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Abstract 
 
Although pneumococcal conjugate vaccines (PCVs) have greatly reduced the incidence of 
invasive diseases caused by vaccine-targeted serotypes (VT) of Streptococcus pneumoniae, 
vaccine impact may be eroded by the increase in rates of disease caused by non-vaccine 
serotypes (NVT) – a phenomenon known as serotype replacement. Here, we investigated the 
effect of social contact patterns on the dynamics of vaccine impact and serotype replacement 
in carriage. 
  
We developed a neutral, age-structured, susceptible–colonized (S–C) model incorporating VT-
NVT co-colonization and childhood immunization with PCVs and verified it against real-world 
carriage data. Using empirically derived contact matrices from 34 countries, we assessed the 
impact of contact patterns of different age groups on the time-to-elimination, here defined as 
the time taken for the proportion of VT among circulating serotypes to drop to 5% of the pre-
PCV level. Finally, we quantified the contribution of various parameters—such as vaccine 
efficacy, coverage, immunity waning, and population susceptibility—to the dynamics of VT 
elimination.  
  
Our model recapitulated the observed prevalence of carriage of VTs observed in the real-world 
data and showed that varying the contact structure alone led to different time-to-elimination 
(range: 3.8 – 6 years). We found that higher total contact rate and assortativity in children under 
5 were key factors in accelerating VT elimination. In addition, higher vaccine efficacy and 
coverage, and slower immunity waning led to shorter time-to-elimination.  
  
These findings illuminate the mechanisms controlling the dynamics of vaccine impact and 
serotype replacement and may help predict the impact of the higher-valency PCVs in 
communities with different contact patterns. 
  
KEYWORDS: social contact, pneumococcal carriage, Streptococcus pneumoniae, vaccine 
impact, serotype replacement  
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Introduction 
  
Streptococcus pneumoniae is one of the five leading pathogens for the estimated 7.7 million 
bacteria-associated deaths globally [1]. The first several generations of pneumococcal 
conjugate vaccines (PCVs) have reduced invasive pneumococcal disease (IPD) substantially 
in all age groups [2]. However, the reduction in rates of disease caused by vaccine-targeted 
serotypes of pneumococci (VT) was partially offset by an increase in rates of disease caused 
by non-vaccine-targeted serotypes (NVT) [3,4]. This phenomenon, known as “serotype 
replacement”, occurred because PCVs targeted a subset of the 100 identified serotypes [5], 
reducing the fitness of VT and changing the competitive balance between VT and NVT [6,7]. 
Nasopharyngeal carriage is a prerequisite for pneumococcal diseases, and the reduction in 
carriage in immunized children leads to indirect protection of unvaccinated children and adults 
[8]. Likewise, serotype replacement in carriage may erode the population-level impact of PCV 
and thus demands public health attention.  
 
Observed serotype replacement in diseases was initially more pronounced in the UK than in 
the US, for which multiple possible explanations have been suggested: the distribution of risk 
factors, the vaccination schedule and coverage, and the pre-PCV composition of circulating 
serotypes [9]. While replacement in diseases is partial, replacement in carriage is almost 
complete, and it occurs faster in some populations than others [3,10,11]. However, the 
mechanisms driving such variation remain unclear. One potential determinant for the serotype 
replacement dynamics is the social contact structure in a population. Carriage studies have 
shown that social contact with preschool-age children is associated with higher prevalence of 
pneumococcal carriage [12,13]. While social contact structures are thought to be major drivers 
of infectious disease dynamics [14], there have not been studies investigating the effect of 
social contact structure on the dynamics of vaccine impact in pneumococcal carriage. 
Addressing this knowledge gap can elucidate the potential mechanisms controlling the 
dynamics of vaccine impact and serotype replacement and may help predict the impact of the 
higher-valency PCVs in communities with different contact patterns. 
 
In this study, we developed a mathematical model parameterized with empirical data to 
simulate the dynamics of serotype changes after PCV introduction (Figure 1). Using inferred 
contact matrices from the literature, we interrogated the impact of social contact patterns on 
the trajectory of VT carriage decline and increases in NVT carriage, and quantified the effect 
of key parameters such as vaccine efficacy (VE) and population susceptibility (Figure 2). Our 
findings showed that variations in social contact structure alone could lead to different time-
to-elimination. We found high association between the contact pattern features in children 
under 5 and time-to-elimination. More broadly, our findings highlight the need to consider 
social contact structure when assessing the impact of vaccines.  
 
