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ABSTRACT  

Background 

Weight estimation is required in adult patients when weight-based medication must be 

administered during emergency care, as measuring weight is often not possible. Inaccurate 

estimations may lead to inaccurate drug dosing, which may cause patient harm. High-tech 3D 

camera systems driven by artificial intelligence might be the solution to this problem. The aim of 

this review was to describe and evaluate the published literature on 3D camera weight 

estimation methods. 

Methods 

A systematic literature search was performed for articles that studied the use of 3D camera 

systems for weight estimation in adults. Data on the study characteristics, the quality of the 

studies, the 3D camera methods evaluated, and the accuracy of the systems were extracted and 

evaluated.  

Results 

A total of 14 studies were included, published from 2012 to 2024. Most studies used Microsoft 

Kinect cameras, with various analytical approaches to weight estimation. The 3D camera systems 

often achieved a P10 of 90% (90% of estimates within 10% of actual weight), with all systems 

exceeding a P10 of 78%. The studies highlighted a significant potential for 3D camera systems to 

be suitable for use in emergency care. 

Conclusion 

The 3D camera systems offer a promising method for weight estimation in emergency settings, 

potentially improving drug dosing accuracy and patient safety. Weight estimates were extremely 

accurate. Importantly, 3D camera systems possess characteristics that could make them very 

appropriate for use during emergency care. Future research should focus on developing and 

validating this methodology in larger studies with true external and clinical validation. 
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INTRODUCTION 

Background 

During the resuscitative care of critically ill or injured patients, an estimation of their weight is 

required when weight-based drug therapy is required, and actual patient weight cannot be 

measured. Measuring weight with scales is not always feasible as it is time-consuming and 

requires patient cooperation as well as a medically stable patient [1]. If a stand-on scale cannot 

be used due to the patient’s clinical condition, some emergency departments use scales that are 

imbedded in patient stretchers. These are costly, not universally available, and unproven in terms 

of accuracy during emergency care [2, 3]. An estimation of weight is, therefore, often required. 

 

Numerous studies have described or evaluated different methods of weight estimation in adults. 

These methods include (1) estimates by patients themselves, by family members, and by 

healthcare professionals; (2) formulas based on anthropometric measurements, such as the 

Lorenz formula; (3) dual length- and habitus-based tapes, such as the PAWPER XL-MAC tape; and 

(4) high-tech methods, such as 3D camera systems. Of all these methods, 3D camera systems 

have shown the greatest potential for highly accurate, rapid, easy-to-use estimation of weight [4]. 

These methods use real-time 3D images and previously trained artificial intelligence algorithms 

to generate estimates of weight. Existing 3D camera weight estimation methods have used 

different approaches with different cameras, software, costs, ease-of-use, applicability, and 

accuracy. 

 

Importance 

Inaccurate weight estimations may lead to inaccurate drug doses. This may cause patient harm 

through ineffective treatment (underestimation of weight) or adverse drug effects 

(overestimation of weight) [5]. One weight estimation researcher has written: “It cannot be 

considered to be good medical practice to use a weight estimation system that is known to be 

inaccurate” [6]. In adults, most current methods of weight estimation are simply not accurate 

enough [4]. It is possible that 3D camera methods of weight estimation may offer a solution to 

these problems. In addition, simple and easy-to-use methods are of special interest in emergency 
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medicine. This is because more complex methods may be less easy to use and more prone to 

errors during the high cognitive loads experienced in emergency care [7]. High-tech 3D camera 

systems engineered for usability in the setting of emergency care may also be able to address this 

problem. 

 

Goals of this investigation 

Our aim in this scoping review was to review the available literature in which a 3D camera system 

was used to estimate a patient’s weight, with a medical indication as the ultimate purpose. We 

aimed to describe the performance and accuracy of 3D camera weight estimation systems, the 

types of cameras used, and the analytical and software methods used in the weight estimation 

process. 

 

 

METHODS 

This scoping review was based on the PRISMA for Scoping Reviews guidelines (PRISMA-ScR) [8].  

 

Literature search 

A literature search was conducted using MEDLINE, EMBASE, IEEE Xplore, and Google Scholar. 

Eligible studies published between January 2012 and April 2024 were identified using the search 

strategy shown in Supplementary Table 1. 

 

Eligibility criteria 

Studies were included for further evaluation if they were peer reviewed, full length, English 

language papers containing original data. Studies evaluating any form of 3D camera weight 

estimation methodology, and in any type of participants were eligible for inclusion if an accurate 

measured weight was used as the standard reference. Studies on weight estimation not relevant 

to a clinical or hospital setting were excluded (e.g., weight estimation for forensic or non-medical 

applications). 
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Selection of studies 

The titles and abstracts of the articles identified by the database search were manually screened 

by two researchers independently (MW, NG). The full texts of the selected reviews were then 

obtained and assessed for eligibility. Any differences in opinion were resolved by discussion and 

consensus. 

 

Critical appraisal of individual sources of evidence (Grading of quality of studies) 

Every included study was graded for quality of evidence using a modified Newcastle-Ottawa scale 

(NOS), as has been described previously (see Supplementary Table 2) [9]. Studies were 

downgraded if significant methodological weaknesses were present, e.g., if data presentation 

was incomplete or if performance outcome data was not appropriately presented or analyzed. An 

assessment of selective non-reporting or under-reporting of results in the studies was included in 

the Newcastle-Ottawa scale. Each study could score a minimum of zero stars and a maximum of 

10 stars on the modified NOS. On this scale, a study with score from 6 to 10 has high quality, 4 to 

5 has a moderate risk of bias, and 0 to 3 a very high risk of bias.  

 

Data charting process (Data extraction) 

Data extraction was conducted by one researcher (TW) using a standardized electronic data 

extraction form and was independently confirmed by another researcher (MW) for accuracy.  

 

Data items 

The following data was extracted: basic study information (region of origin, study population, 

sample size), study participant characteristics, 3D camera used, analytic method or software used 

for the weight estimation process, key findings, and the data presented on the performance or 

accuracy of weight estimation.  

 

Data synthesis (Map of outcomes) 

The findings of this scoping review were synthesized by presenting a descriptive and quantitative 

summary of the study characteristics using frequencies with percentages. The studies were 
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grouped by the types of 3D cameras used, as well as the overall analytic approach, and 

summarized according to weight estimation outcomes. 

