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ABSTRACT 

Background.  The genetic component of early-onset Alzheimer’s disease (EOAD), accounting 

for ~10% of all Alzheimer’s disease (AD) cases, is largely unexplained. Recent studies suggest 

that EOAD may be enriched for variants acting in the lipid pathway. 

Objective. To examine the shared genetic heritability between EOAD and the lipid pathway by 

genome-wide multi-trait genetic covariance analyses.  

Methods. Summary statistics were obtained from the GWAS meta-analyses of EOAD by the 

Alzheimer’s Disease Genetics Consortium (n=19,668) and five blood lipid traits by the Global 

Lipids Genetics Consortium (n=1,320,016), and genetic covariance analyses were performed via 

SUPERGNOVA. Genes in linkage disequilibrium (LD) with top EOAD hits in identified regions 

of covariance with lipid traits were scored and ranked for causality by combining evidence from 

gene-based analysis, AD-risk scores incorporating transcriptomic and proteomic evidence, eQTL 

data, eQTL colocalization analyses, DNA methylation data, and single-cell RNA sequencing 

analyses.  

Results. Local genetic covariance analyses identified 3 regions of covariance between EOAD and 

at least one lipid trait. Gene prioritization nominated 3 likely causative genes at these loci: 

ANKDD1B, CUZD1, and MS4A64. 

Conclusion. The current study identified genetic covariance between EOAD and lipids, providing 

further evidence of shared genetic architecture and mechanistic pathways between the two traits. 
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INTRODUCTION 

Alzheimer’s Disease (AD) is a highly prevalent progressive neurodegenerative disorder that 

places a substantial physical and emotional burden on patients and caregivers, and a significant 

financial toll on health care and social care systems(1). While most AD patients are elderly 

individuals, 5-10% of cases occur before the age of 65 years and are classified as early-onset 

Alzheimer’s Disease (EOAD)(2). EOAD has a substantial genetic basis with a heritability of 91% 

to 100%(3). Studies of multiplex families with EOAD led to the identification of AD-causing 

mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 

(PSEN2) genes, playing a pivotal role in the implementation of the amyloid hypothesis in AD, 

which proposes an increase in β-amyloid production as a causative mechanism in AD etiology(4). 

However, while the exact contribution of variation in APP, PSEN1, and PSEN2 to EOAD 

prevalence is unknown, it is estimated to be less than 10% of all incident EOAD cases, leaving 

~90% of EOAD cases unexplained(3-5). A large proportion of EOAD heritability is expected to 

be explained by SNPs that do not pass the Bonferroni-corrected significance threshold(6).   

 

Identification of the remaining genetic variation underlying EOAD and mapping of the 

mechanistic pathways involved is critical to disentangle the substantial clinical heterogeneity 

observed in this trait, develop prediction models, and develop more effective targets for 

screening, prevention, and treatment. A powerful approach to identify additional causative 

variants and biological pathways underlying complex traits are multi-trait analyses estimating 

local genetic covariance (i.e. genetic similarity in specific genomic regions) with other traits 

potentially sharing etiologic mechanisms. Acknowledging the importance of disentangling 

pleiotropy to pinpoint disease etiology and potentially reposition drugs for complex diseases, 
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multi-trait modeling has recently undergone rapid developments and has resulted in significantly 

improved methods. To identify new genetic loci underlying EOAD, we examined genome-wide 

local genetic covariance with five lipid traits:  total cholesterol (TC), high-density lipoprotein 

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein 

cholesterol (nonHDL-C), and triglycerides (TG). A large body of epidemiologic studies of AD by 

us(7, 8) and others(9-15) has shown that cholesterol levels elevated in midlife increase the risk of 