Results 
 
Real-world parameter sets allow the model to reproduce observed VT-carrier prevalence 
in children 
 
We formulated a deterministic, Susceptible–Colonized model that simulates the transmission 
of VT and NVT carriage before and after the introduction of PCVs. The model was an instance 
of neutral null models proposed by Lipsitch et al. for multistrain pathogens [15]. A key property 
of these models is the lack of a stable coexistence equilibrium, so that any initial level of 
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coexistence will be maintained over time for identical strains. Hence, these models do not 
contain hidden mechanisms that artificially promote stable coexistence. 
 
In general, the simulations using location-specific parameter sets (Table 2) captured the 
observed dynamics of VT-carrier prevalence in children in the post-PCV era in the UK, Alaska 
(US), and Massachusetts (US), and with some discrepancy, in France, where the observed VT-
carrier prevalence declined more rapidly than in the simulation (Figure 3). The VT-carrier 
prevalence in the pre-vaccine era was higher in France (43.9%, 95% CI 38.4–49.4%) [16] and 
the UK (31.9%, 28.1–36.1%) [17] than in Alaska (20%, 15.7–24.7%) [18]. For Massachusetts, 
the VT-carrier prevalence was 9.7% half year after vaccine introduction [19]. In all locations, 
the rapid decline in VT-carriers immediately after vaccine introduction was followed by a 
slower decline as VT-carriers became less prevalent. 
 
The time-to-elimination was predicted to be shortest in children aged 1-5 
 
We defined time-to-elimination as the duration between vaccine introduction and the time point 
when replacement was considered complete (see Methods). Using contact matrices derived 
from census and survey data in 34 countries [20], our transmission model produced variable 
time-to-elimination, ranging from 3.8 to 6 years in newborns, which was a fully unvaccinated 
age population and thus reflected the indirect effect of PCV introduction. The time-to-
elimination in adults was similar to that in age 0 (Figure 4). In contrast, the time-to-elimination 
was the shortest in children of age 1 and above until age 5 in most countries and until age 10–
11 in Ireland, the Netherlands, and the US. This finding corresponded well with the observation 
that PCV impact could be observed earlier in children than in adults [21], which is likely due 
to children of these ages having received the vaccine themselves and benefiting from both 
direct and indirect protections. They were also the age populations with the highest VT-carrier 
prevalence (Supplementary Figure 4) and contact rate (Figure 5A).  
 
In the sensitivity analyses, we considered two scenarios: (1) a lower prevalence of carriers at 
age 0 due to the time lag from birth to first pneumococcal acquisition, and (2) a higher 
prevalence of carriers in all ages to simulate settings with higher pneumococcal burden 
(Supplementary Figure 4). The results remained similar (time-to-elimination range: 4.2–7.1 
years, 4.4–6.9 years).  
  
Time-to-elimination was highly dependent on contact patterns in children under 5 
 
To delineate the effect of mixing patterns in different age groups, we looked at two age group-
specific social contact features that may be important for respiratory infection transmission 
[22]: contact rate (total daily contacts) and assortativity (fraction of within-group contact). 
 
Across countries, the contact rate increased from children under 5 (0–4y) to peak around 
school-age (5–9y) and teenage years (10–19y), and declined towards older age (65–84y) 
(Figure 5A). In general, assortativity tended to be the lowest in children under 5. The change 
of assortativity with age was more variable than that of contact rate across countries, and we 
noted four major patterns (Figure 5B). In some contact matrices (e.g., Australia, China, India, 
Japan, USA), the fraction of assortative contact increased with age, reaching the peak among 
teenagers, and either remained high (e.g., Australia, Japan, USA) or declined (e.g., China, 
India) in adulthood. In other contact matrices (e.g., Canada, South Africa), assortativity were 
similar from birth until teenage and then either remained (e.g., Canada) or declined towards 
older age (e.g., South Africa). 
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In our simulation, we assumed children under 5 had the highest prevalence of carriers based on 
a systematic review [23]. However, this age group bore lower contact rates than the other age 
groups (Figure 5A). In contrast, age groups with higher contact rates (5–39y) tended to have 
lower carriage prevalence (Figures 5A, Supplementary Figure 4). 
 