 

In terms of the quantitative analysis, the main outcomes of interest were metrics representing 

the performance of the weight estimation system. These included mean error or mean 

percentage error, which represented the estimation bias; the root mean square error, the mean 

absolute error, the root mean square percentage error or the mean absolute percentage error, 

which quantified the estimation precision; and the percentage of weight estimations that fell 

within 10% (P10) as well as within 20% (P20) of measured weight, which denoted overall 

accuracy. We considered the measures of overall accuracy (P10 and P20) to be the best indicator 

of overall performance, as we have described previously [10]. If P10 data was not reported it was 

imputed, whenever possible, from other reported metrics (mean absolute percentage error or 

mean percentage error). 

 

RESULTS 

No significant deviations from the protocol were noted. The details of the numbers of sources of 

evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions 

at each stage are shown in Figure 1. 

 

Characteristics of the included studies 

A total of 14 studies were included in this scoping review. The details of the included studies, 

including the study methodologies, the hardware and software used, and the weight estimation 

approaches are shown in Table 1. Two thirds of the studies (9/14 (64%)) were from Europe (all 

but one from Germany), with three studies (21%) from the USA, and two studies (14%) from 

elsewhere (one from Indonesia and one from Chile).  



 7 

Figure 1 The Preferred Reporting Items for Scoping Reviews (PRISMA-ScR) flow chart for article 

identification and selection. 
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Table 1 Details of the included studies [11-24]. Abbreviations: NHANES – National Health and 

Nutrition Examination Survey; BMI – Body Mass Index; MATLAB - MATrix LABoratory; PCL – Point 

Cloud Library; ANN – Artificial Neural Network; MAPE – Mean Absolute Percentage Error; 

RANSAC – RANdom SAmple Consensus; SVR – Support Vector Regression; LibSVM – library for 

support vector machines; MAE – Mean Absolute Error; MPE – Mean Percentage Error; LOA – 

Limits of Agreement; P10 – percentage of estimates within 10% of actual weight; LMS – Least 

Mean Squares; CNN – Convoluted Neural Network; DBSCAN – Density-Based Spatial Clustering of 

Applications with Noise; ADAM – Adaptive Moment Estimation. 
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Author, date, 
location 

Study population 
Participant 
characteristics 

Camera 
technology 

Method of weight estimation Analytic method or software Accuracy data Notes 

Velardo et al 
2012 
France 

NHANES 1999 to 
2005 datasets. 
N=28,000 
 
Volunteers for 
testing of actual 3D 
camera system 
N=15. 

Age: >20 years. 
Sex: not reported. 
Weight: not reported. 
BMI: not reported. 
 

Microsoft 
Kinect 1 

Biometrics obtained from 3D image 
silhouette – regression equation to 
predict weight. User input required: none. 

MATLAB Neural network 
toolbox to obtain estimators. 
OpenNI framework, 
Primesense, OpenCV, PCL. 
ANN (single hidden layer) to 
create algorithm for weight 
estimation. 

Weight: 
MAPE 3.6% in 10/15 
human test subjects, 
using 3D camera. 
No data reported for 
females. 
 

Gender recognition was 
included using neural 
network classifier on 
anthropometric 
measurements (80% 
accurate). No results 
reported for other 5/15 
subjects. Internal 
validation: none. 

Nguyen et al 
2014 
USA 

University student 
and staff 
volunteers. N=190 

Age: 18-60 years. 
Sex: not reported. 
Weight: not reported. 
BMI: not reported. 
 

Microsoft 
Kinect 1 

Feature fusion models – including linear 
dimension features, area features, and 
sideview shape from 3D camera. User 
input required: none. 

RANSAC for video 
processing. 
SVR- LibSVM with Gaussian 
Radial Basis Function for 
weight estimation. 

Weight: 
MAE 4.6kg (F), 5.6kg 
(M). MAE 5.4kg when 
autodetection of 
gender was used. 

Gender estimation – 88-
92% accuracy. 
The 3D camera system 
was more accurate than 
observer estimates. 
Internal validation: 5-
fold cross validation. 

Pfitzner et al 
2015 
Germany 

Convenience 
sample of 
Emergency 
Department 
patients. N=110 

Age: 19-86 years. 
Sex: male 53.6%. 
Weight: 49-117kg. 
BMI: 18-40kg/m2. 
 

Microsoft 
Kinect 1 & 
Optris PI400 
(thermal 
camera) 

The approach involves patient 
segmentation, body volume estimation 
and body weight estimation using a fixed 
coefficient for body density. User input 
required: gender. 

RANSAC, point cloud 
geometry. 

Weight: 
MPE 1.02 (95% LOA -
15.8 to 17.9) 
P10 79.1% 
 

The 3D camera method 
was more accurate than 
physician estimates and 
similar to the Lorenz 
method, but less 
accurate than patient 
self-estimates. 
Internal validation: 
none. 

Pfitzner et al 
2016 
Germany 

Convenience 
sample of 
Emergency 
Department 
patients. N=69 

Age: 18-87 years. 
Sex: not reported. 
Weight: 49-129kg. 
BMI: 19-48kg/m2. 
 

Microsoft 
Kinect 1 & 
Optris PI400 
(thermal 
camera) 

The approach used for weight estimation 
involves sensor fusion of an RGB-D sensor 
and a thermal camera, pre-processing and 
segmentation of the sensor data, 
extraction of ten features for machine 
learning-based weight estimation. User 
input required: gender. 

Multiple features extracted 
from cloud point data. 
ANN (single hidden layer) to 
create algorithm for weight 
estimation. ANN trained 
using a dataset recorded in 
real emergency scenarios. 

Weight: 
MPE -0.7 (95% LOA -
13.5 to 12.1) 
P10 89.9% 
 

The 3D camera method 
was more accurate than 
physician estimates and 
the Lorenz method, but 
less accurate than 
patient self-estimates. 
Internal validation: 
none. 

Benalcazar et 
al 2017 
Chile 

Volunteers N=185 
(LMS method) 
 
 
Volunteers N=34 
(ANN method) 

LMS model: 
Age: 3-23 years. 
Sex: male 100%. 
Weight: 11-114kg. 
BMI: not reported. 
 