AD and cognitive decline, and associations of higher LDL-C with increased cerebral β‐amyloid 

load have been observed in autopsy and in vivo imaging studies(16, 17). Similarly, AD risk is 

lower among statin users, and this association appears to be more pronounced with longer 

treatment exposure and the use of more potent drugs(18-23), although corresponding 

observational data on other lipid‐lowering drug classes are limited and ambiguous(24). Studies 

specifically examining the association with EOAD are scarce, but a recent study of plasma 

samples from 2,125 EOAD cases and controls observed an association between EOAD and higher 

levels of LDL-C independent of the effects of APOE; as well as an enrichment of rare coding 

variants of APOB, a gene known to influence plasma cholesterol levels(25). This supports the 

notion that EOAD may share common genetic loci with the lipid pathway. Following genetic 

covariance analyses, we validated putative loci observed to be shared between EOAD and any of 

the five lipid traits by conducting gene-based analysis; extracting publicly available AD risk 

scores calculated from genome-wide association studies (GWAS) and expression quantitative trait 

locus (eQTL), transcriptomic, and proteomic data; examining publicly available data from brain 

eQTL studies; performing colocalization analyses between EOAD summary statistics and eQTL 

data; inspecting brain DNA methylation data from the Religious Orders Study and Rush Memory 
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and Aging Project (ROSMAP) cohorts; and analyzing single cell RNA sequencing data from both 

humans and zebrafish.  

 

METHODS 

EOAD and lipid trait GWAS studies 

Quality-controlled, ancestry-specific summary statistics were obtained from the GWAS meta-

analyses of EOAD by the Alzheimer’s Disease Genetics Consortium (n = 19,668) and plasma 

lipid levels conducted by the Global Lipids Genetics Consortium (n = 1,320,016).  

 

EOAD GWAS 

In brief, the EOAD GWAS included genetic data on 6,282 EOAD cases with AD diagnosis at or 

before age 70 and 13,386 cognitively normal controls with age at examination greater than 

70(26). Participants were obtained from 47 independent datasets assembled through the 

Alzheimer’s Disease Genetics Consortium (ADGC), and European ancestry was determined by 

genetic principal component analysis. Demographic information for each cohort is described in 

Supplementary Table 1. Genetic data was genotyped on multiple genotyping arrays, QCed, 

imputed using the TOPMed imputation server, and aligned to the GRCh38 reference panel(26).  

 

Lipids GWAS 

Data on the genetic architecture of lipid traits were derived from Graham et al. (2021) which 

meta-analyzed HDL-C, LDL-C, non-HDL-C, TC and TG summary statistics from 1,654,960 

individuals across 201 individual studies(27). Data from each cohort was QCed and imputed to 

the 1000 Genomes Phase 3 v5 (1KGP3) and the Haplotype Reference Consortium (HRC) 
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panel(27, 28). The genetic covariance analyses presented here were conducted on ancestry-

specific summary statistics obtained from 1,320,016 individuals of European ancestry. 

 

Analysis of genetic covariance between EOAD and lipid traits  

Estimation of genetic covariance of EOAD with individual lipid traits (TC, HDL-C, nonHDL-C, 

LDL-C, and TG) was performed via SUPERGNOVA(29). SUPERGNOVA estimates local 

genetic correlation while taking into account linkage disequilibrium structure by decorrelating 

local z-scores with eigenvectors of the local LD matrix followed by estimation of local genetic 

covariance through a weighted least squares regression in each region. This technique has been 

demonstrated to be superior to other available methods such as LD score regression (LDSC) or 

GeNetic cOVariance Analyzer (GNOVA)(29). The genome was partitioned into 2,353 

approximately independent regions (~1.6 centimorgan on average) using LDetect(30), and LD 

was estimated using the 1000 Genomes Phase3 European reference panel(31). Accordingly, the 

P-value threshold for significance of local genetic covariance between EOAD and each lipid trait 

was set based on a conservative Bonferroni threshold of P < 2.12×10-5 (0.05/2,353 bins). Regions 

resulting from the genetic covariance analyses were only reported if a strong genetic signal was 

observed in both traits, as defined by a P-value cutoff of 5×10-5. In addition, within-trait local 

genetic association and haplotype structure at these loci was assessed in the respective individual 

trait summary statistics (EOAD and the respective lipid trait showing genetic covariance), and 

visualized, annotated, and aligned across traits using LocusZoom(32).   

