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Abstract 

 

Background & Objectives: While exposure to fine particulate matter air pollution 

(PM2.5) is known to cause adverse health effects, its impact on postoperative outcomes 

in US adults remains understudied. Perioperative exposure to PM2.5 may induce 

inflammation that insidiously interacts with the systemic inflammatory response after 

surgery, leading to higher postoperative complications. 

 

Methods: We conducted a single center, retrospective cohort study using data from 

64,313 surgical patients living along Utah's Wasatch Front and undergoing elective 

surgical procedures at a single academic medical center from 2016-2018. Patients’ 

addresses were geocoded and linked to daily Census-tract level PM2.5 estimates 

preoperatively. We hypothesized that elevated PM2.5 concentrations in the seven days 

prior to surgery would be associated with an increase in a bundle of major postoperative 

complications. A hierarchical Bayesians regression model was fit adjusting for age, sex, 

season, neighborhood disadvantage, and the Elixhauser index of comorbidities. 

 

Results: Postoperative complications increased in a dose-dependent manner with 

higher concentrations of PM2.5 exposure, with a relative increase of 7% in the odds of 

complications for every 10ug/m3 increase in the highest single-day 24-hr PM2.5 

exposure during the 7 days prior to surgery. The association persisted after controlling 
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for comorbidities and potential confounders; our inferences were robust to modeling 

choices and sensitivity analysis. 

 

Discussion & Conclusion: In this large Utah cohort, exposure to elevated PM2.5 

concentrations in the week before surgery was associated with increased postoperative 

complications in a dose-dependent manner, suggesting a potential impact of air 

pollution on surgical outcomes. These findings merit replication in larger datasets to 

identify populations at risk and to define the interaction and impact of different 

pollutants. PM2.5 exposure is a potential perioperative risk factor and, given the 

unmitigated air pollution in urban areas, a global health concern. 

 

Keywords: air pollution, particulate matter, postoperative complications, surgery, 

PM2.5, perioperative medicine, health registry, clinical informatics 
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Introduction 

Short-term exposure to air pollution, especially fine particulate matter (PM2.5) is a well-

established risk factor for cardiovascular, respiratory, metabolic, and neurologic, 

morbidity, and mortality worldwide1-6. While regulatory action in high income countries 

on PM2.5 has resulted in reductions in exposure over the past several decades, the 

increasing prevalence of wildfires has threatened to undo this progress7 and portends to 

worsen globally with climate change. In addition, millions suffer globally under high 

levels of PM2.5, especially in megacities and the highly populated urban areas in Asia8,9. 

Despite the well-established risk to cardiopulmonary health, a knowledge gap remains 

regarding the impact of individual perioperative patient air pollution exposure (IPAPE) 

on postoperative complications. This phenomenon has thus far been described in only a 

small number of studies10-14 and none of which have examined major post-operative 

medical complications in the U.S. adult surgical population as a whole. 

 

Post-operative complications continue to be a significant source of morbidity and 

mortality after surgery15-18. For instance, cardiac complications after non-cardiac surgery 

continue to be a source of significant morbidity and costs, and a focus of research for 

risk stratification tools such as the Revised Cardiac Risk Index19,20. Pulmonary 

complications after surgery also continue to plague patients globally, with pulmonary 

complication rates in the US varying from 2 – 5%21. Likewise, infectious complications 

such as sepsis surgical site infections and urinary tract infections (UTI), while 

dramatically lower than in the pre-antibiotic era, continue to plague at risk populations in 

the perioperative period with national registry studies reporting a greater than 5% 
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incidence22. Despite the prevalence of these risks, commonly used risk calculators and 

models do not currently incorporate any contribution from air pollution. 

 

Mechanism: The overlap of air pollution systemic inflammation and the surgical 

stress response  

The mechanism that produces air pollution caused systemic inflation is well established. 

Small airborne pollutants enter through the lungs or skin23 and disseminate across the 

body. Such pollutants can be found in every organ system, including the lungs, brain, 

the heart, and gastrointestinal tract among others24. IPAPE may lead to an inflammatory 

response that compounds the surgical stress response (SSR)25,26, including pulmonary 

inflammation, endothelial dysfunction, thrombosis, and membranous nephropathy27-30.  