A plot of simulated time-to-elimination against contact rate and assortativity revealed a strong 
negative correlation between the contact patterns and time-to-elimination in children under 5 
but not in other age groups (Figures 5C, Supplementary Figure 8). Using a generalized linear 
model (GLM), we found that contact rate and assortativity in children under 5 explained most 
of the variability in the simulated time-to-elimination (R-squared of 0.95). Both features 
accelerated reduction of VT (Figure 5D): one standard deviation of increase in total contact 
rate and fraction of assortative contact shortened time-to-elimination by 5.2% (95%CI 3.7–
6.7%) and 7.7% (95%CI 6.3–9.2%) respectively.  Hence, these two features of social contacts 
in children under 5 explained a large part of the variability in time-to-elimination, highlighting 
the key role of this age group in the transmission dynamics of pneumococcal carriage.     
 
 
Higher vaccine efficacy and coverage and slower waning of vaccine immunity accelerate 
time-to-elimination 
 
To investigate the effect of key parameters on time-to-elimination, we varied one parameter at 
a time and measured the simulated time-to-elimination using a subset of 7 contact matrices 
representative of all the contact matrices from [20]. The key parameters tested were VE against 
carriage acquisition, vaccine coverage in the target age group (1-year-old), waning rate of 
vaccine immunity, the initial proportion of VT- and NVT-carriers, and population 
susceptibility to carriage acquisition (with 3 levels considered: high, medium, or low). Table 1 
shows the list of parameters in the model. 
 
Among the key parameters studied, vaccine factors resulted in the most prominent changes in 
time-to-elimination. When vaccine coverage reached 90%, using a highly efficacious vaccine 
(VE=77%) led to a 1.9–2.6-year reduction in time-to-elimination compared with a less 
efficacious vaccine (VE=33%) (Figure 6A). At lower coverage (50%), VT elimination was 
slower (5.1–7.8 years vs. 3.8–6 years in 90% coverage), and the same increase in VE caused a 
greater reduction in time-to-elimination (Supplementary Figure 5). In addition to no waning, 
we tested various durations of vaccine-conferred immunity and found that rapid waning 
(immunity duration of 3 years) slowed elimination by 0.5–1.6 years compared with slow 
waning (immunity duration of 10 years) (Figure 5B). 
  
Given a fixed pre-PCV total pneumococcal carriage, increasing the initial proportion of VT 
among colonizing serotypes (quantity 𝐹, see Methods) by changing initial VT:NVT:Co-
carriers ratio slowed elimination slightly (Figures 6C, Supplementary Figure 6), while 
maintaining 𝐹 led to constant time-to-elimination (Supplementary Figure 7). 
  
To vary population susceptibility, we changed the age-specific susceptibility parameter 𝛽(") by 
±20%.  As expected, the total pneumococcal carriage pre-PCV increased with population 
susceptibility. However, the predicted effect of this parameter was moderate: transitioning from 
low to high population susceptibility resulted in 0.6–1.8 years longer time-to-elimination. This 
result may be explained by the fact that, for higher total carriage, more circulating VT had to 
be replaced (Figure 6D).  
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In summary, of all the parameters tested, the vaccine parameters had the strongest impact on 
time-to-elimination, while the other parameters had a more moderate effect. This result 
highlights the need for accurate estimates of PCVs properties to predict the time scale of VT 
elimination in a target population.  
 
Discussions 
 
The main goal of this study was to assess the effect of social contact structure on the impact of 
PCVs. To do so, we designed a realistic model of pneumococcal carriage transmission, 
parameterized based on empirical data and the best available social contact matrices in different 
regions worldwide.  Our results show that heterogeneity in contact structure alone may lead to 
a range of time-to-elimination and thus sensitively affect the impact of PCVs. In addition, they 
highlight the key role of contact features in children under 5 in VT elimination and provide 
new insights into the mechanisms of VT elimination. More broadly, these findings identify 
social contact structure as a new key variable affecting vaccine impact, with potential 
implications beyond PCVs.  
 
Our model predicted a range of time-to-elimination (3.8–6 years) that is consistent with the 
literature [24–26], in support of the WHO’s recommendation that 5 years of post-PCV data are 
necessary to assess pneumococcal serotype replacement [27]. The modeled time-to-elimination 
in our study was the shortest among vaccinated age groups, who had the most social contacts, 
reflecting combined direct and indirect effectiveness, in contrast to age 0, who benefited from 
indirect effectiveness only (Figure 4).  This finding aligns with the reported direct and indirect 
effects of PCV on carriage [10].              
 