 

Gene prioritization 
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Genes included for prioritization were selected from the regions showing genetic correlation 

between EOAD and any of the five lipid traits. Locus zoom plots of these regions were inspected 

visually and any gene within LD of the EOAD top SNP in each region (any part of the gene can 

be within the LD block) was investigated further and given a composite score based on: 1) results 

from gene-based analysis; 2) AD risk scores from AGORA 

(https://agora.adknowledgeportal.org/about) hosting high-dimensional human transcriptomic, 

proteomic, and metabolomic evidence for gene association with AD; 3) MetaBrain eQTL data; 

4) eQTL colocalization analyses; 5) ROSMAP brain DNA methylation data (see below); and 6) 

single cell RNA sequencing data from both humans and zebrafish. The resulting composite scores 

were used to nominate the most likely causative gene(s) in each region by selecting the top 

scoring gene(s) from each region. 

 

Gene-based analysis 

We performed gene-based analysis on our EOAD summary statistics using the MAGMA(33) 

software via the FUMA(34) web tool (https://fuma.ctglab.nl/). The 1000 Genomes Phase3 

European reference panel(31) was employed along with the following parameters: FUMA v1.6.0; 

MAGMA v1.08; P-value of lead SNPs < 1×10-5; P-value of GWAS SNPs < .05; r2 threshold to 

define independent significant SNPs ≥ 0.6; second r2 threshold to define lead SNPs ≥ 0.1; 

minimum MAF = 0; maximum distance between LD blocks = 250kb. A window was set 35kb 

upstream and 10kb window downstream of the gene. 19163 genes were tested by MAGMA, 

resulting in a Bonferroni-corrected P-value threshold of 2.61×10-6. 

 

AD risk score data  
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Genetic, multi-omic, and target AD risk scores were extracted for each gene of interest from the 

Agora tool (https://agora.adknowledgeportal.org/). The Genetics Risk Score ranges from 0-3 and 

is based on: 1) data from 24 GWAS or GWAS by proxy studies and 3 QTL studies; 2) phenotypic 

evidence supporting a gene from human and/or animal models; and 3) whether a gene has a 

model in development through the MODEL-AD consortium (https://www.model-ad.org/)(35). 

The Multi-omic Risk Score ranges from 0-2 and is based on: 1) transcriptomic data from RNA-

Seq profiling from 8 neocortical tissues and 2) proteomic data from label-free quantitation (LFQ) 

and Tandem Mass Tagging (TMT) shot-gun profiling methods generated from 8 neocortical 

tissues(35). The Target Risk Score ranges from 0-5 and is a sum of the Genetic Risk Score and the 

Multi-omic Risk Score.  

 

MetaBrain cis-eQTL data 
 
Results from cis-eQTL analyses from the cortex (n�=�2,683) and hippocampus (n�=�208) of 

individuals of European ancestry were obtained from MetaBrain (www.metabrain.nl). MetaBrain 

has collected 6,518 genotype samples and 8,613 bulk RNA-sequenced samples across 14 datasets 

and has performed ancestry and brain region specific cis- and trans-eQTL metanalyses(36), 

defining cis-eQTLs as common variants (MAF >1%) within 1 megabase (Mb) of the transcription 

start site of a protein-coding gene. For the present study, cis-eQTLs were extracted from this data 

for each gene under the peaks of the 3 regions resulting from the genetic covariance analyses, and 

the eQTL with the minimum P-value was selected to represent each gene.  

 

eQTL colocalization analyses 
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To calculate the probability that genes in identified regions of covariance between EOAD and at 

least one lipid trait share a single causal variant with eQTL loci (this probability is referred to as 

H4), we performed colocalization analyses between the regions resulting from our genetic 

covariance analyses and a set of 61 eQTL datasets (Supplementary Table 2) using the ‘coloc’ 

package in R(37-39). 

