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ABSTRACT 

Text embeddings convert textual information into numerical representations, enabling 

machines to perform semantic tasks like information retrieval. Despite its potential, the 

application of text embeddings in healthcare is underexplored in part due to a lack of 

benchmarking studies using biomedical data. This study provides a flexible framework 

for benchmarking embedding models to identify those most effective for healthcare-

related semantic tasks. We selected thirty embedding models from the multilingual text 

embedding benchmarks (MTEB) Hugging Face resource, of various parameter sizes 

and architectures. Models were tested with real-world semantic retrieval medical tasks 

on (1) PubMed abstracts, (2) synthetic Electronic Health Records (EHRs) generated by 

the Llama-3-70b model, (3) real-world patient data from the Mount Sinai Health System, 

and the (4) MIMIC IV database. Tasks were split into 'Short Tasks', involving brief text 

pair interactions such as triage notes and chief complaints, and 'Long Tasks', which 

required processing extended documentation such as progress notes and history & 

physical notes. We assessed models by correlating their performance with data integrity 

levels, ranging from 0% (fully mismatched pairs) to 100% (perfectly matched pairs), 

using Spearman correlation. Additionally, we examined correlations between the 

average Spearman scores across tasks and two MTEB leaderboard benchmarks: the 

overall recorded average and the average Semantic Textual Similarity (STS) score. We 

evaluated 30 embedding models across seven clinical tasks (each involving 2,000 text 

pairs), across five levels of data integrity, totaling 2.1 million comparisons. Some models 

performed consistently well, while models based on Mistral-7b excelled in long-context 

tasks. 'NV-Embed-v1,' despite being top performer in short tasks, did not perform as 
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well in long tasks. Our average task performance score (ATPS) correlated better with 

the MTEB STS score (0.73) than with MTEB average score (0.67). The suggested 

framework is flexible, scalable and resistant to the risk of models’ overfitting on 

published benchmarks. Adopting this method can improve embedding technologies in 

healthcare. 
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INTRODUCTION 

Text embeddings are numerical representations of text that capture the semantic 

meaning of words, phrases, or entire documents in a continuous vector space1. 

Currently, most text embeddings are generated by dedicatedly trained large language 

models (LLMs).  

Text embeddings enable key tasks like semantic search and Retrieval Augmented 

Generation (RAG), which have transformative potential in various fields, including 

healthcare. 2, 3 Despite their potential, such advanced natural language processing 

(NLP) methods remain largely untapped in the medical domain. Traditional approaches 

to handling medical text often fall short in capturing the nuanced and specialized 

language used in clinical settings. This gap emphasizes the necessity for robust text 

embedding models that can handle the complexity and diversity of medical texts. 

The Multilingual Text Embeddings Benchmark (MTEB), a known general case 

embedding models benchmarking framework, is designed to evaluate text embedding 

models across multiple domains 4.  By providing standardized datasets and evaluation 

metrics, MTEB facilitates direct comparisons of model performance on tasks such as 

classification, clustering, and semantic textual similarity (STS). MTEB includes a broad 

array of datasets; however, its representation of the medical field remains limited, with 

datasets such as MedrxivClusteringP2P5, NFCorpus 6, and BIOSSES7 being small in 

size. This hampers the effective comparison of the latest embedding models with 

healthcare-specific text. Moreover, another well-known risk of existing benchmarks for 

LLMs is the risk of models’ overfitting on the published benchmark datasets. 
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This study aims to provide a flexible framework for evaluating the performance of 

leading text embedding models in capturing semantic similarity within medical texts. We 

used this framework to evaluate multiple embedding LLMs on multiple clinical and 

biomedical tasks. 

 

METHODS 

Overall Design 

We aimed to identify and rank embedding models for semantic applications specific to 

the medical field. We selected thirty embedding models across different size groups 

from the MTEB leaderboard, available on GitHub 8, chosen based on their relevance 

and demonstrated performance metrics. We designed a series of tasks simulating real-

life medical semantic retrieval challenges to test models' performance in embedding 

medical terminology and contextual nuances. To evaluate the performance under 

varying data quality conditions, we designed an experiment where we deliberately 

introduced noise into the text pairs used. We then used Spearman rank correlation 

analysis to measure the relationship between the models’ performance and the different 

levels of data integrity we created. This research was conducted with the approval of 

the Institutional Review Board (IRB) of the Mount Sinai Health System. 