Different features of a contact matrix can have different effects on infectious disease dynamics. 
For example, assortativity, a well-studied feature measuring the extent of preferential mixing 
of individuals within the same demographic stratum, was shown to drive the spread of HIV 
infections differently in groups with different risks [28]. Another widely used feature is the 
number of social contacts, which was suggested as the main factor that explained the higher 
COVID rates among older adults in Italy [22]. We investigated these two features in our study 
and observed that the total contact rates in all countries followed a similar trend, with lower 
contact rates in extreme ages and a peak in the adult age groups (20–64y); contrastingly, there 
was a much higher variability in mean assortativity across countries. We found both features 
in children under 5 to be significant drivers for shorter time-to-elimination, indicating children 
under 5 as the key age group in driving the serotype replacement dynamics, despite having a 
lower contact rate than other age groups. This finding echoes the evidence that children under 
5 are key for pneumococcal transmission [29].  
 
Intuitively, higher total contact rates would speed up the transmission dynamics and shorten 
time-to-elimination. The effect of assortativity can be explained by the high carriage prevalence 
in this age group. Children under 5 had the highest carriage prevalence, so a more assortative 
contact in this age group would promote the within-group transmission. In general, infection 
spreads faster for a high-risk group with assortative mixing because contacts with low-risk 
groups slow down the transmission dynamic [28]. These findings point to the vital role of 
contact patterns in the high-prevalence groups in infection transmission and can be the basis of 
infection preventive strategies.   
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In addition to social contact structure, we found vaccine factors to be the most influential 
parameters in the serotype replacement dynamics. This finding is consistent with the 
epidemiological evidence that locations with high vaccine coverage saw rapid carriage 
replacement [24]. We also found that rapid waning led to longer time-to-elimination. 
Furthermore, initial VT:NVT:Co-carriers ratio and population susceptibility had slight to 
moderate effects. Given the same overall carriage, initial VT:NVT:Co-carriers ratio only 
affected the time-to-replacement if the proportion of VT among circulating serotypes, 𝐹, was 
changed: higher 𝐹 led to a slightly longer time-to-elimination. The time-to-elimination was 
also longer in a more susceptible population whose overall carriage is higher. These results 
demonstrated that when the circulating VT burden is higher, it takes longer for replacement to 
be complete. 
 
Our study has several limitations. When simulating the VT-carrier prevalence in children using 
location-specific parameter sets and considering the uncertainty in VE against colonization, 
our model captured the patterns in the observed data in the UK, Alaska (US), Massachusetts 
(US), but, with some discrepancy in the initial post-PCV era, in France. This discrepancy 
potentially stemmed from the partial uptake of PCV in the private market, reaching a vaccine 
coverage of over 20% in the year before vaccine introduction in our simulation [30]. In our 
model, we did not consider seasonal fluctuations in contact rates and assortativity, which could 
affect the transmission of infections [31,32]. How this biased the estimated time-to-elimination 
depends on whether holidays increase the total contacts considering the change in both inter-
age and intra-age contacts. Most of the contact matrices used in this study came from high-
income countries, limiting our findings' generalizability. While there were published contact 
matrices for more countries, the ones used in our study offer the best age resolution to date. 
The variation of contact patterns across geographic locations and income settings is expected 
to be larger than observed in this study, and including them in future studies can help elucidate 
the phenomenon observed outside high-income settings. For instance, in high transmission 
settings, the pneumococcal reservoir may involve a wider age group, including school-age 
children [29]. Given the evidence of a higher extent of serotype replacement in indigenous 
children in Fiji [33] and in rural areas in Nigeria [34], future studies should explore further how 
contact patterns in sub-populations within the same country influence serotype replacement. 
 
Despite these limitations, our study demonstrated how to combine contact matrices and 
mathematical modeling to unravel the dynamics between the host, the pathogen, and a public 
health intervention. The strengths of our study included using a neutral model without a hidden 
mechanism that promotes the co-existence of VT and NVT, which reduced bias, and using 
contact matrices of high age resolution, which allowed us to differentiate the transmission 
dynamics in every year of age. In addition, for parameters with variable estimates, we based 
our assumptions on non-linear models fitted to extracted data from observational studies. In 
conclusion, our findings demonstrate that, as for other vaccine-preventable diseases, social 
contact structure is a critical element for understanding the vaccine epidemiology of 
pneumococcus. Hence, we propose this element should be considered in future studies 
assessing the impact of PCVs and, more broadly, of other vaccines.       
 
