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Abstract 9 

Objectives: This systematic review and meta-analysis aim to explore the performance of 10 
machine learning algorithms in predicting the risk of macrovascular complications among 11 
individuals with T2DM, specifically, the predictive capabilities of AI models in forecasting 12 
stroke, CVD, and PVD  in LMICs. 13 

Design: Systematic review and meta-analysis of studies reporting on AI prediction models 14 
for macrovascular complications in T2DM patients. 15 

Setting: The review included studies conducted in various healthcare settings, primarily from 16 
LMICs, upper-middle-income countries (UMICs), and high-income countries (HICs). 17 

Participants: 46 studies were included, with a total of 184 AI models. Participants were 18 
diverse in age, sex, and geographical locations, reflecting a broad range of healthcare 19 
settings. 20 

Interventions: The intervention analyzed was the application of AI models, including 21 
machine learning algorithms, to predict macrovascular complications such as stroke, CVD, 22 
and PVD. 23 

Primary and Secondary Outcome Measures: The primary outcome was the predictive 24 
performance of AI models, measured by the area under the receiver operating characteristic 25 
curve (AUROC). Secondary outcomes included subgroup analyses based on predictor types 26 
and an assessment of AI model applicability in low-resource settings. 27 

Results: Twelve included studies yielded 184 AI models with an overall AUROC of 0.753 28 
(95%CI: 0.74-0.766; I2=99.99%; p<0.001). For 80 models of cardiovascular outcomes, an 29 
AUROC of 0.741 (95%CI: 0.721-0.76; I2=99.78%; p<0.001) was obtained. Meanwhile, 25 30 
models of peripheral vascular disease and 38 models of cerebrovascular diseases obtained 31 
AUROCs of 0.794 (95%CI: 0.758-0.831; I2=97.23%; p<0.001) and 0.77 (95%CI: 0.743-32 
0.797; I2=99.73%; p<0.001) respectively. Subgroup analysis revealed that models with lab-33 
only predictors were superior to those with mixed or no-lab predictors. This signalled the lack 34 
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of AI capability for history-taking and physical examination data alone, primarily available in 35 
low-resource settings. 36 

Conclusions: Artificial intelligence is promising in predicting diabetes complications. 37 
Nevertheless, future studies should explore accessible features in low-resource settings and 38 
employ external validation to ensure the robustness of the prediction models. 39 

Keywords: artificial intelligence; Diabetes Mellitus, Type 2; Stroke; Cardiovascular 40 
Disease; Diabetic nephropathy & vascular disease; 41 

Word Count: 3685 words 42 

Article Summary 43 

Strengths and limitations of this study: 44 

• Inclusion of studies from both health-related and computer science databases (such as 45 
IEEE Xplore) ensured a comprehensive assessment of AI models for predicting 46 
diabetes complications. 47 

• The study analyzed a wide range of models from various countries with different 48 
income levels, enhancing the generalizability of the findings. 49 

• Detailed subgroup analyses provided insights into the impact of predictor types (lab 50 
vs. non-lab) and machine learning algorithms on model performance. 51 

• High heterogeneity across studies, stemming from variations in populations, data 52 
sources, and algorithms, was observed, reflecting a common issue in AI model 53 
performance meta-analyses. 54 

• A significant limitation was the lack of external validation in most included studies, 55 
which raises concerns about the generalizability and applicability of the AI models in 56 
diverse clinical settings. 57 

Key Messages 58 

● What is already known on this topic 59 
○ Artificial intelligence (AI) holds great potential for diabetes care. 60 
○ Previous meta-analyses have shown its promise in diabetes predictions, but 61 

none has been done for diabetes complication predictions.  62 
● What this study adds 63 

○ AI model performance aggregates provided promising results. 64 
○ Subgroup analyses exposed characteristics facilitating prediction 65 

performances, namely gradient-boosting algorithms, lab predictors, cross-66 
validation, and detailed missing data.  67 