Several prior studies investigate the association between air pollution and adverse 

surgical outcomes, but were small and limited to specialized populations like organ 

transplant recipients12-14,31. A recent analysis of over 19 million patients in China found 

increased 30-day postoperative mortality associated with higher preoperative PM2.5 

concentrations at the city-level, especially among patients with preexisting 

cardiopulmonary conditions11. Likewise, a recent study from South Korea found a 

similar mortality risk among cancer patients12. However, both of these studies focus on 

mortality, not morbidity, and pollution levels in China far exceed those encountered in 

the U.S. or along the Wasatch Front in Utah, where this study took place.  The Korean 

study utilized annual exposure to air pollution, which contrasts with our acute exposure 

design. 
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Quasi natural experiment 

The Salt Lake metropolitan region of Northern Utah is an ideal setting to study acute 

pollution exposures. The unique mountain geography of the “Wasatch Front,” along with 

frequent wood burning, an in-land port, the intersection of two major interstate 

highways, and a national train depot, work together to produce the increased 

occurrence of extreme pollution events in the region, which dramatically impact ambient 

PM2.5 concentrations32-34. This results in inversion conditions during the winter, with 

warm air aloft the valley trapping cold air and pollutants in the densely populated valley 

below. Similarly, in the summer when wildfires throughout the American West dominate 

pollution exposures, the geological bowl produced by the intersection of multiple 

mountain ranges that comprise the Wasatch Front act as a shield that accumulates 

wildfire smoke in the metropolitan region. Due to the various air pollution events 

common to the region, the random exposure of patients to variable air pollution prior to 

surgery leads to a quasi-natural experiment as patients are scheduled for surgery 

regardless of air pollution considerations.   

 

Our objective is to estimate the impact of preoperative particulate matter (PM2.5) air 

pollution on a bundle of post-operative complications. We hypothesize that exposure to 

PM2.5 in the 7-day period prior to surgery results in increased risk of a bundle of post-

operative complications, controlling for comorbidities, confounders, and other well 

documented drivers of post-operative complications35,36 in a hierarchical Bayesian 

regression model. 
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Methods 

Study Design and Data Sources 

We performed a single center cohort analysis of the University of Utah local Multi-

Center Perioperative Outcomes Group (MPOG)37 electronic health registry, which was 

supplemented with data from the University of Utah Health’s Epic database for the 

period January 1, 2016 to December 31, 2018. We adhered to the Strengthening the 

Reporting of Observational Studies (STROBE) statement and principles38. The study 

was approved as Exemption Category 4 by the Institutional Review Board at the 

University of Utah, with IRB approval number 00142167. 

 

Study Population: Inclusion and Exclusion Criteria 

Extracting information from our Epic and local MPOG instances we included elective 

and non-emergent general anesthesia cases performed at University of Utah Health 

operating room locations on or after January 1, 2016 and on or before December 31, 

2018. We excluded cases with ASA 5 or 6, age <18 years, ICU transfers, cases 

performed without general anesthesia, as well as obstetric, electroconvulsive therapy, 

and bronchoscopy procedures. We only included cases where geocoding could match 

to an address. We limited our study area further to State of Utah counties along the 

Wasatch Front, as these counties episodically experience some of the worst particulate 

matter pollution in the US, and globally, due to inversion events where cold air becomes 

trapped along the mountain valleys, and are also impacted by wildfire smoke33,39. As 

such, we included only patients residing in the Counties of Salt Lake, Utah, Davis, 

Weber, Cache, and Box Elder, all of which are served by the University of Utah Health 
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locations in Salt Lake and Davis Counties of Utah. Further exclusions were made based 

on availability of the PM2.5 estimates and ability to assign Elixhauser Comorbidity scores 

(Figure 1). 

 

  

Fine Particulate Matter (PM2.5) Exposure 

Daily fine particulate matter with diameter <2.5μm (PM2.5) measurements were 

obtained from a public dataset of machine learning-derived daily PM2.5 concentration 

estimates at the County, Zip Code and Census Tract for 11 Western States 2008-

201840. These estimates utilize a combination of EPA and state-level ground sensors 

and satellite derived pollution estimates to provide validated and accurate 

concentrations of PM2.5 across the Western US. We then matched these estimates to 

individual patients at the census tract of their geocoded home address.  For our primary 

analysis, we utilized the maximum value of PM2.5 within 7 days of surgery, which 

included the day of surgery itself, for two reasons: (1) inversion and pollution events in 

northern Utah tend to be of short duration33, so as to ensure catchment of short-lived 

events without obscuring them with use of multiple day means, the maximum value in 

the window was used and (2) prior literature suggests pollution effects on inflammation 

and thrombosis may manifest over 1-4 weeks, but most acutely within days of the 

exposure event41,42.  
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Outcome Bundle: Major Post-operative Complications 