ANN model: 
Age: 3-18 years. 
Sex: male 100%. 

Microsoft 
Kinect 1 

The area of the person in the normalized 
image was computed, and this parameter 
was used to estimate the weight of the 
person.  User input required: information 
on hairstyle and clothing. 

Both LMS and ANN fitting 
techniques were explored 
for the weight estimation 
model. The Levenberg 
Marquardt back-propagation 
method was used for 
training. 
 

Weight: 
LMS MAPE 10.7% 
ANN MAPE 5.8%  
 

The increase in accuracy 
between LMS and ANN 
was due to the change in 
evaluation of hair and 
clothing. Internal 
validation: k-fold cross-
validation. 
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Weight: 17-88kg. 
BMI: not reported. 
 

Pfitzner et al 
2017 
Germany 

Convenience 
sample of trauma 
room patients 
N=127. Volunteers 
from public event 
N=106. 

Age: not reported. 
Sex: male 41.2%. 
Weight: 49-129kg. 
BMI: not reported. 
 

Microsoft 
Kinect 2  

The features used for weight estimation 
include volume, surface area, number of 
points, density, eigenvalues, sphericity, 
flatness, linearity, compactness, kurtosis, 
alternative compactness, distance to 
person, contour length, contour area, 
convex hull length, convex hull area, 
gender, and temperature features. User 
input required: gender. 

RANSAC for video 
processing, Artificial Neural 
Network for weight 
estimation.  

Weight: 
MPE 0.3 (95% LOA -
10.1 to 10.7) 
P10 94.8%  

The Kinect 2 was more 
accurate than the Kinect 
original and was perhaps 
underappreciated in the 
paper. 
Internal validation: 
none. 

Pfitzner et al 
2018 
Germany 

Various sources 
N=299 (reanalysis 
of previous depth 
data with new 
methodology) 

Age: not reported. 
Sex: male 67.5%. 
Weight: 49-129kg. 
BMI: not reported. 

Microsoft 
Kinect 1, 
Microsoft 
Kinect 2, Optris 
PI400) 

New approach was used in which deep 
learning was used for the weight 
estimation process. Features are 
extracted from the person's point cloud, 
including geometric features, features 
based on eigenvalues, statistical features, 
and features from the silhouette of a 
person.  These features are then used as 
input to different algorithms, such as 
clustering, a three-layer feedforward 
neural network, and an ANN, to estimate 
the body weight. User input required: 
gender. 

CNN, ANN, RANSAC Weight: 
P10 95.3% for lying 
subjects, P10 91.3% 
for walking subjects 
and P10 100% for 
walking subjects. 
 

This paper is closer to 
being a summary of 
other tests than being a 
standalone paper, 
although new modelling 
is used. The only new 
data is for walking 
subjects. Internal 
validation: none. 

Bigalke et al 
2021 
Germany 

Not reported. 
N=60 for training, 
N=49 for testing 

Age: not reported. 
Sex: not reported. 
Weight: 44-105kg. 
BMI: not reported. 
 

Not reported* The approach used for weight estimation 
in this study was deep learning techniques 
applied to 3D point cloud data without 
relying on hand-crafted features. They 
adopt the concept of basis point sets 
(BPS) to encode the input point cloud into 
a low-dimensional feature vector, which is 
then passed to a neural network trained 
for weight regression. User input 
required: none. 

RANSAC for image isolation, 
DBSCAN, ADAM optimizer, 
PointNet, fully connected 
neural network 

Weight: 
MAE 4.2 (0.12) kg 
MAPE 6.4 (0.2) % 
P10 78.6% 
 

Many “not reported” 
items. Internal 
validation: split sample. 

Dane 2021 
et al  
USA 

Convenience 
sample of 
outpatient CT scan 
patients N=363 for 
training, N=90 for 
testing 
 

Age: 59.8 (14.9) years. 
Sex: not reported. 
Weight: 34-107kg. 
BMI: not reported. 
 

FAST 3D camera 
(Siemens 
Healthineers) 

 The 3D camera captured the patient's 
body surface landmarks using infrared 
imaging.  The patient's body was divided 
into different regions (head, thorax, 
abdomen, arm, and leg) based on the 3D 
patient geometry.  From the estimated 3D 
patient body mesh, various geometry-
based features such as volume and length 
of each body region were computed. 

Deformable Patient Avatar 
(digital twin) with Deep 
Image Network.  
The weight estimation was 
modeled as a weighted sum 
of all the geometry-based 
features, and the weight 
coefficients were estimated 
using a Bayesian Ridge 
regression model.  This 

Height: 
MAPE 2.0% (1.4) 
Weight: 
MAPE 5.1% (4.3) 
9.2% underweight 
(n=7) 
5.4% normal weight 
(n=57) 
4.6% obese (n=22) 

Poorer estimations in 
underweight patients. 
Incomplete accuracy 
data reporting. Internal 
validation: split sample. 
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These features were used for weight 
estimation. User input required: none. 

process was performed using 
Scikit-learn. 

Geissler et al 
2021 
Germany 

Random patients 
undergoing CT 
scanning N=221 for 
training, N=101 for 
testing. 

Age: 21 to 92 years. 
Sex: not reported. 
Weight: not reported. 
BMI: 27.3 (SD 5.5) 
kg/m2. 

Microsoft 
Kinect 2 

Digital twin or avatar fitted to observed 
depth data, sized according to height. 
User input required: none. 

Not reported. Height: 
MAE 2.5 (1.9) cm 
Weight: 
MAE 4.4 (3.9) kg 
35% of patients had 
estimate error >5kg 

Worse estimates in 
obese patients, but 
height estimates not 
affected. Weight 
estimates much worse 
than patient self-
estimates, but much 
better than staff 
estimates. Internal 
validation: split sample. 

Mameli et al 
2021 
Italy 

Volunteers. 
 N=94 for training, 
N=9 for testing. 

Age: not reported. 
Sex: male 63.1%. 
Weight: 40-100kg. 
BMI: not reported. 
 

Orbec Astra S2 “Top View Weight Estimation Approach”, 
VRAI Weight estimation dataset. Deep 
learning model trained directly off 3D 
depth data. User input required: none. 