 

Model Selection Criteria 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.14.24312010doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.14.24312010
http://creativecommons.org/licenses/by-nd/4.0/


 

 7

Our study evaluated models listed on the MTEB leaderboard. We selected open-source 

models available on Hugging Face with implementations via the sentence transformers 

library. Each model's inclusion required the presence of implementation code within its 

Hugging Face model card. We systematically chose five models from each of MTEB 

size groups: '<0.1 billion parameters', '0.1-0.25 billion parameters'', '0.25-0.5 billion 

parameters'', '0.5-1 billion parameters'', '1-5 billion parameters'', and '>5 billion 

parameters'', prioritizing the best-performing models in each category. Among these, 

'Bio_ClinicalBERT' served as a baseline reference 9. This model utilizes contextual 

embeddings derived from Google's BERT architecture and is trained on PubMed and 

the MIMIC III dataset. Notably, 'Bio_ClinicalBERT' was not specifically trained for 

semantic embedding tasks, making it a standard benchmark against more specialized 

models. All included evaluated models and their characteristics are detailed in Table 1. 

 

Databases  

We extracted medical data from the following databases 

1. PubMed. Abstracts were extracted using the MeSH terms: "Artificial Intelligence", 

"Machine Learning", and "Deep Learning," spanning the last five years. We ensured 

abstracts and keywords were non-null. Paired keywords were directly extracted from 

PubMed. Additionally, using Llama-3-70b, we generated search queries from a 

collection of PubMed abstracts (The complete prompt with the JSON directive and 

formatting is in Supplementary eFigure 1). 
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2. LLM Synthetic Electronic Health Records (EHR) Notes. Synthetic notes were 

generated using the Llama-3-70b model to create a simulated dataset of EHRs. The 

notes were based on three term list (Supplementary eFigure 2) to ensure variability in 

the notes. Using Llama-3-70b, we also generated search queries paired with the 

synthetic notes (The complete prompt with the JSON directive and formatting is in 

Supplementary eFigure 3). 

3. Mount Sinai Health System (MSHS) EHR. Clinical care data from actual patients from 

2023, including triage notes, chief complaints, physician notes and admission H&P 

notes. 

4. MIMIC IV Database. This open database of de-identified medical information served 

as a source for chest X-ray reports and discharge notes. 10 Discharge notes were 

summarized using Llama-3-70b (The complete prompt with the JSON directive and 

formatting is in Supplementary eFigure 4). 

 

Embedding Tasks Overview 

Table 2 outlines the data sources and configurations for our embedding tasks. Each 

task in our study involved 2,000 pairs of source and destination text. These pairs were 

organized into two categories: 'Short Tasks' for brief text interactions and 'Long Tasks' 

for more extended text analyses. Below, we detail each task type. 

Short Tasks 

PubMed (Abstracts to Queries): To link abstracts with generated queries they inspired. 

PubMed (Abstracts to Keywords): To match abstracts with extracted keywords.  
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LLM Synthetic EHR Notes: To connect synthetic notes with corresponding search 

queries.  

MSHS EHR: To pair triage notes with corresponding chief complaints. 

MIMIC IV Chest-XR Reports: To link observations noted in the 'Findings' section with 

interpretations from the 'Impression' section. To ensure unique findings and 

impressions, we first filtered out non-significant (“normal”) impressions. A complete list 

of terms used to categorize “normal” findings is presented in Supplementary eTable 1. 

Long Tasks 

MIMIC IV Discharge Notes: To match a random sample of discharge notes with their 

summaries generated using Llama-3-70b. 

MSHS ED Physician Notes: To concatenate random sample of 2000 admitted patient 

cases from 2023, with corresponding admission H&P notes. 

The selection criteria and process for data preparation, including the use of specific 

search parameters and data handling rules, including detailed prompts used for Llama-

3-70b implementations are available in the supplementary materials. 

 

Experimental Setup 

We evaluated the performance of embedding models across varying levels of data 

integrity. The experimental design incorporated a gradient of data integrity levels to 

simulate different degree of data alteration: 
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• 0% Integrity: Utilized pairs with unmatched source and destination (X source - Y 

destination). 

• 25% Integrity: Combined 25% of the original source (X) with 75% of an alternate 

source (Z), paired with the original destination (X destination). 

• 50% Integrity: Mixed 50% of the original source (X) with 50% of an alternate 

source (Z), paired with the original destination (X destination). 

• 75% Integrity: Merged 75% of the original source (X) with 25% of an alternate 

source (Z), paired with the original destination (X destination). 