The primary outcome was a composite of major postoperative complications occurring 

during in-hospital stays after surgery as derived from their presence in the discharge 

diagnosis codes captured in Epic and our local MPOG database43-45, including: 

pneumonia, surgical site infection, urinary tract infection, sepsis, stroke, myocardial 

infarction, or thromboembolic event. We classified the presence of any post-operative 

complication into a binary outcome measure, with a positive (yes) being the presence of 

any complication, while negative (no) being that no complications were present. 

 

Covariates 

Multivariable models were adjusted for patient age, sex, year, season, County of 

residence, neighborhood deprivation, which is an index of poverty, race, education and 

income generated by the National Neighborhood Data Archive (NANDA)46, and the 

Elixhauser comorbidity index35,36. Elixhauser comorbidity index was utilized in place of 

the American Society of Anesthesiologists Physical Classification Score (ASA-PS) as it 

has demonstrated equivalent reliability in predicting post-operative outcomes47-49, and 

as it is a validated model that relies on documented comorbidities and can be calculated 

based on Epic data rather than subjective assessments at the bedside. We assigned 

Elixhauser comorbidity scores to all patients utilizing their EPIC records following 

standard assignment procedures as outline by Syed et al50. We hypothesized that 

complications would rise with increasing Elixhauser comorbidity index score.  
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Statistical Analysis 

We investigated the impact of PM2.5 exposure on postoperative complications 

(outcome) using a multivariable Bayesian model. We utilized a three-season exposure 

model to adjust for possible confounding factors, where summer months (Jun-Aug) 

were considered “fire season”, winter months (Dec-Mar) were considered “inversion” 

season, and spring months (Feb-May) were considered a baseline period. Thus, all 

months were included in the model. 

 

Model fit was by hierarchical Bayesian regression methods using Markov chain Monte 

Carlo algorithms, specifically Hamiltonian Monte Carlo with the No-U-Turn Sampler 

having more rapid convergence for high-dimensional models. Models were run with six 

chains, 2000 iterations and a 50% thinning of the initial estimates. For the beta 

regression parameters, we used two different weakly informative prior distributions to 

test for sensitivity of parameter estimates. These were the standard normal distribution 

N(0, 1) and the R2D2M2(0.25, 4, 05) prior51. The priors for the variance parameters with 

the exponential (exp(1)) and the R2D2M2(0.25, 4, 05) priors51. County was included in 

the statistical model as group effect.  

 

Convergence characteristics of the model estimation was assessed using the Gelman-

Rubin R-hat statistic, effective sample size (ESS), chain mixing, and chain 

autocorrelation. The posterior predictive distribution was used to generate a predictive 

accuracy metric as measured by leave-one-out cross-validation. Nested models were 

compared by expected-log-predictive-density. Model fits and parameter values were 
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explored using conditional effects, R2 coefficient of determination, and Bayesian 

hypothesis testing. 

 

Model results are presented as parameter estimates and odds ratio transformed values 

using means, medians, standard deviations, and 95% credible intervals (CI). A 95% 

credible interval has a 95% probability of containing the true parameter value. Model 

coefficients are also presented with forest plots to show the probability of direction. 

Analyses were conducted using R Statistical Software v4.4.1, and used  two software 

packages built on STAN (brms) and a Hamiltonian MonteCarlo based software to 

estimate Bayesian models52. Additional data and model description was done in the R 

language using the tableone, loo, mcmcplot, posterior, and tidybayes packages. 

 

Results 

Study Population Characteristics  

Our initial cohort of patients was n=96,302 for the study period of January 1, 2016 to 

December 31, 2018, as downloaded from DataDirect. After application of exclusion 

criteria detailed in Figure 1, a cohort of n=65,487 patients remained. Systematically 

missing PM2.5 values for one week prevented the creation of lag values for 1174 cases, 

thus reducing the analysis cohort to 64,313 patients. The majority of exclusions 

occurred from limiting the sample to the Wasatch Front counties (n=26,485, or 85.9% of 

exclusions). Median age was 51.58 years (SD=17.82) and a majority were female 

(55.3%). Most patients had low comorbidity burden, with a mean Elixhauser of 0.97 

(SD=1.8). A majority of patients presented from Salt Lake County (n=42,881), which is 
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the highest population county in the state. There was also a slight increase in total 

cases per year from 19,995 in 2016, to 21,950 in 2018. Table 1 presents baseline 

characteristics of patients.   