Deep Neural Networks 
(VGG16, ResNet, Inception 
DenseNet, EfficientNet) 

Weight: 
MAE | MSE 
ResNet 4kg | 36kg 
Inception 3kg | 11kg 
DenseNet 1kg | 4kg 
EfficientNet 1kg | 2kg 

Top view (bird’s eye 
view) of standing 
participants was the 
only 3D image used in 
this study. Internal 
validation: split sample. 

Naufal et al 
2021 
Indonesia 

Volunteers N=147. Age: 5-70 years. 
Sex: not reported. 
Weight: 14-90kg. 
BMI: not reported. 

Microsoft 
Kinect 1 

3D images segmented and converted to 
2D images. This image area was 
correlated with weight. User input 
required: N/A. 

MATLAB-based software Weight: 
Only correlation was 
used. No valid method 
of assessing accuracy. 

Height estimation 
accuracy to within 1% 
Internal validation: 
none. 

Tamersoy et 
al 2023 
Germany 

Volunteers plus 
patients undergoing 
CT or MRI imaging 
N=1850. 

Age: not reported. 
Sex: not reported. 
Weight: 45-120kg. 
BMI: not reported. 
 
 

3D camera not 
specified 

The method treats the estimation of 
patient height and weight as separate 
single-value regression problems, 
eliminating the need for error-prone 
intermediate stages such as volume 
computations. A 3D patient avatar or 
digital twin image is fitted to the acquired 
depth images, which is then used for part-
volume based weight estimation. User 
input required: none. 

ResNet 18 
ADAM optimizer 

Height: 
P5 – 98.4% 
P15 – 99.9% 
Weight: 
P10 – 95.6% 
P20 – 99.8% 
 

Extremely high weight 
estimation accuracy. 
May possibly be 
overfitted model. 
Internal validation: 23-
fold cross validation.  

Shahzadi et al 
2024 
Germany 

Consecutive 
patients undergoing 
MRI N=148. 

Age: not reported. 
Sex: not reported. 
Weight: 45-120kg. 
BMI: not reported. 
 
 

myExam™ 3D 
Camera 
Siemens 
Healthineers 

Details not reported. 
Unspecified features from depth data 
used in separate prediction models for 
height and weight. Model was trained on 
an unspecified dataset of images. User 
input required: none. 
 

ResNet18 for initial training.  
SMAPE as a loss function and 
ADAM optimizer. 
 

Height: 
P5 100% 
MAPE 1.7 (1.2)% 
Weight: 
P10 85.1% 
P20 95.9% 
MAPE 5.6 (5.5)% 

Without blanket P10 
93.8, P20 100%. Height 
estimations also slightly 
better. Predictions were 
still good in patients 
with Class 2 obesity. 
Internal validation: 23-
fold cross validation. 
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Most of the studies (8/14 (57%)) prospectively collected data for data analysis, while six (43%) 

studies used existing data to develop or evaluate new analytic approaches. Only 4/14 (29%) 

studies compared 3D camera methods against other methods of weight estimation. The main 

aim of the study was to evaluate potential methods to estimate weight for drug dosing 

purposes in 6/14 (43%) studies, for CT contrast and radiation dosing in 5/14 (36%) studies, for 

nutritional or body habitus assessment in 2/14 (14%) studies, and other reasons in 1/14 (7%) 

study.  

 

Risks of bias and limitations across studies 

The methodological quality of most of the studies was good. Most studies (11/14 (79%)) had 

a low risk of bias on the Newcastle-Ottawa scale, one study (7%) had moderate risk of bias 

and two studies (14%) had a high risk of bias. However, incomplete data reporting or 

incomplete statistical analysis (5/14 studies (36%)) were common. Only 3/14 (21%) studies 

presented any form of subgroup analyses and no study provided comprehensive subgroup 

analyses by sex and weight-status. In addition, 2/14 (14%) studies had a sample size of 100 or 

fewer participants, and only 3/14 (21%) studies had a sample size of greater than 300 

participants. These findings are summarized in Figure 2. 

 

Eight studies (57%) employed some form of appropriate internal validation of the developed 

model: split sample analysis in four studies, and cross validation in four studies. No 3D camera 

weight estimation system had a true external validation process. 
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Figure 2 Risk of bias traffic light plot and summary plot based on the Newcastle-Ottawa score. 

There were no studies with missing information or critical risks.  
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Camera technology and hardware 

The original Microsoft Kinect 1 camera was used in 7/14 (50%) studies, and the Microsoft 

Kinect 2 camera was used in 3/14 (21%) studies. A Siemens FAST 3D camera, a Siemens 

myExam 3D camera, and an Orbbec Astra camera were used in one study each (7%). The type 

of 3D camera used was not reported in two studies (14%). 

 

Fundamental approach used in the weight estimation methodology 

Multiple differences approaches were used to process 3D images and obtain a weight 

estimate from the depth data (see Table 2). Deep learning methods were used in the image 

preprocessing phase in 4/14 (29%) studies, and in the weight estimation phase in 9/14 (64%) 

studies. Most methods (9/14 (64%)) required no user input to facilitate the weight estimate 

calculations, with the exceptions of the methods of Pfitzner and colleagues which required 

gender as a manual input, and the method of Benalcazar et al which required information on 

clothing and hairstyle. 
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Authors 
What 3D camera data is used and what 
image preprocessing is used? 

How is weight estimate obtained from 3D camera 
data? 

Velardo 2012 

Biometric data measured from 3D image: 
height, arm length, arm circumference, 
waist circumference, leg length, leg 
circumference. 

A regression equation is used to estimate weight from 
the 3D camera-measured biometric input data. Gender 
is predicted from the biometric data (80%) accuracy. 

Nguyen 2014 
The “sideview shape” (or anterior body 
contour) depth data is extracted from the 
point cloud data. 

Height and sex are determined from the depth data. 
Height, sex, and depth data are then used in a support 
vector regression model to predict weight. 

Pfitzner 2015 
Point cloud data used to obtain 3D body 
surface area and body length. 

Body volume is calculated from the depth data. Using 
an assumed constant value for density (1.04 kg/m3), a 
weight estimate is then calculated from volume. 

Pfitzner 2016 
Point cloud depth data used as a source to 
extract ten shape parameters (features). 