• 100% Integrity: Paired the original source with its corresponding original 

destination (X source - X destination) 

For short tasks, we used the first % of the original source string and completed it with 

the remaining (100%) from an alternate source. For long tasks, 25% integrity meant 

each one sentence from the original source (1/4) was followed by three sentences from 

an alternate source (3/4); 50% data integrity meant two sentences from each source 

(2/4, 2/4), and so on. We used different techniques for adding noise because short 

tasks may not have enough sentences for the long method, and in long tasks, short 

context window models are truncated at 512 tokens, which would primarily capture the 

'X' part if we used the short task method. Using this approach allowed us to conduct 

10,000 comparisons per task (5x2000).  

We used Spearman rank correlation to analyze the relationship between the level of 

data integrity and the performance metrics (cosine similarity, Euclidean difference, dot 
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product). This methodology was designed to evaluate how effectively each model 

captures and maintains the key semantic features of the source material at different 

integrity levels. All computations and model evaluations were performed on a dedicated 

MSHS server equipped with H100 80GB GPUs. The analyses were conducted using 

Python version 3.9.18, with additional dependencies on several key libraries: PyTorch 

version 2.2.2+cu121, Transformers version 4.41.2, Sentence Transformers version 

3.0.1, pandas version 2.1.4, and scikit-learn version 1.3.0. 

 

Statistical Analysis Methods 

To evaluate the performance of embedding models, we applied cosine similarity, 

Euclidean difference, and dot product metrics to measure the similarity or distance 

between source and destination vectors. For each integrity level, we assessed the 

models using these three metrics. We then calculated the Spearman rank correlation 

between the integrity levels and the performance metrics to determine the robustness 

and reliability of the models across varying data quality levels.  

We also examined correlations between the average Spearman correlation for each 

model across tasks and two established MTEB leaderboard scores: the model’s overall 

recorded average score and the average Semantic Textual Similarity (STS) score. 

Additionally, STS scores were correlated to average MTEB scores to contextualize our 

findings. 

To ensure that the natural variance of Spearman scores across tasks did not skew the 

overall assessment of each model, we ranked the models independently for each type 
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of task—short, long, and overall. We used the ‘Bio_ClinicalBERT’ model as a reference, 

assigning it a baseline rank of one for all tasks . Other models were then ranked 

according to how their Spearman scores compared to this reference (sorted order). We 

also compared model performance between clinical and PubMed tasks. 
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RESULTS 

Data Overview 

We assessed 30 embedding models across seven clinical embedding tasks, each 

involving 2,000 pairs of notes at different levels of integrity, from unchanged to fully 

mixed.  This evaluation encompassed a total of 2.1 million comparisons, calculated as 

30 models * 7 tasks * 5 levels of integrity * 2,000 pairs. The number of vectors was 

slightly higher, as the calculations also included destination vectors. This adjustment 

resulted in a total of 2.52 million vectors, computed as 30 models * 7 tasks * 6 (5 level of 

integrity and additional destination vector) * 2,000 pairs. 

 

Table 3 presents the variations in word counts for different clinical embedding tasks, 

categorized as "Short Tasks" and "Long Tasks." These categories illustrate the range of 

textual demands, from concise interactions to more detailed clinical texts.  

 

Metric Efficacy Across Models and Tasks 

We evaluated three metrics—cosine similarity, Euclidean difference, and dot product—

across multiple embedding models and tasks to determine their efficacy in capturing 

semantic similarity under different integrity levels. We used Spearman rank correlation 

to evaluate how the metrics correlate with varying levels of data integrity, which reflect 

model performance. Cosine similarity emerged as the most effective metric overall in 

maintaining semantic integrity across integrity levels. Model-specific performances for 

the best-performing metric are available in Supplementary Excel Table 4. While most 
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models showed minimal variation in metric efficacy between tasks, some differences 

were observed in specific cases, such as 'e5-base-4k' in the 'imaging' task, 'mmlw-e5-

large' in the 'PubMed query' task, and 'Bio_ClinicalBERT' in the 'QA' task. 

 

Spearman Rank Correlation Across Models and Tasks 

Table 4 provides the Spearman rank correlation values for the best-performing metric of 

each model across the various tasks.  

 

MTEB Correlation 

We then compared the correlations between our average task performance score 

(ATPS) (across all clinical and biomedical tasks), the STS score from the MTEB suite, 

and the overall MTEB average score Supplementary table 2. The STS score, which 

assesses model performance on tasks requiring semantic understanding akin to our 

studies, correlates well with the overall MTEB average. Our ATPS correlated better with 

the MTEB STS score (0.73) than with the MTEB average score (0.67), reflecting the 

role of STS as a component of the overall MTEB metric. The correlation between the 

STS score and MTEB score is slightly higher than ours (0.70), however, the STS score 

is also a component of the MTEB score, thus affecting the correlation. 