 

Post-Operative Complications  

The overall rate of the composite complication outcome was 4.3% (n=2,766 events 

among total cohort of 64,313); complication rates are presented in Table 2 broken down 

by population characteristics in a bivariate analysis (yes vs. no complications). The 

complication rate varied from a low of 3.77% in Davis County to a high of 6.30% in Box 

Elder County. While female patients dominated the cohort, they were less likely to 

experience complications than males (46% vs. 54%, respectively). As expected, 

complication rates increased with a greater Elixhauser comorbidity index, with those 

without complications having a mean index of 0.78 (SD=1.43) while those with 

complications had a mean index of 5.01 (SD=3.66) (p<0.001). We also observed a 

slight downtrend in complications over time, from 4.53% in 2016 to 3.93% in 2018 

(p=0.004). Complications did not vary significantly by season (p=0.843). Finally, we 

observed that when PM2.5 was dichotomized by the EPA daily limit, there was a 

significantly increased complication rate, from 4.3% (n=2676/60176) on days below 35 

ug/m3 PM2.5, to 6.2% (n=90/1371). The exposure to high pollution did not differ greatly 

between Counties, nor did it vary by season. These results are summarized in table 3. 
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Multivariable Exposure Analysis of PM2.5 impact on outcome bundle 

Model estimation satisfied usual criteria (Gelman-Rubin R-hat, ESS, posterior predictive 

error checks). There was no significant autocorrelation. The posterior density plots for 

model parameters indicate reasonable unimodal distributions. Our sensitivity analysis 

exploring both two weakly informative priors did not change the inferences or results. 

Our findings were robust to model parameters and model specifications. 

 

In our main Bayesian multivariable model, we found an increased risk of post-operative 

complications with increasing concentrations of PM2.5 with a regression coefficient 

estimate of 0.01 with a 95% CI (0.00-0.01). A Bayesian hypothesis test showed a 98% 

probability of an increasing odds of complications with increasing PM2.5.. In clinical 

terms there is a 7% increase in the chance of complication for every 10ug/m3 increase 

in the maximum PM2.5 observed in the 7-day preoperative period; that is the increase 

in the odds of a complication was 1.07, for every 10ug/m3 rise in PM2.5 concentrations. 

This dose dependent increase in exposure to a maximum PM2.5 in the 7-day 

preoperative period thus results in an over 22% (95%CI: 1%-49%) increase in the odds 

of a complication when PM2.5 exceeded 30 ug/m3 for any day in the 7-day preop 

window. This increase was noted in a curvilinear fashion, as presented in Figure 2.  

There was no apparent change in this relationship across seasons as we defined them 

for this region (fire, inversion, other), nor did the inclusion of neighborhood disadvantage 

alter the findings. The impact of PM2.5 was of greater magnitude among patients with a 

higher Elixhauser comorbidity score, especially for those with Elixhauser of 3 or greater 
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compared to those with Elixhauser <1, as shown in Figure 3. Overall the parameters in 

the model explained about 1/4th of the variance (R2 = 0.28). 

 

 

Discussion 

  

Summary of Findings 

In our single center cohort of over 60,000 patients undergoing elective surgery at an 

academic medical center near the Wasatch front in Utah, we found that increased 

exposure to PM2.5 in the 7-days prior to surgery was associated with significantly higher 

risk of postoperative complications, confirming our primary hypothesis. The findings 

were statistically highly significant, and the effect size is consistent with risk observed in 

the air pollution epidemiology literature53, providing further confirmation of our findings. 

There appeared to be a dose-response relationship, with over 20% increased risk of 

complications at the highest PM2.5 concentrations compared to low concentrations, with 

significant increase in risk above an apparent cut-off exposure of 35 ug/m3 (Table 3). 