An artificial neural network is trained to predict weight 
using ten extracted features. 

Benalzacar 2017 
A 3D image is used to create a 2D silhouette, 
from which 2D surface area is calculated. 

Both least mean square and artificial neural network 
methods are used to generate weight estimates. 

Pfitzner 2017 
Point cloud depth data used as a source to 
extract 23 shape parameters (features). 

An artificial neural network is trained to predict weight 
using 23 extracted features. 

Pfitzner 2018 
Point cloud depth data used as a source to 
extract 19 shape parameters (features). 

An artificial neural network is trained to predict weight 
using 19 extracted features. 

Bigalke 2021 
Point cloud data encoded into a k-
dimensional surface mesh using basis point 
sets. 

Deep learning used to estimate weight from point 
cloud mesh data. 

Dane 2021 

Point cloud encoded into 3D surface mesh. 
This image is segmented, and lengths and 
volumes of thorax, abdomen, head, arms, 
and legs calculated. 

Segmental lengths and volumes are used in a Bayesian 
Ridge regression model to estimate height and weight. 

Geissler 2021 Point cloud encoded into a 3D surface mesh. 

A virtual patient model, an “avatar” or digital twin is 
fitted into the depth data from a library of avatars with 
known volumes and weights. This avatar is adjusted 
iteratively to match the depth data. Weight is then 
estimated from the segmental volumes of the avatar. 

Mameli 2021 
Top view depth data of standing participants 
converted to point cloud data. 

Deep convolutional neural networks are used to obtain 
a weight estimate directly from the top view depth 
data. 

Naufal 2021 
A 3D image is used to create a 2D silhouette, 
from which 2D surface area and height is 
calculated. 

Simple regression is used to predict weight from 
silhouette area. 

Tamersoy 2023 

Unspecified features are extracted from the 
3D cloud data, based on segmental volumes. 
Feature extraction performed using an 
encoder–decoder deep network. 

Height and weight estimated in separate models using 
deep neural networks. 

Shahzadi 2024 

Unspecified features are extracted from the 
3D cloud data, based on segmental volumes. 
Feature extraction performed using an 
encoder–decoder deep network. 

Height and weight estimated in separate models using 
deep neural networks. 

Table 2 Analytical approach to total body weight estimation in adults. 
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Accuracy of weight estimates 

Unfortunately, only half of the studies (7/14 (50%)) provided comprehensive data on the 

performance of the weight estimation systems. Accuracy data (P10 – the percentage of 

estimates within 10% of actual weight) could be imputed in four additional studies. The 

accuracy data for each study is shown in Figure 3. Every study for which data was available 

exceeded the minimum acceptable accuracy standard of P10 >70% [10, 25]. 

 

In the four studies in which direct, paired comparisons were made against other weight 

estimation systems, the following findings were notable: firstly, the 3D camera systems were 

always more accurate than guesstimates by healthcare providers (four studies); secondly, the 

3D camera systems were always less accurate than participant self-estimates of weight (three 

studies). Comparative data was not available from the studies in which the 3D cameras 

achieved exceptionally high accuracy results. 

 

Figure 3 The accuracy data (P10 – percentage of estimates within 10% of actual weight) for 

each of the 3D camera weight estimation systems. The studies marked with an asterisk (*) 

identify studies for which P10 data was imputed. The red dashed line indicates the minimum 

acceptable performance threshold of P10 = 70%. 
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The suitability of 3D camera weight estimation systems for emergency and critical care 

There were 4/14 (29%) studies conducted in an environment designed to simulate an 

Emergency Department setting, and 5/14 (36%) studies conducted in, or with data from, a 

radiological suite. However, no study evaluated an estimation method during the provision of 

actual or simulated emergency care. 

 

LIMITATIONS 

There were several limitations to this review. Firstly, papers in the non-medical literature are 

less well indexed and searchable than in the medical literature. It is therefore possible that 

some relevant studies were missed. Secondly, the studies were from a very narrow range of 

geographical locations, which could limit the generalizability of the findings. Thirdly, the small 

sample sizes, the variable data reporting and statistical analysis, especially of subgroups of 

BMI, limited any comparisons between different 3D camera weight estimation systems. The 

need to impute data was also a limitation. Furthermore, few studies included a sufficiently 

diverse sample of participants with different ages, ethnic groups, height and weight ranges, 

and weight status (e.g., underweight, healthy weight, overweight, obese). 

 

DISCUSSION 

The current understanding of 3D camera-based weight estimation in adults, including its 

potential role during emergency care, has significant gaps. For example, when faced with a 

critically ill or injured patient in need of urgent weight-based drug therapy, but without any 

recorded weight, could a 3D camera system be used for estimating their weight? The 

significance of our review lies in its exploration of the currently available information on this 

topic. Our aim was to offer information and guidance to clinicians and researchers in this 

matter of important patient safety. The importance of the topic lies in the imperative for 

accurate of drug dosing: both treatment failure from underdosing and adverse events from 

overdosing can be significant threats to life. 

 

We identified and reviewed all the published literature on 3D camera weight estimation 

methods that could potentially be used during emergency medical care of adult patients. 

While some methods were primarily intended for nutritional assessment, others were 
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devised and intended to guide acute medical interventions (e.g., to guide dosage of 

thrombolytic therapy in patients with acute ischemic stroke).  

 

Quality of the studies 

Although a few studies had inadequate data reporting and statistical analysis, most of the 

studies were methodologically sound. This provided a good evidence basis from which to 

draw preliminary conclusions. The lack of true external validation studies was a significant 

limitation in the field of 3D weight estimation, however.  

 

Camera technology 

The studies in this review made use of several different types of 3D cameras: structured light 

systems (e.g., Microsoft Kinect 1, Orbbec Astra) and time-of-flight systems (e.g., Microsoft 

Kinect 2). These camera systems are relatively old and, in some cases, no longer 

manufactured. Newer cameras have native software to perform many image processing tasks 

automatically: intrinsic and extrinsic calibration to ensure accurate depth measurements and 

color-depth alignment; automatically correct lens distortion; generate 3D point clouds from 

depth data; convert depth images to 3D coordinates automatically; detect and track human 

skeletons in real-time; automatically detect and track objects or faces within the camera’s 

field of view; provide bounding boxes or other positional data for detected objects; apply 

noise reduction and smoothing filters to depth data; perform edge detection and other image 

processing tasks. These newer 3D cameras are, therefore, likely to be better than those 

already tested. Existing research relating to the cameras themselves has been sparse, and 

future work needs to evaluate the most appropriate hardware system for use for weight 

estimation and in potential clinical emergency medicine applications. Table 3 provides a 

description of the different types of 3D cameras. 
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Table 3 3D cameras used in the weight estimation systems. 