Methods 
 
Data 
 
a) Contact matrices 
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We used the inferred contact matrices 𝑀"$ 	from [20]. The contacts, stratified by age yearly from 
0 to 84, were derived from synthetic networks built using population census data and socio-
demographic surveys in various settings, namely, household, school, workplace, and 
community. The overall contact matrix for a location is a weighted sum of the setting-specific 
contact matrices. 𝑀"$ gives the total number of daily contacts between age groups 𝑖 and 𝑗 per 
person in age group 𝑖, we applied reciprocity correction on 𝑀"$ and transformed it into 𝑚( "$, 
which gives the total annual contacts between age groups 𝑖 and 𝑗 per person in age group 𝑖 and 
per person in age group 𝑗 (density scale, as defined in [35]; see Supplementary Figure 2).  
 
b) Carriage duration and prevalence 
 
We extracted data about age-specific carriage duration and carriage prevalence from published 
studies identified through a scoping literature search (Supplementary Data 1, Supplementary 
Data 2).  
  
Among the identified culture-based studies, we included the studies that reported median 
duration (n=8), because the duration of carriage has a left-skewed distribution, with few 
individuals showing lasting carriage. For the model of carriage duration with age, we used non-
linear least square regression to estimate the parameters in the equation (Supplementary Figure 
1):  
 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑎 + (𝑏– 𝑎) 	× 	𝑒𝑥𝑝	(−𝑐	 × 	𝐴𝑔𝑒)	
 
where 𝑎 = 21	(standard	error:	5.8),	𝑏 = 62	(14.6), and 𝑐 = 0.45	(0.4). 
 
In the main analysis, we fixed the age-specific initial carriage prevalence 𝑓%

(")(0)	based	on	
[23]	and the age-specific susceptibility parameter 𝛽(") based on [47]. As sensitivity analyses, 
we used two other distributions of 𝛽(") over age, considering a lower carriage prevalence in 
age 0 and a higher carriage prevalence in all ages, to reflect the observed data from the 
identified culture-based pre-PCV carriage prevalence studies (n=17) (Supplementary Figure 
4). After calibrating 𝛽(") for the assumed carriage prevalences, we re-simulated the time-to-
elimination for all countries.  
 
c) VT-carrier prevalence in children in the real world 
 
We extracted the VT-carrier prevalence in children from the pre- to post-PCV era in 4 locations 
– France [16], UK [17], Alaska, US [18],  and Massachusetts, US [19] (Data S3) – to verify 
our model’s ability to reproduce the decline in VT-carrier prevalence following PCV 
introduction. The observed data come from cross-sectional surveys among children attending 
daycare centers or primary care clinics. In all four included studies, the detection of 
S.pneumoniae was culture-based and the serotyping was either by traditional Quellung reaction 
or molecular methods. For point estimates of carriage reported without uncertainty, we 
calculated the standard error (SE) for proportion and indicated the uncertainty limits as 
1.96×SE from the mean.  
 
Model  
a) Structure 
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We formulated a deterministic model that simulates the transmission of VT and NVT carriage 
based on the neutral null model proposed by [15]. Assuming a stable population (i.e., birth rate 
= death rate), susceptible individuals (𝑆) become VT-carriers (𝐶&) at the rate 𝜆&, or NVT-
carriers (𝐶') at the rate 𝜆'. Mono-carriers 𝐶& (or 𝐶') can be colonized by the other serotype at 
rate 𝑘' × 𝜆' (or 𝑘& × 𝜆&) and become co-carriers (𝐶&'), and co-carriers return to mono-
carriers 𝐶& (or 𝐶') at rate 𝑐 × 𝑘& × 𝜆&)  (or 𝑐 × 𝑘' × 𝜆' ). The inter-serotype competition 
parameter, 𝑘, was assumed to be 0.5 based on published estimates [36]. When 𝑘&=0.5, VT is 
half as likely to colonize an individual already colonized by NVT. We further assumed this 
competition to be symmetrical (𝑘& = 𝑘') to ensure neutrality at initiation. The parameter 𝑐,	
representing the fraction of co-carriers returning to 𝐶& (or 𝐶') upon re-infection with VT (or 
NVT), was fixed to 0.5 to ensure neutrality  [37].  
 
The vaccine was introduced at time 𝑡& and had a coverage of 𝑝&. Therefore, 𝑝& was zero before 
time 𝑡& and equal to 𝑝& starting from time 𝑡&.  
 