This association and the cutoff were consistent across all patient age groups, with those 

with higher Elixauser Co-morbidity status appearing to have greater susceptibility to 

elevated PM2.5(Figure 3). Age, sex, County, year of procedure, neighborhood 

deprivation (a measure of social distress) and season appeared to have minimal 

influence on the association. We found that the rate our complication bundle decreased 

year over year, while the distribution of Elixhauser remained consistent, and the 

exposure to air pollution remained comparable between years.  
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Implications for clinical practice, research and policy 

To our knowledge, this is the first large-scale study demonstrating the acute impact of 

individual patient air pollution exposure on postsurgical inpatient outcomes (our 

complications bundle) in a large surgical patient cohort in an OECD country10,14. The 

implications are threefold; our study should inform: (1) Policy, demonstrating a 

potentially novel and unaccounted for susceptible population (surgery patients), (2) 

Individual patient scheduling decisions for high-risk patients (elevated Elixhauser index) 

and targeted mitigation (masks, indoor air filters), and (3) Further research into the 

pathophysiological mechanisms of healing after surgery in human and animal studies. 

 

Policy Implications 

While air pollution in some regions of the U.S. have improved dramatically since the 

1970s, improvements have often benefitted some groups over others. For instance, 

Black Americans are exposed to higher annual concentrations of air pollution containing 

fine particulate matter than their White counter parts54. Minority populations often face 

greater pollution burdens and may also be more susceptible to their health effects due 

to their lack of access to health services and lower income and educational status, 

which reduces accessibility to pollution information and knowledge54 and other forms of 

prevention. This problem tracks globally as well. Today, air pollution is considered a 

leading causes of health complications and mortality worldwide, especially affecting 

lower-income groups, who tend to be more exposed and vulnerable55. Consequently, 

the burdens presented in this research have policy implications for public health and 

contribute to the literature on health disparities across populations,  
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In addition, climate change is expected to increase the incidence of wildfire by 29% 

worldwide56, which will further burden urban and developing regions disproportionately. 

While these regions are already facing a growing severity of pollution impacts, this 

research suggests that the interaction of surgery and pollution will also lead to 

increasing medical and health burdens. For instance, in China where approximately 

10% of GDP57 is spent on the health effects of pollution, a 1% increase of PM2.5 

currently leads to a 2.942% increase in household healthcare expenditure58 and these 

numbers are expected to grow over the next ten years. Subsequently, developing 

states, global megacities, and urban areas in Asia are already faced with tough and 

costly choices that may lead to further sacrifices in human health. Economically, the 

impact of air pollution on surgery outcomes will further contribute to decreases in labor 

productivity for the patient and the family, and, therefore, a lower tax base for these 

communities. In addition, poor surgical outcomes lead to inefficient use of hospital 

resources, increases the costs of insurance for all, and maybe lead to long term welfare 

costs, especially where loss of life is concerned. When combined with the 

disproportionate health disparities, the scale of costs are dramatic for all major 

population areas. 

 

Scheduling and Targeted Mitigation 

Targeted mitigation efforts around the perioperative period may reduce complications 

attributable to PM2.5 exposure among susceptible patients. Surgical delay or protection 

from pollution during high-risk periods through use of indoor HEPA filtration systems 
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could be considered for patients with planned procedures (if they work indoors or from 

home) during seasonal inversion events or wildfire smoke conditions. Huang et al’s 

study from China11, though it focused on mortality, found a beneficial economic impact 

from rescheduling elective surgery cases in at-risk populations, in their case especially 

surgical oncology patients, during high pollution events. This sophisticated econometric 

study indicates that similar scheduling mitigation may be cost-effective in other global 

contexts. The implications for elective and non-urgent major surgery, especially during 

wildfire events, merit further study with multidisciplinary teams.  

 

Research implications and Future Directions 

Our findings lead to several new research questions. Our ability to identify high risk 

populations through sub-group analyses was limited due to sample size, and extension 

of our study to more years and more sites should help elucidate questions regarding the 

most vulnerable surgical populations. Additional outcomes should be studied to 

corroborate our findings and refine the impact of air pollution, incorporating outcome 

measures such as length of stay, mortality, and additional long- and short-term 

outcomes.  Ours and others future epidemiological studies should also guide and be 

balanced with animal models where more precise biochemical mechanisms can be 

uncovered. We are also concerned that social determinants of health might confound 

the association of small particle pollution with post-surgical outcomes and will study this 

association in subsequent investigations. Finally, while we did identify that the 

relationship with PM2.5 appeared to accelerate with higher concentrations of pollution, 
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formulating this exposure mathematically into a functional relationship will be a 

challenge for future research. 

 

Strength and Limitations 

This study has several strengths: 

1. The natural experiment present in this case due to the natural geography of Utah 

creates a unique strength to this study in that the same population is exposed to 

low and high concentrations of pollution, with the main variable of exposure being 

the essentially random timing of surgery.   