 
  

Type of camera with description 

Structured light 3D camera (Examples: Microsoft Kinect 1, Orbbec Astra) 
A structured light 3D camera works by projecting a known pattern of light (often a grid or series of parallel lines) onto an 
object. The pattern deforms when it strikes the surface of the object, and the camera captures this deformation. By 
analyzing the changes in the pattern, the system can calculate the distance to each point on the object's surface, creating a 
detailed 3D map of the object. This technique relies on triangulation, like how our eyes perceive depth, where the known 
pattern and its deformation help determine the depth information. 
 
Pros: non-contact measurement; high-speed point-of-care scanning; high accuracy; absolute safety. Cons: excessive 
sensitivity to external factors such as shadows or areas with multiple light sources; difficulty evaluating reflective or 
transparent materials, leading to loss of detail. 
 

Time-of-flight 3D camera (Examples: Microsoft Kinect 2, Xbox One, Kinect Azure, Orbbec Femto Bolt) 
A time-of-flight (ToF) 3D camera works by emitting a light signal (usually infrared) towards the object and measuring the 
time it takes for the light to travel to the object and back to the camera. This round-trip time is then used to calculate the 
distance to each point on the object's surface. By capturing this depth information across the entire field of view, the camera 
constructs a detailed 3D map of the scene. The principle is like sonar or radar but uses light waves instead of sound or radio 
waves. 
 
Pros: better than structured light cameras in almost every way, especially accuracy and speed; real time measurements; 
wide-working range; environmental adaptability; compact size. Cons: multipath interference; cost; reactivity to certain 
materials (e.g., very high or very low reflectivity surfaces) (like with structured light cameras). 
 

Stereoscopic 3D camera (Example: Intel RealSense D415) 
A stereoscopic 3D camera works by mimicking human binocular vision, using two cameras placed a fixed distance apart to 
capture images of the same scene from slightly different angles. By comparing these two images, the system can calculate 
the depth information for each point in the scene through a process called triangulation. The differences between the 
images (disparity) allow the system to determine how far away each point is, creating a 3D representation of the scene. This 
technique relies on the principles of stereopsis, which is how our brains perceive depth from the two slightly different views 
provided by our eyes. Most stereoscopic cameras are active systems, using infrared light to illuminate the field of vision. The 
additional light helps improve depth sensing, especially in low-light or textureless environments. They generally provide 
more reliable depth information in various lighting conditions and can work well in both indoor and outdoor environments. 
 
Passive pros: performs well in sunlight; cost effective. Passive cons: mediocre performance in low light; mediocre 
performance in “non-textured scenes”. Active pros: performs well in low light; performs well in non-textured indoor scene. 
Active cons: under sunlight and over long range, it is the same as passive stereo; IR projector adds to cost. 
 

LiDAR 3D camera (Example: Intel RealSense L515) 
A LiDAR (Light Detection and Ranging) 3D camera works by emitting laser pulses millions of times per second toward an 
object and measuring the time it takes for the pulses to reflect back to the sensor. By calculating the time it takes for the 
light to return, the system determines the distance to each point on the object's surface. This information is used to create a 
detailed 3D map of the environment. LiDAR systems typically scan the scene by sweeping the laser across the area or using 
multiple laser emitters to cover a wide field of view. This technique is highly accurate and medically safe. 
 
Pros: high accuracy; speed; can collect from a variety of locations; automated functionality. Cons: higher cost. 
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Analytical approach to weight estimation 

The analytical approaches to weight estimation have evolved significantly in successive 

studies over the last decade. The earliest system described the use of a 3D camera to obtain 

biometric data which could be used in an equation derived from an anthropometric dataset 

[11]. Subsequent studies used depth data to calculate total body volumes (and, later, 

segmental body volumes), which are converted to weight estimates using density constants 

[13, 14, 16, 17]. The most recent methodologies have used deep learning to match a digital 

twin from a library of trained images against the point cloud data of a captured 3D image [24, 

26]. This is perhaps the most flexible method, with the highest potential for accuracy. The use 

of deep learning both in image processing and in the weight estimation process has 

substantially improved the accuracy of weight estimates. 

 

Accuracy of weight estimation by 3D camera systems 

The best metric for evaluating the global performance of a weight estimation system is the 

overall accuracy (P10 and/or P20) [10]. In this review, each of the 11 weight estimation 

systems for which P10 data was available exceeded the minimum required accuracy threshold 

for a weight estimation system (P10>70%), as has been described previously [9, 25]. In fact, 

the lowest P10 was just below 80%, and four systems had a P10>95%. Overall, this 

performance data is remarkably good. To put this in context, a recent meta-analysis of weight 

estimation systems in adults showed that only patient self-estimates of weight approached 

this degree of accuracy but were inconsistent across studies [4]. In addition, self-estimates of 

weight were often not able to be provided by the sickest patients. In studies conducted 

during actual emergency medical situations, the number of patients unable to provide a self-

estimate may be as high as 70 to 85% [27]. The evidence is thus clear that methods of weight 

estimation that do not rely on self-estimates must always be available [4]. The data from this 

scoping review shows that 3D camera systems could potentially fulfil this role if their 

performance holds up in larger scale clinical studies. The limited subgroup data presented 

suggested that weight estimation accuracy may be maintained in patients with obesity, but 

that models might need to improve their performance in patients who are underweight. 

 

Other noteworthy factors were that accurate weight estimation was achieved with several 

different 3D cameras, as well as with different processing and analytical approaches. This 
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strongly supports the validity of the underlying principles, and predictable biological 

associations between body size, shape, and body weight. In addition, accurate weight 

estimation was even possible when patients were clothed or covered with light blankets [28].  