 

Brain DNA methylation analyses in the ROS/MAP cohort 

DNA methylation data came from frozen dorsolateral prefrontal cortex from 761 participants in 

ROSMAP(40). All ROSMAP participants enroll without known dementia, agree to annual 

clinical evaluation and agree to brain donation at the time of death. Both studies were approved 

by an Institutional Review Board of Rush University Medical Center. All participants signed 

informed and repository consents and an Anatomic Gift Act. Details of the data generation have 

been previously published in detail whereby methylation profiles were generated using the 

Illumina HumanMethylation450 beadset(41, 42). For the present analyses the β-values reported 

by the Illumina platform for each probe ranging from 0 (no methylation) to 1 (100% methylation) 

were utilized as the methylation level measurement for the targeted CG site in a given sample.  To 

examine identified top loci for differentially methylated regions associated with AD pathology, 

we used a linear model, adjusting for age at death, sex, experimental batch, and bisulfite 

conversion efficiency. β-amyloid load and PHF-tau tangle density were generated as previously 

described(43). 

 

Single cell RNA sequencing 
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To evaluate the RNA expressions of target genes at the single nucleus/cell level, we evaluated 

publicly available human single cell sequencing data (GSE157827)(44) and analyzed zebrafish 

data generated in-house. For human snRNA, we selected the single cell expression matrices of 4 

AD and 4 control samples that were matched on sex and age. Matrices were generated with 10X 

function of the ‘Seurat’ (version 4.1.3) R package(45). To create the Seurat object, we filtered out 

any cells with less than 200 expressed genes, and with genes expressed in less than 3 cells. 

Following the normalization of the dataset, the top 2,000 genes were used for further analyses. 

Anchors were identified with the FindIntegrationAnchors function and integration was performed 

using the IntegrateData function. We used ‘DoubletFinder’(46) to remove doublets and 

performed the rest of the analyses on singlets only. The integrated Seurat object included 44,132 

cells (27,198 for AD, and 16,934 for Control) with 29,772 features. The data were scaled using all 

genes, and 30 PCAs (RunPCA) were identified using the RunPCA function in the ‘Seurat’ 

package(45). Thirty clusters were identified with resolution 1. The main cell types were defined 

using AQP4 and GFAP for astroglia; SLC17A7 and NRGN for excitatory neurons; GAD1 and 

GAD2 for inhibitory neurons; PDGFRB, MCAM and GRM8 for pericytes; C3 and DOCK8 for 

microglia; PLP1 and MOBP for oligodendrocytes; PDGFRA and VCAN for OPC; and FLIT1 and 

CLDN5 for endothelial cells.  

 

We used the same methods and parameters as described above for creating a Seurat object with 

our zebrafish dataset. The main cell types were identified as described elsewhere(47, 48). Briefly, 

we used s100b and gfap for astroglia; sv2a, nrgna, grin1a, grin1b for neurons; pdgfrb and kcne4 

for pericytes; cd74a and apoc1 for microglia; mbpa and mpz for oligodendrocytes; aplnra for 

OPC; myh11a and tagln2 for vascular smooth muscle cells; lyve1b for lymph endothelial cells; 
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and kdrl for vascular cells. To find the average expression of the genes, we used 

AverageExpression function. To define the percent expression of the given genes, 

PrctCellExpringGene was used.  

 

Differential gene expression (DEG) in clusters was performed using the FindMarkers function by 

comparing AD cases against age-matched controls in humans and zebrafish injected with Aβ42 

(AD model) versus those injected with phosphate buffered saline (control group). P-values and 

log2 fold change values of DEG results were transformed to generate the DEG index using the 

following equation: -log10(P) × (1 - |log2 fold change value|). If a gene is differentially expressed 

in multiple cell clusters, the one with lowest P-value was selected for the index. If no DEG was 

observed for a gene, a non-DEG penalty value of .25 was assigned for that gene. 