2. We examined a large cohort of nearly 100,000 patients over a 3-year 

contemporary period. We utilized precise PM2.5 estimates at the small census 

tract level and investigated the effects across the full range of PM22.5 

concentrations. We tested different exposure windows and adjusted for clinical 

comorbidities.  

3. Our outcome was a previously used and validated as a composite of serious 

complications encompassing major morbidity events. We specifically focused on 

major morbidity complications that are meaningful outcomes for quality 

improvement and risk mitigation efforts around elective surgery timing as well as 

patient optimization and that are plausibly related to IPAPE. We controlled for 

individual patient comorbidities with the validated and widely used Elixhauser 

comorbidity index.  
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Our study has some limitations:  

1. Exposure: While our study leveraged a large sample size, we estimated IPAPE 

based on a wildfire exposure model based on census tract locations. This model 

does not account for proximity to highways, industrial sources, or other sources 

of PM2.5 pollution that may be more chronic rather than episodic in nature. This 

model also used daily mean exposure estimates and lacked elevation in the 

model. Both factors could be biased in terms of missing peaks of exposure within 

24-hour windows and at different elevations, which could lead to further bias in 

exposure estimates. Additionally, we evaluated PM2.5 mass concentration and 

did not have data on particulate composition that may influence toxicity59. 

 

2. Mitigation and social determinants of health: We could also not control for in-

home filtration or other personal mitigation measures, which may be less 

available to those of lower incomes, non-English Language speakers, and in 

more socially vulnerable neighborhoods. Our preliminary results indicate minimal 

influence from these factors, and is an aspect we plan to investigate with future 

research.  

 

3. Population: Our cohort was predominantly white and treated at a single health 

system, although population-level variability in PM2.5 exposure was leveraged. 

We did not account for patient reported or EHR recorded race and ethnicity, 

which may confound our results. Despite the Salt Lake City region’s reputation 

for homogeneity, the metropolitan area is close to the median diversity index for 
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mid-size US cities. As a result, the findings of this study could be generalized to 

similar metropolitan areas, both larger and smaller, though the region is 

dominated by white and Hispanic populations. 

 

4. Analysis Type: As a retrospective analysis, unmeasured confounding is also a 

possibility, as is incorrect inferences due to the ecological fallacy, we discussed 

in detail elsewhere60,  though the use of residential address mitigates this in part. 

 

Comparison with the literature and proposed mechanistic pathways 

Our findings among over 60,000 patients along Utah’s heavily polluted Wasatch Front 

build on limited prior data on air pollution and postoperative outcomes. In the China 

analysis, city-level PM2.5 during the week prior to surgery was associated with 1% 

higher adjusted 30-day mortality per 10 μg/m3 increase in PM2.5
11. Their mortality 

association was stronger at higher PM2.5 levels (>100 μg/m3), similar to our findings. 

The few other studies that have examined adverse impacts of air pollution on 

perioperative outcomes have been limited in scope, methodologies and patient 

populations: A majority of these studies examined only organ transplants14, while a 

reasonable suspicion given their immunocompromised nature, they are a relatively 

small and high-risk patient populations thus limiting generalizability. Spencer-Hwang et 

al found that kidney transplants have an increased risk of fatal MI with increasing ozone, 

in a dose-dependent manner61, while studies of lung transplant recipients suggest that 

proximity to major roads can increase risk of chronic allograft dysfunction14. Recent data 

from California also suggests pediatric patients are susceptible to adverse pulmonary 
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events under anesthesia during wildfire events, especially those with reactive airway 

disease13.  

 

The 7-day PM2.5 exposure timeframe corresponds to the period when detrimental 

effects of pollution on inflammatory, thrombotic, and immune pathways implicated in 

surgical complications may become manifest62. For example, PM2.5 instigates systemic 

inflammation through release of IL-1, IL-6, and CRP as well as reactive oxygen 

species63,64. Resultant endothelial dysfunction promotes a prothrombotic state over 7-14 

days65.  Surgical trauma induces a similar acute phase response and 

immunomodulation27,28,66, which combined with the biological impact from recent 

pollution exposure could synergistically heighten complication risk.  