● How this study might affect research, practice, or policy 68 
○ Albeit promising, ethical open-source models enabling multiple external 69 

validations and interdisciplinary collaboration are vital before broader 70 
implementation.  71 
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Introduction 72 

At least 500 million people were estimated to live with diabetes in 2021, of which 96% were 73 
type 2 diabetes mellitus (T2DM).1 Diabetes complications, such as stroke, cardiovascular 74 
diseases (CVD), and peripheral vascular diseases (PVD), increase the 5-year mortality, 75 
particularly for people living in low- and middle-income countries (LMICs).2 According to 76 
World Health Organization (WHO) estimates, 75% of CVD deaths occur in LMICs.3 As the 77 
global burden continues to rise, there is an urgent need for precise and early risk stratification 78 
methods to enable timely preventive measures for T2DM complications.4 In this context, the 79 
use of artificial intelligence (AI) and machine learning (ML) models has garnered significant 80 
interest for their potential to enhance predictive accuracy in the management of T2DM 81 
complications.5 6 These technologies promise to transform traditional healthcare approaches 82 
by leveraging vast amounts of data to uncover complex patterns and relationships that may 83 
not be readily apparent through conventional statistical methods.7 84 

Previous systematic reviews have primarily focused on the potential of AI in various aspects 85 
of diabetes care, particularly in predicting the onset of diabetes itself. For instance, recent 86 
meta-analyses have demonstrated the utility of AI in forecasting diabetes-related outcomes, 87 
yet none have comprehensively addressed the prediction of macrovascular complications 88 
associated explicitly with T2DM.8-10 This gap highlights the necessity of a focused 89 
investigation into how AI can be harnessed to predict complications like stroke, CVD, and 90 
PVD in patients already diagnosed with T2DM, including its deployment in low-resource 91 
settings.11 92 

This systematic review and meta-analysis aim to expdiabalore the performance of machine 93 
learning algorithms in predicting the risk of macrovascular complications among individuals 94 
with T2DM, specifically, the predictive capabilities of AI models in forecasting stroke, CVD, 95 
and PVD. Unlike earlier studies that may have concentrated on a single type of complication 96 
or generalized diabetes prediction, this review delves into a broader spectrum. Moreover, it 97 
provides an in-depth analysis of subgroup performances, comparing models with various 98 
predictor types, including lab-only and mixed predictors, and examining the implications of 99 
these differences. This review also highlights the challenges and limitations associated with 100 
current AI models, particularly their applicability in low-resource settings. By focusing on 101 
models that utilize widely available data and require minimal specialized input, the findings 102 
might guide future research or policy-making for AI tools that can be deployed effectively in 103 
regions with limited healthcare infrastructure. 104 

Materials and Methods 105 

Search Strategy 106 

This review was systematically developed, conducted, and reported following Preferred 107 
Reporting Items for Systematic Review and Meta-Analysis (PRISMA) checklist during 108 
writing our report as presented in the Supplementary Material 1.12 Our protocol has been 109 
registered at The International Prospective Register of Systematic Reviews (PROSPERO) 110 
under the reference ID CRD42023489167. 111 

We searched six databases (Scopus, PubMed, Embase, Wiley Online Library, IEEE Explore, 112 
and Google Scholar) and hand-searched for articles published between January 1, 2000, and 113 
November 30, 2023. Keywords employed were “type 2 diabetes”, “artificial intelligence,” 114 
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“prediction,” “complication,” “stroke,” “cardiovascular disease,” and “peripheral vascular 115 
disease,” as well as their MeSH terms and subsets combined with Boolean operators (see 116 
Supplementary Material 2). Search results were exported and deduplicated to Rayyan 117 
(www.rayyan.ai). 118 