 

Overall Top-Ranking Models 

Table 5 ranks the models based on the Spearman values.  
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In this evaluation, the overall top-ranking models, ‘GIST-large-Embedding-v0' and 

'b1ade-embed' , have achieved the highest rankings across all tasks.  

The 'Bio_ClinicalBERT' model served as a reference and recorded the lowest scores . 

This outcome is not surprising, as the model was not trained for semantic embedding 

tasks. Unlike models specifically designed for semantic embedding tasks, Bio-Clinical-

BERT is essentially BERT fine-tuned on some bio-medical data.  

Interestingly, the large-scale models (>5b parameters) based on Mistral-7b did not 

reach the top overall ranks despite their capacity.  

The relationship between the overall models' performance and their embedding times is 

visually represented in Figure 1. 

 

Short-Tasks Top-Ranking Models 

In the evaluation of short tasks (Table 5), 'b1ade-embed' and 'GIST-large-Embedding-

v0', maintained their high performance with scores of 27.4 and 26.6, respectively. 

Additionally, the 'NV-Embed-v1', a large model and a top performer on the MTEB 

leaderboard, obtained the highest score, 28.4, outperforming other large models like 

'SFR-Embedding-Mistral' and 'Linq-Embed-Mistral' . The relationship between the 

models' performance in short tasks and their embedding times is represented in Figure 

2. 

 

Long-Tasks Top-Ranking Models 
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In the evaluation of long tasks (Table 5), the largest models with extensive context 

windows demonstrated dominant performance. The top four performing models in the 

long context tasks were >5b parameters, Mistral-7b-based models (e5-mistral-7b-

instruct , SFR-Embedding-2_R , SFR-Embedding-Mistral , Linq-Embed-Mistral . 

Contrarily, the 'NV-Embed-v1', despite its large size, did not perform as well in long 

tasks, ranking second to last among the models evaluated, although this model was top 

ranging across three of the short tasks. The relationship between the models' 

performance in long tasks and their embedding times is visually represented in Figure 

3. 

 

Comparison of Models Across Short Clinical vs. PubMed Tasks 

In our analysis of model performance across "Short Clinical Tasks" and "Short PubMed 

Tasks," (Table 5) 'NV-Embed-v1' stands out by ranking highest in both categories. 

Other models exhibiting strong performance in both domains include 'b1ade-embed' . 

Similarly, 'Linq-Embed-Mistral'  and 'instructor-xl' show consistency, ranking in the top 

tiers for both clinical and PubMed tasks. 

Conversely, 'UAE-Large-V1' performs significantly better in clinical tasks than in 

PubMed, whereas 'gtr-t5-xxl' shows a reversed trend, highlighting their specialized 

strengths in respective areas.  
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Discussion 

This study provides a framework to assess the performance of leading text embedding 

models for specific medical data. Additionally, it offers valuable insights into 

performance on specific tasks, including short and long texts, as well as biomedical and 

clinical data. Our findings can help identify the most effective models for those working 

with medical data, providing guidance for choosing models which may best suit their 

tasks. Our findings reveal that text embedding models, initially benchmarked on 

general-domain datasets, maintain high efficacy in the medical domain. The top-

performing models demonstrated robust capabilities in handling medical language and 

contextual nuances, evidenced by their high Spearman rank correlations across various 

tasks. 

Models like 'GIST-large-Embedding-v0'11 and 'b1ade-embed' 12 excel in both short and 

long tasks, demonstrating superior embedding capabilities and impressive performance 

despite their smaller size, making them highly efficient choices. 

Large-scale models, particularly those based on Mistral-7b, demonstrated superior 

performance in long-context tasks. This can be attributed to their longer context 

windows, which allow for better handling of detailed clinical texts, while shorter context 

window models are truncated after 512 tokens. Conversely, 'NV-Embed-v1'13, despite 

being a large 7b model and the top performer in short tasks, did not perform as well in 

long tasks, indicating a potential limitation in its training for handling extended contexts. 

This outcome suggests that sheer model size does not guarantee superior performance 
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across varied tasks. The adaptability and training specificity seem to play more critical 

roles in determining model effectiveness across such diverse testing scenarios. 

The comparison between clinical and PubMed tasks revealed that certain models have 

specialized strengths. For instance, 'UAE Large V1' performed better in clinical tasks, 

while 'sentence transformers gtr t5 xxl' excelled in PubMed tasks. This differential 

performance emphasizes the importance of choosing models based on the specific 

demands of the text type and context within medical data processing. Some models are 

versatile across domains, while others are tailored to specific types of medical text, 

providing insights into their application-specific efficacy. 