In our age-structured model, individuals moved from one age to the next year of age at an aging 
rate 𝛿"=1 per year. The whole population of newborns was unvaccinated. As individuals 
moved from age 0 to age 1, a fraction (𝑝&) of the population was vaccinated and partially 
protected from pneumococcal colonization (superscript “(𝑉, 1)”). The rest (1– 𝑝&) of age 0 
stayed unvaccinated as they reached age 1 (superscript “(𝑁, 1)”).  
 
For the dynamics of the vaccinated individuals, the rate of VT carriage acquisition 𝜆& was 
reduced by a factor 𝜖&, where 𝜖& represents the vaccine effectiveness against acquisition of VT 
carriage. Vaccine-conferred immunity was assumed to wane at a rate 𝛼&, so that 1/𝛼& 
represents the average duration of vaccine protection. 
 
The age-specific acquisition rate, 𝜆("), depends on 𝛽("), the cumulative number of carriers in 
the contactee age groups, 𝐶𝐶($), and the per capita contact matrix, 𝑚( "$. The carriage acquisition 
rates for VT and NVT were expressed as : 
 

𝜆&
(") =	𝛽&

(") 	b𝑚( "$𝐶𝐶&
($)

(–*

$+,

	

 

𝜆'
(") =	𝛽'

(") 	b𝑚( "$𝐶𝐶'
($)

(–*

$+,

	

where 
 

𝐶𝐶&
(") = 𝐶&

(&,") + 𝐶&
(',") + 𝑞(𝐶&'

(&,") + 𝐶&'
(',"))	

 
𝐶𝐶'

(") = 𝐶'
(&,") + 𝐶&

(',") + 𝑞(𝐶&'
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(',"))	
 
Here, 𝑞 refers to the relative infectiousness with each serotype for co-carriers. 
 
Table 1 summarizes the parameters used in this study.  
 
b) Outcome definition  
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In a neutral null model, one serotype is not assumed to have a fitness advantage over the other; 
therefore, co-carriers transmit either VT or NVT at equal probability. The relative 
infectiousness with each serotype for co-carriers, 𝑞, is set to 0.5, such that co-carriers are 
equally infectious as mono-carriers [15]. To ensure neutrality in the null model, we checked if 
𝐹 was stable over time in the model without an effective vaccine, as suggested by [15] 
(Supplementary Figure 3). 𝐹 is given by: 
 

𝐹 = 	
𝐶&
(&) + 𝐶&

(') + 𝑞(𝐶&'
(&) + 𝐶&'

('))
𝐶&
(&) + 𝐶&

(')+	𝐶'
(&) + 𝐶'

(') + 2𝑞(𝐶&'
(&) + 𝐶&'

('))
	

 
We defined time-to-elimination as the duration between vaccine introduction and the time 
when 𝐹 dropped to 5% of its initial value in age 0, representing a fully unvaccinated population 
and reflecting the indirect effect of PCV introduction. As time-to-elimination in all ages were 
highly correlated in each country, the choice of age had a negligible effect on the analyses 
comparing countries.   
 
 
Model assessment 
 
To verify the model, we used location-specific parameter sets (Table 2) to simulate the VT-
carrier prevalence in children from the pre- to post-PCV era in 4 locations (Table 2) and 
compared the simulated values to the observed ones qualitatively.  
 
We calibrated the model for each location by estimating the parameters 𝛽("). First, we 
performed a global search on 1000 values between –10 and 10, corresponding to 𝛽 values 
between 0 and 1 on the logit-transformed scale. The values were sampled using Sobol’s 
sequence [38], a quasi-random sampling method, to ensure the global parameter space was 
searched thoroughly. The global search sought a set of 𝛽(") that minimized the total squared 
difference in simulated versus observed pre-PCV VT-carrier prevalence on the logarithmic 
scale in all age groups. Here, the age groups were defined based on the observed prevalences 
as 0 y, 1–4 y, 5–17 y, 18–39 y, 40–59 y, and 60–84 y. The best five solutions from the global 
search were used as the starting value for a local search using the Subplex algorithm [39] until 
the total squared difference was minimized or could not be further reduced after a maximum 
of 1000 evaluations. Given the uncertainty around this parameter, we simulated the VT-carrier 
prevalence in children in each location using a range of VE against colonization [40].  
 
Effect of contact features 
 
To investigate the effect of social contact structure on the replacement dynamics, we first 
summarized the contact matrices using two age group-specific features – contact rate and 
assortativity – and then explored the relationship between these features and the time-to-
elimination. Here, the age groups were defined as 0–4 y, 5–9 y, 10–19 y, 20–39 y, 40–59 y, 
and 60–84 y, to be consistent with the parameter value assignment (Table 1). We defined 
contact rate as the average total daily contacts in an age group and assortativity as the fraction 
of contacts from within the age group out of total contacts for each age in the age group. 
 