Eligibility Criteria 119 

Each article was screened for the following PICOT inclusion criteria (see Supplementary 120 
Material 3) by at least two members independently (AN, ST, RH, SW):13 (1) subjects are 121 
adults aged 18 years old or above with type 2 diabetes mellitus, (2) intervention was the 122 
development and implementation of artificial intelligence, including but not limited to 123 
machine learning and deep learning, as opposed to classical statistical models, (3) outcome 124 
included prediction performances for stroke, cardiovascular disease, or peripheral vascular 125 
disease, (4) diagnostic or prognostic studies with a cohort or case-control design capable of 126 
exhibiting temporality, (5) used any actual medical dataset, and (6) published in English. We 127 
excluded studies that (1) had mixed populations with type 1 and/or prediabetes patients, (2) 128 
mainly explained theoretical models not tested on human subjects, (3) involved drugs as the 129 
intervention, (4) were reviews, framework developments, conference abstracts, proposals, 130 
editorials, commentaries, and qualitative studies, and (5) had irretrievable full-text. After 131 
titles and abstracts were screened on Rayyan, full-text screening was conducted to reconfirm 132 
eligibility. Discrepancies were resolved through consensus.  133 

Data Extraction 134 

A data extraction instrument was developed to tribulate several characteristics and details 135 
from all included studies, namely (1) author and year, (2) country of origin, (3) study design, 136 
(4) data source, (5) single or multi-centred, (6) population profile (including number of 137 
patients, age, and proportion of males), (7) predictors, (8) whether external validation was 138 
employed, (9) AI/ML algorithm, (10) outcome (stroke, cardiovascular disease, or peripheral 139 
vascular disease), (11) data period and follow-up, (12) data pre-processing details, and (13) 140 
internal validation setup. We also extracted the main outcome, model performance, in metrics 141 
such as F-measures, the area under the receiving operating curve (AUROC), c-statistics, 142 
sensitivity/recall, specificity, accuracy, and precision/positive predictive value.  143 

Risk of Bias Assessment 144 

Two members (AN, ST, DY, AK) independently assessed all included studies for risk of bias 145 
and applicability using the signalling questions on the Prediction Model Risk of Bias 146 
Assessment Tool (PROBAST).14 Differences were discussed to reach a consensus.  147 

Quantitative Data Analysis 148 

Studies reporting AUROCs as model performances were aggregated through a random-149 
effects meta-analysis with MedCalc, visualized with R. When neither the standard error, 150 
range, nor the standard deviation was disclosed, we ran the Hanley and McNeil’s approach15 151 
with R to approximate the standard error based on the AUROC, sample size, and number of 152 
complication cases.15-17 To assess publication bias, funnel plots and Egger’s regression were 153 
generated with MedCalc. Moreover, outliers, defined as models whose 95% confidence 154 
intervals did not overlap with the meta-analysis result, were excluded to generate sensitivity 155 
analyses. As substantial heterogeneity remains, subgroup analyses were conducted for 156 
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outcome types, external validation, algorithms, country income levels, risk of bias, missing 157 
data process details, cross-validation, and predictor data.  158 

Results and Discussion 159 

Study Characteristics 160 

A total of 2,513 studies were found during the initial search across seven databases (PubMed, 161 
Google Scholar, EMBASE, Scopus, IEEE Explore, and Wiley), in addition to hand 162 
searching. After removing 512 duplicate records, 2,001 records were screened for their titles 163 
and abstracts. Subsequently, 1,895 records were excluded, leaving 106 reports to be retrieved. 164 
Studies without available full texts were excluded, resulting in 95 studies being assessed for 165 
eligibility. Of these, 49 studies were excluded for various reasons: unsuitable population (17 166 
studies), irrelevant outcome (29 studies), unsuitable study design (2 studies), and text not in 167 
English (1 study). Ultimately, 46 studies were included in the systematic review, with 30 168 
included in the quantitative analysis. The selection process is depicted in Figure 1.   169 