 

Composite scores for each gene 

P-values were extracted and transformed – using -log10(P) – from the results of the MetaBrain 

eQTL data, the gene-based analysis, and the ROSMAP methylation data for each gene. Where 

results existed for multiple variants within a gene, the variant with the minimum P-value was 

selected to represent the gene. The target risk score for each gene was extracted from Agora. After 

performing the colocalization analyses between the EOAD summary statistics and the multiple 

eQTL datasets, the maximum H4 value between EOAD and the various eQTL datasets was 

selected to represent each gene of interest. A score was calculated for each gene for both the 

human and zebrafish single-cell RNA sequencing analyses by multiplying the average proportion 

of each gene’s expression across different brain cell types by the average amount of each gene’s 

expression across the same cell types and by each gene’s DEG index. Z-scores were calculated for 
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each of the variables described above, subsequently these z-scores were summed to form a total 

prioritization score for each gene. Any genes with scores in the top 10th percentile for each region 

resulting from the genetic covariance analyses were nominated as likely causative genes for that 

locus. 

 
 

RESULTS 

Analysis of genetic covariance between EOAD and lipid traits  

Top results of the genetic covariance analyses with the five lipid traits (TC, HDL-C, LDL-C, 

nonHDL-C, and TG) are summarized in Table 1, with corresponding regional association plots 

displayed in Supplementary Figures 1-3. All base-pair positions in this section refer to build 

GRCh37. Genetic covariance analyses of EOAD with each of the five lipid traits identified 3 

regions showing genetic correlation between EOAD and at least one of the five lipid traits at P < 

2.12×10-5. The region showing strongest genetic correlation is located on chromosome 5q13.3 at 

73,508,509-75,240,469 bp and showed genetic covariance between EOAD and TC (P = 5.5×10-

10), LDL-C (P = 8.17×10-9), and nonHDL-C (P = 1.30×10-10) (Table 1; Supplementary Figure 1). 

A second region on chromosome 10q26.13 at 123,855,124-124,894,743 bp showed genetic 

covariance between EOAD and TC (P = 3.78×10-9), LDL-C (P = 1.26×10-8), and nonHDL-C (P = 

2.90×10-9) (Table 1; Supplementary Figure 2). And lastly, a region on chromosome 11q12.1-

q12.2 at 59,620,206-61,870,732 bp showed genetic covariance between EOAD and nonHDL-C 

(P = 1.60×10-6) (Table 1; Supplementary Figure 3). Examination of LD patterns in these regions 

identified in total 26 genes under the peaks. A complete list of these genes in each region can be 

found in Supplementary Table 3.  

 

Gene prioritization at identified loci showing genetic covariance 
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To identify likely causative genes in each of the 3 regions showing genetic covariance between 

EOAD and lipid traits, we calculated composite scores for each gene from gene-based analysis, 

Agora AD-risk scores, MetaBrain eQTL data, eQTL colocalization analyses, ROSMAP brain 

methylation data, and single cell RNA sequencing analyses in humans and zebrafish. Results from 

the gene-based analysis are displayed in Supplementary Table 4. Target Risk Scores extracted 

from Agora (https://agora.adknowledgeportal.org/) for each gene of interest are shown in 

Supplementary Table 5.  Results from the MetaBrain cis-eQTL mapping for the 26 genes of 

interest with the minimum P-value for each gene are detailed in Supplementary Tables 6 and 7 

respectively. Max H4 values from the coloc eQTL colocalization analyses were extracted for each 

gene of interest along with their associated eQTL datasets (Supplementary Table 8). The variant 

with the minimum methylation P-value for each gene was extracted separately for both β-amyloid 

load and tau tangle density, and the results of the methylation analyses for these variants are 

shown in Supplementary Tables 9 and 10, respectively. Results of the single-cell RNA 

sequencing analyses for humans and zebrafish, where a total score for each gene was derived by 

multiplying average proportion of expression by average level of expression by DEG index, are 

detailed in Supplementary Tables 11 and 12, respectively.  