We described the distribution of total contact and assortativity over ages in all 34 contact 
matrices (Figures 5A, B) and explored the association between time-to-elimination and these 
contact features in all age groups (Supplementary Figure 8).  
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Based on the strong negative correlation between the two contact features and time-to-
elimination portrayed in children under 5 (Figure 5C), we performed a regression analysis on 
time-to-elimination with standardized contact and assortativity as covariates in this age group 
using a GLM with a log link (Figure 5D). We reported the effect estimates with 95%CI for 
both variables and assessed the goodness-of-fit with R-squared.  
 
Effect of key parameters 
 
To delineate the individual effect of the key parameters—VE, vaccine coverage, immunity 
waning, the initial proportions of VT and NVT carriers, and population susceptibility—on time 
to elimination, we varied them one at a time using a range of values and measured the time to 
elimination.  
 
VE and coverage were considered key parameters because these contributed to the selective 
pressure that drives serotype replacement. We varied VE between 33–77% based on the 
observed efficacy with uncertainty in a community randomized trial [40], consistent with the 
findings of a systematic review [41]. Other than no waning, we tested a range of durations of 
vaccine-conferred immunity, ranging from 3 to 10 years [42,43]. Evidence suggests pre-PCV 
serotype distribution in carriage and diseases as important predictors of vaccine impact [44]; 
therefore, we tested a range of initial proportions of VT-carriers (𝑓&(0)), NVT-carriers (𝑓'(0)), 
and implicitly, co-carriers (1–𝑓&(0)–𝑓'(0)), either allowing the proportion of VT among 
colonizing serotypes (𝐹) to fluctuate or be fixed at 0.65. 
 
In these model experiments, the age-specific overall carriage remained constant. Lastly, to 
investigate the dynamics under different population susceptibilities, we changed the age-
specific susceptibility parameter, 𝛽("), by ±20% compared to the baseline value, which led to 
higher and lower overall carriage, respectively. In each simulation, we used 7 contact matrices 
from [20] to see if the effect of each key parameter differs by social contact structure. 
 
Numerical implementation 
 
All analyses were conducted in RStudio with R version 4.2.2 (R) and the non-linear model 
fitting was performed using the base package “stats” [45].  The transmission model was 
implemented using the package “pomp” version 4.6 [46]. All optimization procedures were 
implemented using the algorithms available in the package “nloptr” version 2.0.3 [47].  
 