Supplementary Material 4 depicts the overall characteristics of the study, including the 170 
participants and outcomes of each study. The systematic review encompasses 46 studies from 171 
various countries, which are categorized into three regions based on income levels: low-172 
middle-income countries (LMIC), upper-middle-income countries (UMIC), and high-income 173 
countries (HIC). Most data were sourced from hospital medical records in the respective 174 
countries, while some datasets were from specific trials or studies. Sample sizes from each 175 
study varied from around a hundred to hundreds of thousands, even surpassing a million. The 176 
predictors were divided into demographic, clinical, comorbidity, and laboratory groups. The 177 
algorithms were classified into several main categories, such as Random Forest, Neural 178 
Network, Gradient Boosting, Logistic Regression, Multi-task Learning, Cox-based methods, 179 
and others. The outcomes assessed included cardiovascular disease, cerebrovascular disease 180 
(stroke), and peripheral vascular disease. Information about technical aspects such as 181 
handling missing data, cross-validation, and external validation is also provided. 182 

 183 
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 184 

Figure 1: PRISMA flowchart of included studies. 185 

Risk of Bias 186 

The overall risk of bias, as summarised in Figure 2, indicates that 78% of the articles are 187 
rated as having a high or uncertain risk of bias, with specific distributions of 10 articles rated 188 
as low risk, ten as unclear risk, and 27 as high risk. The high risk of bias predominantly 189 
originated from the “outcome” domain due to the uncertainty in determining outcomes 190 
without knowledge of predictor information. Additionally, the “analysis” domain contributed 191 
significantly to the high risk, primarily due to inadequate handling of missing data or 192 
improper imputation methods and the low number of participants with the outcome. Nearly 193 
all studies (91%) showed no concerns regarding applicability concerns.  194 
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 195 

 196 

Figure 2: PROBAST summary of included studies 197 

Meta-Analysis of AUROCs 198 

All 184 models were pooled with a random effects model, obtaining an AUROC of 0.753 199 
(95%CI: 0.74–0.766; I2=99.99%; p<0.001), as shown through the forest plot in Figure 3. For 200 
80 models of cardiovascular outcomes, an AUROC of 0.741 (95%CI: 0.721–0.76; 201 
I2=99.78%; p<0.001) was obtained. Meanwhile, 25 models of peripheral vascular disease and 202 
38 models of cerebrovascular diseases obtained AUROCs of 0.794 (95%CI: 0.758–0.831; 203 
I2=97.23%; p<0.001) and 0.77 (95%CI: 0.743–0.797; I2=99.73%; p<0.001) respectively 204 
(Supplementary Materials 6–9). Subgroup analysis results are detailed in Table 1.   205 
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 206 

Figure 3: Forest plot of artificial intelligence areas under the operating curve (AUROCs) in predicting diabetes 207 
complications. 208 

Table 1: Subgroup analyses summary of Area Under the Receiver Operating Characteristics (AUROCs) of 209 
machine learning prediction models for diabetes macrovascular complications based on various characteristics. 210 
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Subgroups 