 

Z-scores were calculated and summed for the variables mentioned above to create a composite 

“causality” score for each gene (Supplementary Table 13). Boxplots for these resulting scores for 

each significant region from the genetic covariance analyses are shown in Figure 1. Three genes 

were nominated as likely to be causal across the 3 regions: ANKDD1B, CUZD1, and MS46A. 
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ANKDD1B is the highest scoring gene in the region on chromosome 5q13.3 and is nominally 

associated with EOAD according to gene-based analysis (P = 2.9×10-4; Supplementary Table 4). 

Meta-analyses of cis-eQTLs for brain-related traits show at least one variant in the ANKDD1B 

gene to be highly significant in the cortex (P = 3.18×10-110; Supplementary Table 6) and 

nominally significant in the hippocampus (P = .003; Supplementary Table 7)(36). ANKDD1B has 

an AD target risk score of 1.62 according to Agora (https://agora.adknowledgeportal.org/; 

Supplementary Table 5), and colocalization analyses report a high probability that EOAD and 

eQTL data share a causal variant in the ANKDD1B gene (H4 = .82; Supplementary Table 8).  

 

The highest scoring gene in the region on chromosome 10q26.13 is CUZD1. Gene-based analysis 

shows CUZD1 to be nominally associated with EOAD (P = .01; Supplementary Table 4) and at 

least one variant in the CUZD1 gene is a cis-eQTL in the cortex (P = 1.05×10-91; Supplementary 

Table 6) and the hippocampus (P = 1.94×10-7; Supplementary Table 7)(36). Colocalization 

analyses report a high probability that EOAD and eQTL data share a causal variant in the CUZD1 

gene (H4 = .84; Supplementary Table 8) and Agora scores the AD risk of the gene at 1.48 

(https://agora.adknowledgeportal.org/; Supplementary Table 5). 

 

Finally, the highest scoring gene in the region on chromosome 11q12.1-q12.2 is MS46A, which is 

highly significant according to gene-based analysis (P = 4.07×10-10; Supplementary Table 4) and 

has a high AD risk score of 3.49 (https://agora.adknowledgeportal.org/; Supplementary Table 5). 

At least one variant in MS46A is a significant eQTL in the cortex (P = 4.26×10-6; Supplementary 

Table 6) and the hippocampus (P = 6.15×10-4; Supplementary Table 7)(36), and EOAD is likely 

to share a causal variant with eQTLs in the gene according to colocalization analysis (H4 = .96; 
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Supplementary Table 8). Analysis of brain methylation data report that at least one variant in 

MS46A is nominally significant for both amyloid (P = .02; Supplementary Table 9) and tau (P = 

.005; Supplementary Table 10) methylation; and single cell RNA sequencing analysis shows that 

MS46A is differentially expressed between AD cases and controls in humans (P = 3.74×10-20; 

Supplementary Table 11). 

 

DISCUSSION 

To identify genetic regions and mechanistic pathways that are shared between early-onset EOAD 

and dyslipidemia, we conducted hypothesis-free genetic covariance analyses between EOAD and 

lipid traits. These analyses identified 3 genetically shared regions on chromosomes 5q13.3, 

10q26.13, and 11q12.1-q12.2. Construction of composite scores integrating gene-based analyses 

and a wealth of multi-omics data prioritized 3 genes in these regions most likely to be causal: 

ANKDD1B, CUZD1, and MS46A. All these identified genes act in mechanistic pathways related 

to AD and/or have been associated with AD related read-outs in animal, cell biological, or 

neuropathological studies.  

 

ANKDD1B, the highest scoring gene in the region on chromosome chr5q13.3, encodes the 

ankyrin repeat and death domain containing 1 B protein. ANKDD1B has been shown to be 

associated with dyslipidemia (specifically LDL-C)(49) and type 2 diabetes(50) in major GWAS 

studies, and is one of 28 genes included in a recent polygenic risk score for severe 

hypercholesterolemia (defined as LDL-C > 4.9 mmol/L)(51). ANKDD1B was reported as one of 

two top genes connecting migraines and major depressive disorder in a genetic correlation 

analysis(52) and is hypermethylated in response to low-dose lead exposure in mice(53). Diabetes, 
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depression, and lead exposure have all been linked with cognitive decline and various 

neurological disorders including AD(54-59). 