We address limitations specific to healthcare in the MTEB framework. First, in the 

MTEB framework, the statistical measure employed assesses how well the model's 

outputs (similarity scores) align with actual human-assigned similarity scores 4. In our 

study, we calculated the Spearman rank correlation between metrics and data integrity 

levels. This provides a measure of model performance stability across different data 

conditions and tasks. The consistency in performance across varying levels of data 

integrity demonstrates the models' ability to maintain semantic integrity. This is 

particularly crucial in medical applications, where data often varies in completeness and 

clarity. 

Second, the MTEB framework does not predominantly focus on the medical domain. 

Within its leaderboard challenge, only a small number of biomedical datasets, such as 

BIOSSES 7 (Biomedical Sentence Similarity Estimation System) are included. 

BIOSSES, consisting of 100 sentence pairs annotated with semantic similarity scores 
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by domain experts, may not capture the full diversity of biomedical literature. In contrast, 

our study employed a methodology that did not rely on human annotators, allowing us 

to utilize relatively large datasets varied in size and scope. Our method can provide an 

easy way to expand the types and sizes of the benchmarking datasets. 

Third, the MTEB scores might reflect potential overfitting, as models’ training data could 

inadvertently include the datasets used in MTEB, allowing for over-fitting on these 

specific tasks 14. In contrast, our study employed a diverse set of real-world new 

medical tasks and datasets, providing a more accurate measure of a model's 

performance in practical medical scenarios. Moreover, using our method, new 

benchmarking random datasets can be created dynamically. This approach ensures 

that the models are assessed based on their ability to handle a variety of medical data, 

rather than their performance on published benchmark tasks. 

Another platform, "Papers with Code," tracks the "State-of-the-Art" (SOTA) in machine 

learning across a range of tasks, including specific leaderboards for medical data. 

However, for sentence embeddings in biomedical contexts, it also just utilizes the 

BIOSSES benchmark, with the above-mentioned limitations 15.  

In some studies, researchers have independently developed models tailored to text 

embedding within medical contexts, such as BioSentVec 16-18. However, these individual 

efforts, while valuable, do not establish benchmarks against which to measure the 

performance of a broad array of existing models across varied medical tasks. 

Our results provide a practical framework for medical professionals and researchers 

working with medical data and seeking to leverage NLP technologies effectively. By 
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identifying the optimal models for various medical tasks, we offer guidance on which 

models are best suited for medical applications. Additionally, several of the tasks and 

associated data evaluated in this study will now be available for public use, facilitating 

further model validation. 

Our study has several limitations. Firstly, the scope of evaluated models was restricted 

to those available on the Hugging Face platform with implementations via the Sentence 

Transformers library, which may exclude potentially effective models do not present on 

this platform. Secondly, the generated synthetic data, particularly from the Llama-3-70b 

model, may not fully capture the complexity and variability of real patient data, however 

we did use real patient data from several databases. Additionally, our study primarily 

focused on English language texts, and the performance of these models on non-

English medical texts remains to be explored. Furthermore, while data integrity levels 

were considered, the specific nature of the noise introduced may not fully capture the 

complexities and variations found in real-world medical data. Different types of noise 

(e.g., typographical errors vs. semantic errors) might affect model performance 

differently. 

In conclusion, the suggested framework provides guidance for selecting embedding 

models tailored to various medical tasks. By leveraging task-specific models, we can 

enhance key applications such as semantic search and RAG, which, despite their 

potential, are still underutilized in healthcare. 
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Table 1: Model Details According to Model Size 

Model size Model 

Memory 

Usage 

(GB, 

fp32) 

Window 

Size 

(Tokens) 

Model Size 

(Million 

Parameters) 

 

<0.1GB 

GIST-small-

Embedding-v0 11 

0.12 512 33 

bge-small-en-

v1.5 19 

0.12 512 33 

gte-small 20 0.12 512 33 

all-MiniLM-L12-

v2 21 

0.12 512 33 

all-MiniLM-L6-v2 

22 

0.09 512 23 

0.1-0.25GB 

GIST-

Embedding-v0 11 

0.41 512 109 

all-mpnet-base-

v2 23 

0.41 512 110 

gte-base 20 0.41 512 109 

e5-base-4k 24 0.42 4096 112 

Bio_ClinicalBERT 

9 

0.41 512 110 
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0.25-0.5GB 

mxbai-embed-

large-v1 25 

1.25 512 335 

UAE-Large-V1 25 1.25 512 335 

GIST-large-

Embedding-v0 11 

1.25 512 335 

bge-large-en-

v1.5 19 

1.25 512 335 

b1ade-embed 12 1.25 512 335 

0.5-1GB 

multilingual-e5-

large-instruct 26 

2.09 514 560 

multilingual-e5-

large 26 

2.09 514 560 

Solon-

embeddings-

large-0.1 

2.09 512 560 

bge-m3-custom-

fr 27 

2.12 8192 568 

mmlw-e5-large 28 2.09 514 560 

1-5GB 

instructor-xl 29 4.62 512 1241 

sentence-t5-xl 30 4.62 512 1241 

sentence-t5-xxl 30 18.12 512 4865 
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gtr-t5-xxl 31 18.12 512 4865 