No. of 
prediction 

models 

Random-
effects 

AUROC 
Lower 

95% CI 
Higher 
95% CI 

Heterogene
ity (%) p-value 

All studies 184 0.753 0.74 0.766 99.99 < 0.001 

Outcome types 

Cardiovascular 80 0.741 0.721 0.76 99.78 < 0.001 

Peripheral 
vascular/diabetic 
foot 25 0.794 0.758 0.831 97.23 < 0.001 

Stroke / 
cerebrovascular 38 0.77 0.743 0.797 99.73 < 0.001 

Mixed 41 0.741 0.716 0.765 100 < 0.001 

External validation data 

Yes 56 0.725 0.708 0.742 97.85 < 0.001 

No 128 0.765 0.749 0.782 99.99 < 0.001 

Machine learning algorithm 

Cox-based 14 0.712 0.664 0.76 98.53 < 0.001 

Gradient boosting 37 0.789 0.761 0.817 99.56 < 0.001 

Logistic 
regression 23 0.731 0.711 0.752 99.55 < 0.001 

Multi-task 
learning 18 0.699 0.665 0.733 99.99 < 0.001 

Neural network 11 0.759 0.722 0.797 98.55 < 0.001 

Random forest 30 0.776 0.742 0.810 99.73 < 0.001 

Others 51 0.752 0.726 0.777 99.99 < 0.001 

Country income 

HIC 134 0.737 0.723 0.751 99.99 < 0.001 

LIC/LMIC/UMI
C 50 0.8 0.774 0.825 97.31 < 0.001 

Risk of bias 

Low/medium 110 0.780 0.765 0.794 99.76 < 0.001 

High 74 0.711 0.691 0.731 99.99 < 0.001 

Missing data process detailed 

Yes 114 0.775 0.76 0.79 99.66 < 0.001 

No 70 0.717 0.696 0.738 99.99 < 0.001 

Cross-validation 
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Yes 127 0.759 0.743 0.775 99.99 < 0.001 

No 57 0.739 0.717 0.761 98.88 < 0.001 

Predictor data 

No lab 29 0.714 0.696 0.731 100 < 0.001 

Lab only 3 0.837 0.784 0.89 0 < 0.001 

Mixed 152 0.759 0.745 0.774 99.98 < 0.001 

AUROC, Area Under the Receiver Operating Characteristic; CI, confidence interval; HIC, high-income 
countries; LIC, low-income countries; LMIC, lower-middle-income countries; UMIC, upper-middle-income 
countries 

Publication Bias 211 

We observed significant publication bias (Egger’s test p-value = 0.0261). Funnel plots of 212 
AUROCs against standard errors are presented in Supplementary Materials 10—14.  213 

Sensitivity Analyses 214 

We excluded outliers and retrieved 83 models with an overall AUROC of 0.746 (95%CI: 215 
0.742–0.75; I2=99.86%; p<0.001). This is comparable to the initial meta-analysis, showing 216 
robustness despite outliers. Similarly, outcome and predictor subgroup sensitivity analyses 217 
were conducted, with results in Table 2. Most notably, the peripheral vascular disease 218 
outcome subgroup retrieved an AUROC of 0.820 (95%CI: 0.798–0.842; p<0.001) with a 219 
heterogeneity of I2=0%. In the lab-only predictors subgroup, no outliers were identified.  220 

Table 2: Sensitivity analyses summary of Area Under the Receiver Operating Characteristics (AUROCs) of 221 
machine learning prediction models for diabetes macrovascular complications based on outcomes and 222 

predictors. 223 

Subgroups 

No. of 
prediction 

models 

Random-
effects 

AUROC 
Lower 

95% CI 
Higher 
95% CI 

Heterogene
ity (%) p-value 

All studies 83 0.746 0.742 0.75 99.86 < 0.001 

Outcome types 

Cardiovascular 38 0.741 0.733 0.749 80.99 < 0.001 

Peripheral 
vascular/diabetic 
foot 15 0.820 0.798 0.842 0.00 < 0.001 

Stroke / 
cerebrovascular 18 0.756 0.747 0.764 92.42 < 0.001 

Mixed 16 0.737 0.729 0.745 99.97 < 0.001 

External validation data 

No lab 15 0.710 0.703 0.718 99.90 < 0.001 
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Mixed 73 0.753 0.748 0.758 92.31 < 0.001 

Discussion 224 

Model Performance  225 

The pooled analysis of 184 models revealed a moderate level of performance, with an overall 226 
AUROC of 0.753. The models demonstrated varying performance based on the specific 227 
outcome types. The models achieved an AUROC of 0.741 for cardiovascular disease 228 
outcomes, while those predicting peripheral vascular disease and cerebrovascular disease had 229 
higher AUROCs of 0.794 and 0.77, respectively. Nanda R et al. (2022) generated an RF 230 
model with the highest AUC across all models of 0.918 to predict the risk of T2DM people 231 
developing diabetic foot ulcers.18 These results suggest that while the models are generally 232 
robust, their effectiveness can vary depending on the specific type of predicted macrovascular 233 
complication. 234 