 

CUZD1 is the highest scoring gene in the region on chromosome 10q26.13 and encodes a protein 

located in secretory granules in the pancreas that is thought to affect lipid-related metabolite 

levels(60). CUZD1 is a contributing gene to the zymogen activation pathway, which is enriched 

in the top 5% of genes associated with AD from a genome-wide meta-analysis(61). Increased 

levels of the CUZD1 protein have also been correlated with genetic risk of migraine(62).  

 

The highest scoring gene in the region on chromosome chr11q12.1-q12.2 is MS4A6A, a known 

AD risk gene that encodes a member of the membrane-spanning 4A gene family(63). Several 

meta-analyses have found that a variant (rs610932) in MS4A6A correlates with decreased risk for 

AD(63-65). Colocalization analysis identified a shared causal variant in MS4A6A affecting a locus 

near MS4A4A in one of the most recent AD GWAS(66). A transcriptome-wide association study 

(TWAS) found that increased expression of  MS4A6A in monocytes associated with AD risk(67) 

and a DNA methylation study suggested that MS4A6A expression may mediate AD risk(68). 

MS4A6A is also involved in the formation of atherosclerosis(69) and is differentially associated 

with various classes of lipids between AD cases and controls(70). 

 

This study has several strengths. To our knowledge this is the first study assessing genetic 

covariance between the early-onset form of AD and the lipid pathway. AD cases and controls in 

the parent EOAD GWAS were derived from datasets with meticulous characterization for 

cognitive impairment, age at onset and AD. In addition, to further validate shared identified loci, 
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this study was able to capitalize on a variety of omics data from various independent sources, 

providing significant supportive evidence for the plausibility of candidate genes at identified loci. 

The evidence presented here is based on correlational analyses, however, and functional follow-

up for these genes is required to determine causality.  In addition, it is possible that regions of 

genetic covariance were missed in our study due to a lack of statistical power (particularly in the 

EOAD dataset) or lack of data from sex-stratified analyses.   

  

In summary, this study suggests that EOAD shares genetic heritability with the lipids pathway, 

and that the common genetic loci include the ANKDD1B, CUZD1, and MS4A6A genes. These 

genes could lead to improved screening, prevention, and treatment for AD by targeting shared 

mechanistic pathways between EOAD and lipids. Future studies are needed that clarify the 

molecular mechanisms through which these genes modulate risk of EOAD, and that identify the 

specific causative variants at these and additional remaining loci that underlie the contribution of 

lipid metabolism to AD pathogenesis. 
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Table 1. Results of genetic covariance analyses for regions with P < 2.12×10-5. 

  

Chromosome 
Start BP 

(GRCh37) 
End BP 

(GRCh37) 
Estimate of 
Covariance Variance P # SNPs 

TC 
5 73508509 75240469 0.002 9.46×10-8 5.50×10-10 3084 

10 123855124 124894743 0.0007 1.39×10-8 3.78×10-9 2011 
LDL-C 

5 73508509 75240469 0.002 1.07×10-7 8.17×10-9 3070 
10 123855124 124894743 0.0007 1.60×10-8 1.26×10-8 2009 

nonHDL-C 
5 73508509 75240469 0.002 7.32×10-8 1.30×10-10 3117 

10 123855124 124894743 0.0006 1.18×10-8 2.90×10-9 2005 
11 59620206 61870732 0.0006 1.47×10-8 1.60×10-6 3150 
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Figure 1. Boxplot of composite scores for all genes in each region resulting from the genetic 
covariance analyses between EOAD and lipid traits. The chromosome and base-pair start and end 
positions for each region are displayed on the x-axis using genome build GRCh37. Genes with 
composite score values in the top 10th percentile for each region are bolded and shown in red, 
while the rest of the genes are shown in grey.  
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