SGPT-2.7B-

weightedmean-

msmarco-specb-

bitfit 32 

10.0 2048 2685 

>5GB 

SFR-Embedding-

Mistral 33 

26.49 32768 7111 

e5-mistral-7b-

instruct 34 

26.49 32768 7111 

Linq-Embed-

Mistral 35 

26.49 32768 7111 

NV-Embed-v1 13 29.25 32768 7851 

SFR-Embedding-

2_R 36 

26.49 32768 7111 
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Table 2: Overview of embedding tasks.  

Abbreviations: LLM: Large Language Model, EHR: Electronic Health Record, MSHS: 

Mount Sinai Health System, CXR: Chest X-ray, ICU: Intensive Care Unit, ED: 

Emergency Department, H&P: History and Physical 

 

Length Data Source Source Destination 

Short Tasks 

PubMed  

 

Abstracts Search queries 

PubMed Abstracts Keywords 

LLM Synthetic EHR 

Notes 

Synthetic notes  Search queries 

MSHS EHR Triage Notes Chief Complaints 

MIMIC IV CXR 

Reports 

Imaging Findings Imaging Impressions 

Long Tasks 

MIMIC IV EHR Notes ICU discharge notes LLM Generated 

Summaries 

MSHS EHR ED Physician Notes H&P Notes 
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Table 3: Lengths of tasks inputs 

Abbreviations: EHR: Electronic Health Record, ICU: Intensive Care Unit, ED: 

Emergency Department, H&P: History and Physical 

 

 

Length 
Data 

Source - Destination 

Source Words  

(Mean ± Std Dev) 

Destination 

Words  

(Mean ± Std Dev) 

Short Tasks 

PubMed  

Abstract - Search 

queries 

216.0 ± 65.7 7.5 ± 2.5 

PubMed  

Abstract - Keywords 

215.6 ± 64.4 10.7 ± 3.7 

Synthetic EHR Notes 

- Search queries 

158.4 ± 8.3 30.2 ± 35.8 

Triage Note - Chief 

Complaint 

29.5 ± 14.0 2.5 ± 1.3 

Imaging Findings - 

Impression  

82.5 ± 27.3 17.8 ± 13.8 

Long Tasks 

ICU discharge - 

Summary 

1476.4 ± 272.2 76.4 ± 14.5 

ED notes - H&P notes 1294.4 ± 239.8 1504.4 ± 279.1 
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Table 4: Spearman Correlation Rankings and Average Task Performance Score 

(ATPS). This table presents the Spearman correlation rankings for each of the 30 

embedding models across the seven clinical embedding tasks. Additionally, the table 

includes the ATPSs, which provide an average performance indicator for each model 

across all tasks.  

Abbreviations: ED: Emergency Department, H&P: History & Physical Notes, CXR: 

Chest X-ray, EHR: Electronic Health Record  

 

 

Model 

size 
Model 

Discharge 

Notes to 

Summaries 

ED 

to 

H&P 

Triage 

Notes to 

Chief 

Complaints 

CXR 

Findings to 

Impressions 

PubMed 

Abstracts 

to 

Keywords 

PubMed 

Abstracts 

to 

Queries 

Synthetic 

EHR to 

Search 

Queries 

Average 

Task 

Performance 

Score 

(ATPS) 

 

<0.1GB 

GIST-small-

Embedding-v0 11 
0.71 0.54 0.4 0.4 0.72 0.78 0.84 0.63 

bge-small-en-

v1.5 19 
0.67 0.37 0.32 0.38 0.69 0.76 0.81 0.57 

gte-small 20 0.69 0.5 0.42 0.41 0.69 0.75 0.75 0.6 
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all-MiniLM-L12-