  

Taken as a whole, the literature is suggestive of adverse impacts from air pollution, and 

most notably fine particulate matter, on outcomes after surgery, though major gaps exist 

on which pollution source may be most harmful, which patient population may be most 

affected, and there is a need for better understanding of the pathophysiology of the 

mechanisms. We furthermore need to define interactions between specific pollutants, 

social determinants of health, and specific surgical disease processes, as well as which 

timing of exposure may be most detrimental.  Further studies should explore possible 

mitigation efforts, either pre-operatively or post-operatively, for example the offering of 

patient bedroom air filters or patient masks preoperatively, or the rescheduling of 

elective high-risk patients during extreme exposure events, like wildfires. 
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Conclusions 

In our single center cohort study, we found that elevated individual patient exposure to 

small particles in the week prior to surgery was associated with significantly increased 

postoperative complications. We demonstrated a dose-response relationship in all age 

groups and regardless of patient co-morbidity (as measured by the Elixhauser index) in 

a large cohort at an academic medical center in Utah. This clearly demonstrates a 

statistically significant impact of air pollution exposure on surgical outcomes, with an 

effect size consistent with the broader pollution literature53.  

 

We need to further define individual patient risk related to particulate matter pollution, 

the interaction with other pollutants and with social determinants of health. Our results 

cover a wide swath of surgical specialties and thus have implications for much of 

elective surgery performed in areas suffering from periodic acute pollution episodes, 

such as inversion events and much more commonly with climate change, wildfire 

smoke. At-risk patients may benefit from pollution mitigation and close monitoring in the 

postoperative period after procedures preceded by heavy pollution exposure. Overall, 

our findings highlight that limiting particulate matter exposure through clean air policies 

and practices can have wide-ranging health benefits beyond just cardiopulmonary 

disease, including reducing complications of surgery. 
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Figures 

Figure 1: Consort Flow Diagram: This figure details our initisal cohort downloaded from Data 

Direct from MPOG.org and the process of exclusion criteria applied to generate our final cohort. 

Of note, the greatest number of patients eliminated was when excluding those who lived outside 

of the Wasatch Front study area.  
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Figure 2:  Maximum PM2.5 in the 7 days pre-operatively (Lag0-Lag6) vs. 

Complication Rate. Complication rate is shown as absolute value, so here 0.04 = 4% 

complication rate. The PM2.5 values are the maximum observed in the 7-day preop 

window, in ug/m3, Lag 0 is day of surgery.  
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Figure 3: Complications vs. Maximum PM2.5 In the 7-day preoperative exposure 

window. PM2.5 is again presented in ug/m3. As noted, the overall complication rate for 

those with higher Elixhauser comorbidity index is higher at baseline, but rose more 

quickly with elevations in PM2.5. This response to PM2.5 continued to increase in 

magnitude as Elixhauser index increased.  
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Tables 

 Table 1: Cohort Characteristics by Year 

Factor Level Overall 2016 2017 2018 p-test SMD 

Sample Total   64313 19995 (31.1) 22368 (34.8) 21950 (34.1)     

Complications 

(%) 
No 61547 (95.7) 19089 (95.5) 21371 (95.5) 21087 (96.1) 0.004 0.02 

  Yes 2766 (4.3) 906 (4.5) 997 (4.5) 863 (3.9)     

Elix (mean 

(SD)) 
  0.97 (1.80) 0.94 (1.69) 0.99 (1.89) 0.99 (1.82) 0.002 0.022 

Sex (%) Male 28760 (44.7) 9031 (45.2) 9942 (44.4) 9787 (44.6) 0.295 0.01 

  Female 35553 (55.3) 10964 (54.8) 12426 (55.6) 12163 (55.4)     

Season (%) None 21626 (33.6) 6210 (31.1) 7591 (33.9) 7825 (35.6) <0.001 0.077 

  Fire 21677 (33.7) 7258 (36.3) 7258 (32.4) 7161 (32.6)     

  Cars 21010 (32.7) 6527 (32.6) 7519 (33.6) 6964 (31.7)     

Disadvantage 

(mean (SD)) 
  0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.06 (0.04) 0.502 0.007 

Age (mean 

(SD)) 
  

51.58 

(17.82) 

51.38 

(17.80) 
51.90 (17.80) 

51.43 

(17.87) 
0.003 0.02 

CountyName 

(%) 

Box 

Elder 
889 (1.4) 257 (1.3) 308 (1.4) 324 (1.5) 0.001 0.036 

  Cache 1572 (2.4) 439 (2.2) 533 (2.4) 600 (2.7)     