 

Appropriateness for use during ED or prehospital emergency care 

The appropriateness of 3D camera weight estimation systems for use during emergency care 

was not explicitly studied, although several of the studies specifically intended their systems 

to be used for this purpose [13, 14, 16, 17, 29]. There are several factors that make fully 

evolved 3D camera systems ideal for use during emergency medical care. Firstly, they are 

quick. A weight estimation can be calculated in less than one second, even with the use of 

deep learning systems in both the image preprocessing and the weight estimation algorithms 

[16]. Secondly, they are highly automated. The system can automatically select the optimum 

image to use for the processing (useful for when patients are moving or uncooperative). No 

user input is required for the weight estimation: sex and height, which have significant 

associations with weight, can be estimated using deep learning. Thirdly, the system can 

compensate for patient posture and patient movement. Irrespective of whether the patient is 

supine, prone, or lateral, an accurate weight estimate can be obtained. Finally, light clothing 

or coverings do not interfere with weight estimation, as 3D camera systems can “see beneath 

the covers” using deep learning digital twin-based analyses. 

 

Future directions 

This is an important and exciting field for future research. The 3D camera systems need to be 

studied in larger samples, including representative numbers of underweight and obese 

patients, as well as patients from diverse population groups, to ensure generalizability. These 

methodologies also need to be evaluated in clinical environments, including during 

emergency care. Likewise, the research needs to include children. Future innovations could 

also include the estimation of ideal body weight and lean body weight to allow for precision 

weight-based dosing for all patients. At present, establishing these weights is complex and 

requires additional measurements and calculations. They are thus not routinely employed by 

emergency physicians. 
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CONCLUSIONS 

The weight estimation accuracy of 3D camera-based systems represents a significant 

advancement in the field of automated measurement and analysis. These systems utilize 

precise depth sensing and 3D modeling to capture the volume and dimensions of objects or 

individuals with high accuracy. By integrating advanced algorithms and machine learning 

techniques, 3D camera-based systems can convert depth data into reliable weight estimates. 

When properly optimized, 3D camera-based weight estimation can achieve accuracy 

comparable to traditional weighing methods, providing a non-contact, efficient, and versatile 

potential solution for use during emergency care. However, it was clear from this review that 

additional, high quality prospective research is urgently needed in this field, as a matter of 

prioritizing patient safety during emergency care.  

 

  



 23 

REFERENCES 

[1] Cattermole GN, Wells M. Comparison of adult weight estimation methods for use 
during emergency medical care. J Am Coll Emerg Physicians Open. 2021;2(4):e12515. 
doi: https://doi.org/10.1002/emp2.12515 

[2] Wells M, Goldstein LN, Cattermole G. Development and validation of a length- and 
habitus-based method of total body weight estimation in adults. Am J Emerg Med. 
2022;53:44-53. doi: https://doi.org/10.1016/j.ajem.2021.12.053 

[3] Gerl H, Miko A, Nelson M, Godaire L. Are In-Bed Electronic Weights Recorded in the 
Medical Record Accurate? Medsurg Nurs. 2016;25(3):177-81, 201. doi: 
https://doi.org/none. 

[4] Wells M, Goldstein LN, Alter SM, Solano JJ, Engstrom G, Shih RD. The accuracy of total 
body weight estimation in adults - A systematic review and meta-analysis. Am J Emerg 
Med. 2024;76:123-135. doi: https://doi.org/10.1016/j.ajem.2023.11.037 

[5] Bailey B, Gaunt M, Grissinger M. Update on medication errors associated with 
incorrect patient weights. Pa Patient Saf Advis. 2016;13(2):50-57. doi:  

[6] Luscombe MD, Owens BD, Burke D. Weight estimation in paediatrics: a comparison of 
the APLS formula and the formula 'Weight=3(age)+7'. Emerg Med J. 2011;28(7):590-3. 
doi: https://doi.org/10.1136/emj.2009.087288 

[7] Luten R, Wears RL, Broselow J, Croskerry P, Joseph MM, Frush K. Managing the unique 
size-related issues of pediatric resuscitation: reducing cognitive load with resuscitation 
aids. Acad Emerg Med. 2002;9(8):840-7. doi: https://doi.org/10.1111/j.1553-
2712.2002.tb02175.x 

[8] Andrea C. Tricco, Erin Lillie, Wasifa Zarin. PRISMA Extension for Scoping Reviews 
(PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine. 
2018;169(7):467-473. doi: https://doi.org/10.7326/m18-0850 %m 30178033 

[9] Wells M, Goldstein LN, Bentley A. The accuracy of emergency weight estimation 
systems in children-a systematic review and meta-analysis. Int J Emerg Med. 
2017;10(1):29. doi: https://doi.org/10.1186/s12245-017-0156-5 

[10] Wells M, Goldstein L. Appropriate Statistical Analysis and Data Reporting for Weight 
Estimation Studies. Pediatr Emerg Care. 2023;39(1):62-63. doi: 
https://doi.org/10.1097/PEC.0000000000002862 

[11] Velardo C, Dugelay J-L, Pleari M, Ariano P. Building the space scale or how to weigh a 
person with no gravity. 2012 IEEE International Conference on Emerging Signal 
Processing Applications. 2012:67-70. doi: https://doi.org/10.1109/ESPA.2012.6152447 

[12] Nguyen TV, Feng J, Yan S. Seeing human weight from a single RGB-D image. J Comput 
Sci Technol. 2014;29(5):777-784. doi: https://doi.org/10.1007/s11390-014-1467-0 

[13] Pfitzner C, May S, Merkl C, Breuer L, Köhrmann M, Braun J, et al. Libra3d: body weight 
estimation for emergency patients in clinical environments with a 3d structured light 
sensor. IEEE international conference on robotics and automation (ICRA). 2015:2888-
2893. doi: https://doi.org/10.1109/ICRA.2015.7139593 

[14] Pfitzner C, May S, Nüchter A. Neural network-based visual body weight estimation for 
drug dosage finding. Medical Imaging 2016: Image Processing. 2016. doi: 
https://doi.org/10.1117/12.2216042 