v2 21 
0.62 0.26 0.38 0.32 0.58 0.66 0.55 0.48 

all-MiniLM-L6-v2 

22 
0.7 0.4 0.4 0.36 0.67 0.77 0.79 0.58 

0.1-

0.25GB 

GIST-

Embedding-v0 11 
0.72 0.52 0.45 0.4 0.71 0.77 0.85 0.63 

all-mpnet-base-

v2 23 
0.68 0.44 0.39 0.28 0.67 0.78 0.56 0.54 

gte-base 20 0.67 0.51 0.44 0.41 0.69 0.74 0.77 0.6 

e5-base-4k 24 0.67 0.55 0.26 0.31 0.66 0.68 0.77 0.56 

Bio_ClinicalBERT 

9 
0.21 0.14 0.17 0.17 0.22 0.21 0.37 0.21 

0.25-

0.5GB 

mxbai-embed-

large-v1 25 
0.74 0.49 0.44 0.38 0.73 0.79 0.86 0.63 

UAE-Large-V1 25 0.73 0.48 0.44 0.39 0.72 0.78 0.86 0.63 

GIST-large-

Embedding-v0 11 
0.75 0.57 0.48 0.4 0.74 0.8 0.86 0.66 

bge-large-en-

v1.5 19 
0.72 0.46 0.41 0.4 0.72 0.78 0.83 0.62 

b1ade-embed 12 0.75 0.53 0.47 0.42 0.73 0.8 0.86 0.65 

0.5-

1GB 

multilingual-e5-

large-instruct 26 
0.75 0.55 0.32 0.3 0.64 0.66 0.83 0.58 
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multilingual-e5-

large 26 
0.7 0.46 0.27 0.35 0.64 0.67 0.69 0.54 

Solon-

embeddings-

large-0.1 37 

0.73 0.54 0.39 0.35 0.68 0.73 0.82 0.61 

bge-m3-custom-

fr 27 
0.76 0.51 0.31 0.47 0.66 0.72 0.73 0.59 

mmlw-e5-large 28 0.71 0.46 0.39 0.34 0.71 0.75 0.83 0.6 

1-5GB 

instructor-xl 29 0.73 0.56 0.42 0.43 0.72 0.77 0.79 0.63 

sentence-t5-xl 30 0.64 0.44 0.39 0.35 0.58 0.65 0.52 0.51 

sentence-t5-xxl 30 0.7 0.45 0.38 0.3 0.57 0.64 0.53 0.51 

gtr-t5-xxl 31 0.66 0.51 0.45 0.49 0.74 0.77 0.78 0.63 

SGPT-2.7B-

weightedmean-

msmarco-specb-

bitfit 32 

0.7 0.27 0.36 0.31 0.71 0.76 0.83 0.56 

>5GB 

SFR-Embedding-

Mistral 33 
0.86 0.8 0.41 0.42 0.69 0.71 0.79 0.67 

e5-mistral-7b-

instruct 34 
0.83 0.76 0.33 0.36 0.61 0.59 0.75 0.6 

Linq-Embed-

Mistral 35 
0.86 0.77 0.41 0.43 0.7 0.77 0.75 0.67 
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NV-Embed-v1 13 0.35 0.21 0.48 0.5 0.77 0.79 0.84 0.56 

SFR-Embedding-

2_R 36 
0.85 0.76 0.45 0.45 0.71 0.72 0.69 0.66 
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Table 5: Model Rankings Across Task Types. This table outlines the rankings of the 

30 embedding models across three categories of tasks: short, long, and overall. To 

mitigate the impact of natural variance in Spearman correlation scores between tasks, 

we assigned independent rankings for each task type. The 'Bio_ClinicalBERT' model 

was used as a benchmark, with a baseline rank of one in all task categories. The 

rankings of other models were determined based on how their Spearman scores 

compared to this reference model.  

Abbreviations: ED: Emergency Department, H&P: History & Physical Notes, CXR: 

Chest X-ray, EHR: Electronic Health Record 

 

Model 
Siz

e 

Dischar

ge 

Notes to 

Summar

ies 

ED 

to 

H&

P 

Triage 

Notes to 

Chief 

Complai

nts 

CXR 

Findings 

to 

Impressi

ons 

PubMe

d 

Abstra

cts to 

Keywo

rds 

PubMe

d 

Abstra

cts to 

Querie

s 

Synthe

tic 

EHR to 

Search 

querie

s 

Sho

rt 

Tas

ks 

Lon

g 

Tas

ks 

Over

all 

Rank 

GIST-large-

Embedding-

v0 11 

0.2

5-

0.5

b 

25 26 29 17 28 29 30 26.6 25.5 26.3 

b1ade-

embed 12 

0.2

5-

0.5

b 

24 20 28 23 27 30 29 27.4 22.0 25.9 
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mxbai-

embed-

large-v1 25 

0.2

5-

0.5

b 

22 14 23 14 26 27 28 23.6 18.0 22.0 

instructor-xl 

29 

1-

5b 
19 25 21 25 24 19 17 21.2 22.0 21.4 

UAE-Large-

V1 25 

0.2

5-

0.5

b 

21 13 24 16 23 25 27 23.0 17.0 21.3 

GIST-small-

Embedding-

v0 11 

<0.