Heterogeneity among the included studies was notably high, with I2 values approaching 235 
100% across most analyses. This substantial heterogeneity underscores the variability in 236 
model performance, which could stem from differences in study populations, data sources, 237 
predictor variables, and machine learning algorithms used. The high heterogeneity highlights 238 
the importance of context-specific factors in model performance and suggests that predictive 239 
accuracy may improve when models are tailored to specific populations and settings. The 240 
sensitivity analysis further supports the robustness of the findings. By excluding outliers, the 241 
overall AUROC was slightly reduced to 0.746, with heterogeneity remaining high 242 
(I2=99.86%). This consistency indicates that extreme values do not unduly influence the 243 
overall conclusions.  244 

Using these ML models for diabetes complication risk prediction might be helpful in 245 
considering several limitations in several existing conventional scoring systems. For 246 
example, the Framingham risk score, the most established risk assessment for heart disease, 247 
was developed for the general population and not specific for T2DM people.19 This risk score 248 
is designed for the general population and not specifically for people with diabetes. Risk 249 
scores developed for general populations may have lower discriminatory ability in 250 
individuals with diabetes.20 Other researchers have also developed heart disease risk 251 
assessment focus using ML models,21 with linear and logistic regression, and artificial neural 252 
networks (ANN) often used due to their simplicity and good predictive ability.  253 

Study settings 254 

Most studies (29; 63%) in our review came from research in HICs, followed by UMICs (9; 255 
19.6%) and LMICs (8; 17.4%). India accounts for the majority of studies from the LMICs, 256 
China dominates the UMICs, and the United States leads in the HICs. This might 257 
demonstrate that a country’s income level influences the number of artificial intelligence 258 
research and publications. A bibliometric study by Jimma (2023) mapped the publication of 259 
artificial intelligence in hea￼￼ Interestingly, the United States and China are included in 260 
the top nine countries, with the United States ranking first (41.84%) and China second 261 
(14.70%). Our study also identified that the most productive and prominent institutions 262 
funding AI research are from the United States, including the National Institutes of Health 263 
and the US National Library of Medicine. The disparity in the number of studies in non-high-264 
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income countries is due to limited healthcare resources. This is significant considering that 265 
80% of the global population resides in developing countries, where public health issues 266 
continue to rise due to rapid globalization and urbanization. Therefore, studies in developing 267 
countries are crucial, as the lack of data in these regions affects the applicability of findings 268 
to their specific contexts. Our study also identified that the most productive and prominent 269 
institutions funding AI research are from the United States, including the National Institutes 270 
of Health and the US National Library of Medicine. The disparity in the number of studies in 271 
non-high-income countries is due to limited healthcare resources. This is significant 272 
considering that 80% of the global population resides in developing countries, where public 273 
health issues continue to rise due to rapid globalization and urbanization. Therefore, studies 274 
in developing countries are crucial, as the lack of data in these regions affects the 275 
applicability of findings to their specific contexts. 276 

Predictors 277 

Our study collected 250 different predictors from the 46 studies and grouped them into four 278 
categories: demographic (13 predictors; 5.2%), clinical (50 predictors; 20%), comorbidity (33 279 
predictors; 13.2%), and laboratory (154 predictors; 61.6%). 42 (91.3%) studies included 280 
demographics, with the most used predictors being age, sex, and race. Demographics were 281 
included in 42 (91.3%) studies, with age, sex, and race being the most commonly used 282 
predictors. Clinical factors were included in 43 (93.5%) studies, featuring predictors like 283 
body mass index, blood pressure, and history of antidiabetic medication. Comorbidities were 284 
considered in only 23 (50%) studies, including hypertension, heart disease, and renal 285 
diseases. Laboratory parameters were utilized in 34 (73.9%) studies, with the most frequent 286 
predictors being HbA1c, high-density lipids, and cholesterol levels. 287 