  Davis 9818 (15.3) 3073 (15.4) 3480 (15.6) 3265 (14.9)     

  Salt Lake 42881 (66.7) 13433 (67.2) 14861 (66.4) 14587 (66.5) 
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Table 2: Cohort characteristics dichotomized by presence of a complication 

Factor Level Overall No Yes Rate p-test SMD 

n   64313 61547 2766 4.30%   

Complications = 
Yes (%) 

  2766 (4.3) 0 (0.0) 
2766 

(100.0) 
 <0.001  

ProcedureYear 
Factor (%) 

2016 19995 (31.1) 19089 (31.0) 906 (32.8) 4.53% 0.004 0.066 

  2017 22368 (34.8) 21371 (34.7) 997 (36.0) 4.46%   

  2018 21950 (34.1) 21087 (34.3) 863 (31.2) 3.93%   

Elix (mean (SD))  0.97 (1.80) 0.79 (1.43) 5.01 (3.66)  <0.001 1.521 

Sex = Female (%)  35553 (55.3) 34281 (55.7) 1272 (46.0) 3.58% <0.001 0.195 

Season (%) None 21626 (33.6) 20708 (33.6) 918 (33.2) 4.24% 0.843 0.011 

  Fire 21677 (33.7) 20745 (33.7) 932 (33.7) 4.30%   

  Cars 21010 (32.7) 20094 (32.6) 916 (33.1) 4.36%   

Disadvantage1317 
(mean (SD)) 

 0.06 (0.04) 0.06 (0.04) 0.07 (0.04)  <0.001 0.22 

Age (mean (SD))  51.58 
(17.82) 

51.41 
(17.85) 

55.26 
(16.75) 

 <0.001 0.223 

CountyName (%) 
Box 

Elder 
889 (1.4) 833 (1.4) 56 (2.0) 6.30% 0.001 0.086 

  Cache 1572 (2.4) 1508 (2.5) 64 (2.3) 4.07%   

  Davis 9818 (15.3) 9448 (15.4) 370 (13.4) 3.77%   

  
Salt 
Lake 

42881 (66.7) 41022 (66.7) 1859 (67.2) 4.34%   

  Utah 5486 (8.5) 5218 (8.5) 268 (9.7) 4.89%   

  Weber 3667 (5.7) 3518 (5.7) 149 (5.4) 4.06%  
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Table 3: Cohort characteristics dichotomized by whether or not exposed to maximum of 

35ug/m3 in pre-operative period. 

Factor Level Overall 
Max PM2.5 > 

35 
Max PM2.5 

<35 
SMD 

n  64313 1461 62852  

Complications 
(%) 

No 61547 (95.7) 1371 (93.8) 60176 (95.7) 0.086 

 Yes 2766 (4.3) 90 (6.2) 2676 (4.3)  

ProcedureYear 
Factor (%) 

2016 19995 (31.1) 354 (24.2) 19641 (31.2) 0.247 

 2017 22368 (34.8) 678 (46.4) 21690 (34.5)  

 2018 21950 (34.1) 429 (29.4) 21521 (34.2)  

Elix (mean 
(SD)) 

 0.97 (1.80) 1.08 (1.87) 0.97 (1.80) 0.06 

Sex (%) Male 28760 (44.7) 674 (46.1) 28086 (44.7) 0.029 

 Female 35553 (55.3) 787 (53.9) 34766 (55.3)  

Season (%) None 21626 (33.6) 0 (0.0) 21626 (34.4) 1.024 

 Fire 21677 (33.7) 741 (50.7) 20936 (33.3)  

 Cars 21010 (32.7) 720 (49.3) 20290 (32.3)  

Disadvantage 
(mean (SD)) 

 0.06 (0.04) 0.07 (0.04) 0.06 (0.04) 0.284 

Age (mean 
(SD)) 

 51.58 
(17.82) 

50.70 (17.79) 51.60 (17.82) 0.05 

CountyName 
(%) 

Box 
Elder 

889 (1.4) 21 (1.4) 868 (1.4) 0.059 

 Cache 1572 (2.4) 46 (3.1) 1526 (2.4)  

 Davis 9818 (15.3) 240 (16.4) 9578 (15.2)  

 Salt 
Lake 

42881 (66.7) 957 (65.5) 41924 (66.7)  

 Utah 5486 (8.5) 119 (8.1) 5367 (8.5)  

 Weber 3667 (5.7) 78 (5.3) 3589 (5.7)  
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