1b 
16 22 16 19 25 26 25 22.2 19.0 21.3 

Linq-Embed-

Mistral 35 
>5b 30 29 17 26 17 20 9 17.8 29.5 21.1 

NV-Embed-

v1 13 
>5b 2 2 30 30 30 28 24 28.4 2.0 20.9 

GIST-

Embedding-

v0 11 

0.1-

0.2

5b 

18 19 26 18 19 18 26 21.4 18.5 20.6 

SFR-

Embedding-

2_R 36 

>5b 28 27 27 27 18 10 7 17.8 27.5 20.6 

gtr-t5-xxl 31 1- 5 17 25 29 29 21 14 23.6 11.0 20.0 
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5b 

SFR-

Embedding-

Mistral 33 

>5b 29 30 19 24 13 9 16 16.2 29.5 20.0 

bge-large-

en-v1.5 19 

0.2

5-

0.5

b 

17 10 18 20 22 23 20 20.6 13.5 18.6 

gte-base 20 

0.1-

0.2

5b 

6 18 22 22 14 13 13 16.8 12.0 15.4 

gte-small 20 
<0.

1b 
10 15 20 21 15 15 11 16.4 12.5 15.3 

Solon-

embeddings-

large-0.1 

0.5-

1b 
20 21 13 10 12 12 19 13.2 20.5 15.3 

mmlw-e5-

large 

28 

0.5-

1b 
15 11 11 8 21 14 22 15.2 13.0 14.6 

bge-m3-

custom-fr 27 

0.5-

1b 
26 16 4 28 9 11 8 12.0 21.0 14.6 

e5-mistral-

7b-instruct 34 
>5b 27 28 7 13 5 2 10 7.4 27.5 13.1 

all-MiniLM-

L6-v2 22 

<0.

1b 
11 6 15 12 11 22 15 15.0 8.5 13.1 
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multilingual-

e5-large-

instruct 26 

0.5-

1b 
23 24 5 4 6 6 23 8.8 23.5 13.0 

SGPT-2.7B-

weightedme

an-

msmarco-

specb-bitfit 32 

1-

5b 
12 4 8 5 20 16 21 14.0 8.0 12.3 

bge-small-

en-v1.5 19 

<0.

1b 
7 5 6 15 16 17 18 14.4 6.0 12.0 

all-mpnet-

base-v2 26 

0.1-

0.2

5b 

9 7 12 2 10 24 5 10.6 8.0 9.9 

e5-base-4k 

24 

0.1-

0.2

5b 

8 23 2 6 8 8 12 7.2 15.5 9.6 

multilingual-

e5-large 26 

0.5-

1b 
13 12 3 11 7 7 6 6.8 12.5 8.4 

sentence-t5-

xl 30 

1-

5b 
4 8 14 9 4 4 2 6.6 6.0 6.4 

sentence-t5-

xxl 30 

1-

5b 
14 9 10 3 2 3 3 4.2 11.5 6.3 

all-MiniLM-

L12-v2 21 

<0.

1b 
3 3 9 7 3 5 4 5.6 3.0 4.9 
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Bio_Clinical

BERT 9 

0.1-

0.2

5b 

1 1 1 1 1 1 1 1.0 1.0 1.0 
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Figure 1: Bubble chart illustrating the relationship between the embedding models' 

overall rank and their embedding time in nanoseconds (ns). Each bubble represents a 

different embedding model, with the size of the bubble corresponding to the model’s 

size. ‘GIST-large-Embedding-v0' and 'b1ade-embed', have achieved the highest 

rankings across all tasks with low embedding times. 
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Figure 2: Bubble chart illustrating the relationship between the embedding models' 

rankings on short tasks and their embedding time in nanoseconds (ns). Each bubble 

represents a different embedding model, with the size of the bubble corresponding to 

the model’s size. 'NV-Embed-v1', a large model, obtained the highest score. Models like 

GIST-large-Embedding-v0 and b1ade-embed show competitive rankings with relatively 

lower embedding times. 
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Figure 3: Bubble chart illustrating the relationship between the embedding models' 

rankings on long tasks and their embedding time in nanoseconds (ns). Each bubble 

represents a different embedding model, with the size of the bubble corresponding to 

the model’s size. Models such as SFR-Embedding-Mistral and Linq-Embed-Mistral 

demonstrate strong performance with top rankings on long tasks. 
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