL-QU) 132 (126-138) 128 (120-134) <0.001 

Systolic blood pressure (mmHg), (M, QL-QU) 120 (111-127) 107 (100-115) <0.001 

Diastolic blood pressure (mmHg), (M, QL-

QU) 
80 (74-85) 71 (65-77) <0.001 

Note: M: median, QL: lower quartile, Qu: upper quartile, HDP: hypertensive disorders of pregnancy. 
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Table 2. The associations of plasma SCFAs with HDP 

SCFAs 
Unadjusted  Adjusted* 

OR (95%CI) P  OR (95%CI) P 

Acetate 0.981(0.897-1.073) 0.675  0.910(0.742-1.117) 0.367 

Propionate 1.048(0.919-1.195) 0.484  0.938(0.772-1.139) 0.517 

Butyrate 0.911(0.778-1.065) 0.242  0.831(0.667-1.034) 0.097 

Isobutyrate 0.975(0.915-1.039) 0.438  0.899(0.826-0.980) 0.015 

Isovalerate 0.998(0.952-1.045) 0.921  0.953(0.884-1.027) 0.207 

Valerate 0.679(0.546-0.844) 0.001  0.699(0.516-0.946) 0.020 

Hexanoate 0.912(0.747-1.114) 0.367  0.686(0.508-0.927) 0.014 

Mixed exposure 0.595(0.372-0.953) 0.031  0.230(0.105-0.506) 0.001 

*Adjusting for maternal education level, BMI, systolic BP, hemoglobin, and fasting plasma glucose at the 

first antenatal visit. 

OR: odds ratio, CI: confidence interval; HDP: hypertensive of disorders in pregnancy; SCFAs: short chain 

fatty acids. 
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Table 3. The associations of plasma SCFAs with GH and PE/CH-PE 

SCFAs 

GH  PE/CH-PE 

Unadjusted Adjusted
*
  Unadjusted Adjusted

*
 

OR(95%CI) P OR(95%CI) P  OR(95%CI) P OR(95%CI) P 

Acetate 0.988 

(0.901-1.084) 
0.801 

0.962 

(0.772-1.199) 
0.729  

0.92 

1(0.697-1.216) 
0.561 

0.763 

(0.506-1.150) 
0.197 

Propionate 1.099 

(0.939-1.286) 
0.241 

0.982 

(0.761-1.268) 
0.889  

0.831 

(0.592-1.165) 
0.282 

0.797 

(0.512-1.242) 
0.316 

Butyrate 0.965 

(0.808-1.151) 
0.689 

0.845 

(0.646-1.106) 
0.220  

0.737 

(0.517-1.052) 
0.093 

0.712 

(0.456-1.112) 
0.136 

Isobutyrate 0.982 

(0.905-1.067) 
0.675 

0.920 

(0.805-1.051) 
0.219  

0.965 

(0.875-1.066) 
0.485 

0.820 

(0.690-0.973) 
0.023 

Isovalerate 1.001 

(0.949-1.056) 
0.961 

0.967 

(0.885-1.056) 
0.452  

0.986 

(0.896-1.085) 
0.774 

0.878 

(0.761-1.013) 
0.075 

Valerate 0.706 

(0.548-0.910) 
0.007 

0.733 

(0.495-1.086) 
0.121  

0.609 

(0.397-0.935) 
0.023 

0.652 

(0.395-1.075) 
0.094 

Hexanoate 0.976 

(0.777-1.225) 
0.833 

0.724 

(0.502-1.044) 
0.084  

0.729 

(0.477-1.114) 
0.144 

0.508 

(0.269-0.959) 
0.037 

Mixed 

exposure 

0.630 

(0.422-0.890) 
0.032 

0.740 

(0.571-0.933) 
0.026  

0.920 

(0.680-1.740) 
0.527 

0.725 

(0.383-1.492) 
0.627 

*Adjusting for maternal education level, BMI, systolic BP, hemoglobin, and fasting plasma glucose at the first 

antenatal visit. 

OR: odds ratio; CI: confidence interval; SCFAs: short chain fatty acids; GH: gestational hypertension; PE: 

preeclampsia; CH-PE: chronic hypertension with superimposed preeclampsia. 
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Figure legends 

Figure 1. Caption: Box plots showing the distributions and comparisons of SCFAs between 

the cases and controls. Legend: The box shows the median and interquartile range. Group 

differences in SCFAs levels were compared using the Wilcoxon signed-rank test. 

Figure 2. Caption: Scatter plots and forest plots of leave-one-out sensitivity analysis for 

genetic causal effect of SCFAs on GH/PE risk. Legend: The slopes of each line represent 

causal associations for each method in the scatter plot; In the forest plots of leave-one-out 

sensitivity analysis, each point represents the effect estimate for a genetic variant, expressed 

as a beta value, the lines extending from each point represent the 95% confidence intervals. 
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Figure 1. Distributions and comparisons of seven SCFAs between the case group and control group 
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Figure 2. Scatter plots and forest plots of leave-one-out sensitivity analysis 

for genetic causal effect of SCFAs on GH/PE risk 

Panel B Valerate on GH 

Panel A Acetate on GH 

Panel C Isovalerate on GH 

Panel D Acetate on PE 
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