[15] Benalcazar D, Benalcazar  D, Erazo A. Artificial neural networks and digital image 
processing: An approach for indirect weight measurement. 2017 IEEE Second Ecuador 
Technical Chapters Meeting (ETCM). 2017:1-6. doi: 
https://doi.org/10.1109/ETCM.2017.8247457 

https://doi.org/10.1002/emp2.12515
https://doi.org/10.1016/j.ajem.2021.12.053
https://doi.org/none
https://doi.org/10.1016/j.ajem.2023.11.037
https://doi.org/10.1136/emj.2009.087288
https://doi.org/10.1111/j.1553-2712.2002.tb02175.x
https://doi.org/10.1111/j.1553-2712.2002.tb02175.x
https://doi.org/10.7326/m18-0850
https://doi.org/10.1186/s12245-017-0156-5
https://doi.org/10.1097/PEC.0000000000002862
https://doi.org/10.1109/ESPA.2012.6152447
https://doi.org/10.1007/s11390-014-1467-0
https://doi.org/10.1109/ICRA.2015.7139593
https://doi.org/10.1117/12.2216042
https://doi.org/10.1109/ETCM.2017.8247457


 24 

[16] Pfitzner C, May S, Nüchter A. Evaluation of features from RGB-D data for human body 
weight estimation. IFAC-PapersOnLine. 2017;50(1):10148-10153. doi: 
https://doi.org/10.1016/j.ifacol.2017.08.1761 

[17] Pfitzner C, May S, Nuchter A. Body Weight Estimation for Dose-Finding and Health 
Monitoring of Lying, Standing and Walking Patients Based on RGB-D Data. Sensors 
(Basel). 2018;18(5). doi: https://doi.org/10.3390/s18051311 

[18] Bigalke A, Hansen L, Heinrich MP, editors. End-to-end learning of body weight 
prediction from point clouds with basis point sets. Bildverarbeitung für die Medizin 
2021; 2021: Springer. 

[19] Dane B, Singh V, Nazarian M, O'Donnell T, Liu S, Kapoor A, et al. Prediction of Patient 
Height and Weight With a 3-Dimensional Camera. J Comput Assist Tomogr. 
2021;45(3):427-430. doi: https://doi.org/10.1097/RCT.0000000000001166 

[20] Geissler F, Heiss R, Kopp M, Wiesmuller M, Saake M, Wuest W, et al. Personalized 
computed tomography - Automated estimation of height and weight of a simulated 
digital twin using a 3D camera and artificial intelligence. Rofo. 2021;193(4):437-445. 
doi: https://doi.org/10.1055/a-1253-8558 

[21] Mameli M, Paolanti M, Conci N, Tessaro F, Frontoni E, Zingaretti P. Weight estimation 
from an RGB-D camera in top-view configuration. 2020 25th International Conference 
on Pattern Recognition (ICPR). 2021:7715-7722. doi: 
https://doi.org/10.1109/icpr48806.2021.9412519 

[22] Naufal A, Anam C, Widodo CE, Dougherty G. Automated Calculation of Height and 
Area of Human Body for Estimating Body Weight Using a Matlab-based Kinect 
Camera. Smart Science. 2021;10(1):68-75. doi: 
https://doi.org/10.1080/23080477.2021.1983940 

[23] Tamersoy B, Pîrvan FA, Pai S, Kapoor A. Accurate and robust patient height and weight 
estimation in clinical imaging using a depth camera. Medical Image Computing and 
Computer Assisted Intervention – MICCAI 2023. 2023:337-346. doi: 
https://doi.org/10.1007/978-3-031-43987-2_33 

[24] Shahzadi I, Tamersoy B, Frohwein LJ, Subramanian S, Moenninghoff C, Niehoff JH, et 
al. Automated Patient Registration in Magnetic Resonance Imaging Using Deep 
Learning-Based Height and Weight Estimation with 3D Camera: A Feasibility Study. 
Acad Radiol. 2024;31(7):2715-2724. doi: https://doi.org/10.1016/j.acra.2024.01.029 

[25] Stewart D. Accuracy of the Broselow tape for estimating paediatric weight in two 
Australian Emergency Departments: University of Sydney; 2009 [Accessed 18 January 
2024,  Master of Biostatistics]. Available from: 
https://ses.library.usyd.edu.au//bitstream/2123/6265/1/Declan%20Stewart%20WPP%
20final.pdf 

[26] Tamersoy B, Pîrvan FA, Pai S, Kapoor A. Accurate and Robust Patient Height 
and Weight Estimation in Clinical Imaging Using a Depth Camera.  Medical Image 
Computing and Computer Assisted Intervention – MICCAI 2023. Lecture Notes in 
Computer Science2023. p. 337-346. 

[27] Garcia-Pastor A, Diaz-Otero F, Funes-Molina C, Benito-Conde B, Grandes-Velasco S, 
Sobrino-Garcia P, et al. Tissue plasminogen activator for acute ischemic stroke: 
calculation of dose based on estimated patient weight can increase the risk of cerebral 
bleeding. J Thromb Thrombolysis. 2015;40(3):347-52. doi: 
https://doi.org/10.1007/s11239-015-1232-4 

https://doi.org/10.1016/j.ifacol.2017.08.1761
https://doi.org/10.3390/s18051311
https://doi.org/10.1097/RCT.0000000000001166
https://doi.org/10.1055/a-1253-8558
https://doi.org/10.1109/icpr48806.2021.9412519
https://doi.org/10.1080/23080477.2021.1983940
https://doi.org/10.1007/978-3-031-43987-2_33
https://doi.org/10.1016/j.acra.2024.01.029
https://ses.library.usyd.edu.au/bitstream/2123/6265/1/Declan%20Stewart%20WPP%20final.pdf
https://ses.library.usyd.edu.au/bitstream/2123/6265/1/Declan%20Stewart%20WPP%20final.pdf
https://doi.org/10.1007/s11239-015-1232-4


 25 

[28] Bigalke A, Hansen L, Diesel J, Heinrich MP. Seeing under the cover with a 3D U-Net: 
point cloud-based weight estimation of covered patients. Int J Comput Assist Radiol 
Surg. 2021;16(12):2079-2087. doi: https://doi.org/10.1007/s11548-021-02476-0 

[29] Pfitzner C. Visual Human Body Weight Estimation with Focus on Medical Applications: 
Julius-Maximilians-Universitat Wurzburg; 2019 

 

https://doi.org/10.1007/s11548-021-02476-0