Testing an existing ML model in other settings needs to account for the availability of 288 
predictor data. In low-resource settings, a model which requires laboratory parameters might 289 
not be difficult to test due to limited infrastructure. We created a subgroup analysis of models 290 
with no laboratory data (i.e., demographic, clinical, or comorbidity), with only laboratory 291 
data, and mixed. The AUROCs of lab-only and non-lab models are 0.837 and 0.714 292 
respectively. This means non-lab models were comparable and did not perform poorly 293 
compared to lab parameters.22 23 To improve performance, several strategies can be 294 
employed, such as hyperparameter tuning and exploring different algorithms that can 295 
optimize the model.24 296 

Model Development 297 

Most (n=29, 63.04%) included studies that utilized k-fold cross-validation as internal 298 
validation, similar to previous studies in diabetes risk prediction.25 With this method, the data 299 
is divided into k folds of equal size, and the model is subsequently trained and evaluated k 300 
times, with each evaluation utilizing a different fold as the test set. 25 This method is 301 
preferable compared to the hold-out approach as the whole dataset is utilized for 302 
development.6 25 However, like other internal validation methods (including bootstrapping), 303 
optimism should be adjusted for in the final model.6 304 

Only 21 (45.65%) studies reported how they handled missing data, although disregarding it 305 
may lead to imbalances, consequently introducing bias and misleading results. We found that 306 
models where missing data handling is described perform better. Reporting is essential as 307 
imputing different central tendencies (mean, median, or mode), as missing data could lead to 308 
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different outcomes for different data distributions.26 More recently, autoencoders and other 309 
imputation techniques can more accurately fill in incomplete data.27 28 These technologies 310 
would be beneficial for data pre-processing prior to AI model developments.  311 

Algorithm Types 312 

Interestingly, our meta-analysis found gradient boosting to be the most common ML 313 
algorithm utilized, with a leading AUROC model performance of 0.789, followed by random 314 
forests (AUROC 0.776). Boosting algorithms are similar to random forests as they are 315 
ensemble learning algorithms, with the advantage of avoiding overfitting.29 30 They also work 316 
well with categorical and numerical predictors. The third leading algorithm for performance, 317 
neural networks (AUROC 0.759), are comparatively less utilized by studies. As they fall in 318 
the deep learning category, despite their exceptional performance and capability to capture 319 
complex relationships, they are demanding computationally as they require large datasets.30 320 

External Validation 321 

The uniform decrease of model performance when validated in external datasets (AUROC of 322 
0.725) compared to internal validations (AUROC of 0.765) proved that development stages 323 
tend to overestimate, consistent with previous studies, such as non-AI prognostic model 324 
studies,31 or AI models for other purposes.32 33 Moreover, only 11 (23.91%) of our included 325 
studies conducted external validation, despite it being a crucial step in prediction models and 326 
prognostic research, providing the capability for clinical impact over different settings.34 327 
Contrarily, for some studies, such as those with small non-representative datasets or missing 328 
predictors, an external validation may not be worth it.35 Judging the overly optimistic nature 329 
of development models, diabetes complication prediction AI models may consider multiple 330 
external validations unless they are specifically made for local clinical settings.36 331 

Risk of Bias 332 

An analysis of the risk of bias in published studies reveals significant issues in their design. 333 
First, many studies exhibit a high or unclear risk of bias, often due to incomplete data and 334 
insufficient population samplings, such as the underrepresentation of diverse patient groups 335 
and inadequate consideration of critical predictors like age and laboratory results—issues 336 
with data extraction, including incomplete or inconsistent datasets, further compromise 337 
model accuracy and reliability. Variable follow-up intervals also affect the generalizability of 338 
results.37 339 

Second, The heavy reliance on internal validation with limited datasets from single centres is 340 
another concern, as studies lacking external validation show a higher risk of bias. In contrast, 341 
multi-center studies or those using national databases tend to have lower risk.38 The future 342 
success of machine learning prediction models hinges on high-quality, diverse training data. 343 
Proper data handling, capturing heterogeneity, and incorporating complexity are essential to 344 
enhance the models’ applicability and reliability.39 345 

Way Forward 346 

The application of AI and machine learning (ML) in predicting complications is in its early 347 
stages, with significant potential due to the increasing complexity and volume of data. Early 348 
and accurate diagnosis of macrovascular complications could enable timely treatment, but 349 
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this requires rigorous validation and scrutiny for effective outcomes. Enhancing reliability 350 
involves increasing external validation from diverse sources and promoting open-source 351 
development and interdisciplinary collaboration. While laboratory data enhances predictive 352 
accuracy, reliance on such data may limit the applicability of AI models in low-resource 353 
settings where lab facilities are not readily available. Future research should aim to improve 354 
the predictive power of non-lab models by incorporating advanced techniques for history-355 
taking and physical examination data.  356 

To ensure ethical and practical AI/ML use in healthcare, it is crucial to establish a secure 357 
framework focusing on data protection, secure handling, patient consent, and algorithmic 358 
transparency. Addressing biases and limitations is essential for broader implementation. 359 
Collaboration with policymakers, bioethicists, academics, and the broader community will be 360 
vital. Future research should prioritize validation and implementation strategies to improve 361 
the practical utility and trustworthiness of AI/ML models in clinical settings. Moreover, 362 
training healthcare professionals to interpret AI-driven predictions and incorporate them into 363 
patient management plans will further enhance the practical utility of these tools. Finally, 364 
continuous monitoring and updating of AI models with new data will ensure their ongoing 365 
accuracy and relevance in a rapidly evolving healthcare landscape. 366 

 367 

Strengths and Limitations  368 

With the numerous models included in the meta-analysis, we are confident that this study 369 
reflects the capability of artificial intelligence in predicting diabetes complications to date. 370 
Information technology literature, such as IEEE Xplore, yielded studies from computer 371 
science fields that would have been absent in health-related databases. The included studies 372 
were done in multiple countries of varying income levels. Additionally, the detailed subgroup 373 
analysis provides valuable insights into the factors affecting model performance, such as the 374 
type of predictors (lab vs. non-lab) and the machine learning algorithms used.  375 

Nevertheless, despite all relevant subgroup analyses explored, our meta-analysis has high 376 
heterogeneity, which can stem from differences in study populations, data sources, and 377 
machine learning algorithms used; such a phenomenon is commonly observed in published 378 
AI model performance meta-analyses.33 40 Only a tiny proportion of the included studies 379 
conducted external validation, a crucial step for assessing the generalizability of prediction 380 
models. This lack of external validation raises concerns about the models’ applicability in 381 
different clinical settings. We also only analyzed AUROCs in our meta-analyses as the most 382 
utilized parameter; consequently, we excluded studies using different model performance 383 
parameters. Finally, the reliance on laboratory data for superior predictive accuracy may limit 384 
the practical implementation of these models in low-resource settings, where such data may 385 
not be readily available. Future research should focus on enhancing the performance of non-386 
lab-based models to increase their applicability across diverse healthcare environments. 387 

Conclusions 388 

This review demonstrates the promising potential of machine learning (ML) models in 389 
predicting macrovascular complications among individuals with type 2 diabetes mellitus 390 
(T2DM). We reveal a moderate overall performance with significant insights into the factors 391 
influencing predictive accuracy. However, the high heterogeneity observed among the 392 
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included studies highlights the variability in model performance, emphasizing the need for 393 
tailored approaches based on specific populations and settings. Future studies should focus on 394 
developing robust non-lab-based models and conducting extensive external validations to 395 
improve the applicability of AI models in diverse clinical settings, especially in low-resource 396 
environments. Ultimately, the successful integration of AI and ML models in predicting 397 
diabetes complications will require interdisciplinary collaboration, ethical considerations, and 398 
ongoing validation to ensure their reliability and effectiveness in real-world clinical practice. 399 
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