Code and data availability 
The code and data are available from Edmond, the Open Data Repository from the Max 
Planck Society: https://doi.org/10.17617/3.RIGYAK. 
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Figure 1. A neutral, age-structured, Susceptible–Colonized transmission model. Boxes 
represent the state variables (𝑆–Susceptible,	𝐶–Colonized; superscripts indicate vaccine status 
and age: 𝑉–vaccinated,	 𝑁–unvaccinated; subscripts indicate the colonizing serotype: 𝑉–
vaccine-targeted serotypes (VT),	𝑁–non-vaccine serotypes (NVT), 𝑉𝑁–both VT and NVT). 
Arrows represent the movement of individuals between states (solid arrows: green–due to 
colonization with VT, brown–due to colonization with NVT, blue–due to clearance of 
colonizing serotypes; dotted arrow: due to aging from age 0 and being vaccinated; dot-dash 
arrow: due to aging from age 0 and not being vaccinated, dashed arrows: due to aging). For 
simplicity, only the second age group is represented.  
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Figure 2. The modeling workflow. The top row shows the components entering the 
transmission model, from left to right: overall carriage prevalence by age group under different 
population susceptibilities, carriage duration by age fitted (red line) to observed data (grey 
points), and contact matrices from various countries. The bottom left panel shows the age-
structured, Susceptible–Colonized transmission model. The bottom right panel shows the 
simulated decline in the proportion of VT among circulating serotypes; blue double arrow 
indicates the outcome – time-to-elimination – defined as the time between vaccine introduction 
(dashed line) and the time point when the proportion of VT among circulating serotypes 
dropped to 5% of its initial value in age 0.  
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Figure 3. Simulated VT-carrier prevalence in children versus observed data in four 
locations. The lines indicate the simulated VT-carrier prevalence in children using a range of 
assumed vaccine efficacies against colonization acquisition (VEcol) (light blue: 0.33, blue: 0.60, 
dark blue: 0.77) in four locations: France (top left), UK (top right), Alaska, US (bottom left), 
and Massachusetts, US (bottom right) from before to after the introduction of the 
pneumococcal conjugate vaccines (dashed line). Black points show the observed VT-carrier 
prevalence with 95% CI indicated by the error bars. 
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Figure 4. The predicted time-to-elimination by age in  34 countries. The lines show the 
simulated time-to-elimination by age using the contact matrices from 34 countries. The results 
for Australia (AU, yellow), Canada (CA, light green), China (CN, green), India (IN, light blue), 
Japan (JP, blue), South Africa (purple), and the United States (light purple) are highlighted as 
examples. 
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Figure 5. Total contact rate and assortativity predict time-to-elimination. The top row 
shows two contact features by age group in 34 countries:  total contact rate, defined as the 
average total daily contacts in the age group (A), and assortativity, defined as the fraction of 
within-age group contact (B). The data points from Australia (yellow), Canada (light green), 
China (green), India (light blue), Japan (blue), South Africa (purple), and the United States 
(light purple) are highlighted as examples. The bottom row shows the correlation between time-
to-elimination and standardized contact rate (x-axis) by standardized assortativity (color scale) 
in children under 5 in the simulated data (C) and the generalized linear model (D). 
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Figure 6. The effect of key parameters on time-to-elimination. Each point represents the 
time-to-elimination simulated by changing one key parameter at a time (A: vaccine efficacy 
against colonization acquisition, B: waning rate of vaccine-conferred immunity against 
colonization acquisition, C: initial proportion of VT among circulating serotypes, D: 
population susceptibility) using the contact matrices from 7 countries (square: Australia, circle: 
Canada, triangle: China, diamond: India, plus: Japan, cross: South Africa, plus in circle: the 
United States). The overall carriage prevalence before the introduction of the pneumococcal 
conjugate vaccines (PCV) in each country is represented by the same color scale in panels A, 
B, and C, and with a different color scale in panel D, because changing the population 
susceptibility naturally resulted in different pre-PCV overall carriage prevalence in a given 
country. 
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Table 1. A list of parameters and their values in the model 

Parameter	 Interpretation	 Value	 Source	

𝛽&
(")(= 𝛽'

("))	
Age-specific	susceptibility	to	

carriage	acquisition	

𝛽(,,....,/) = 0.015	
𝛽(0,...,*1) = 	0.004		
𝛽(2,,...,01) = 	0.003	
𝛽(3,,...,4/) = 	0.005	

	
*±20%	for	high	and	low	
population	susceptibility	

respectively	

[48]	

1/𝛾" 	
Age-specific	average	duration	

of	carriage	
See	Supplementary		

Figure	1	

Fitted	to	
observed	data		
(Supplementary	

Data	1)	

𝛿" 	
Aging	rate	 1𝑦𝑟5*	

Each	age	group	
is	1	year	

𝑘'(= 𝑘&)	

Competition	parameter:	
Effect	of	existing	VT	(NVT)	
carriage	on	acquiring	NVT	

(VT)	carriage	
0.5	 [36]	

𝑐	
Fraction	of	co-carriers	

returning	to	𝐶& 	(𝐶')	upon	
reinfection	with	VT	(NVT)	

0.5	 [15]	

𝑞	
Relative	infectiousness	with	
each	serotype	for	co-carriers	 0.5	 [15]	

𝜖& 	
Vaccine	efficacy	against	
carriage	acquisition	 33%, 60%, 77%	 [40]	

𝑝& 	
Vaccine	coverage	 50%, 90%	 [10]	

𝛼& 	
Waning	rate	of	vaccine-
conferred	immunity	

0, 0.1, 0.2, 0.3		
per	year	 [42,43]	

𝑓%
(")(0)	

Initial	prevalence	of	carriers	
in	age	group	𝑖	

𝑓%
(,,...,/)(0) = 0.5	

𝑓%
(0,...,*1)(0) = 0.2	

𝑓%
(2,,…,01)(0) = 0.1	
𝑓%
(3,,...,4/)(0) = 0.1	

[23],		
observed	data	
(Supplementary	

Data	2)	

𝑓&(0), 𝑓'(0)	
Initial	proportions	of	VT-,	

NVT-carriers	

𝑓&(0):	0.2– 0.8	
𝑓'(0):	0.2, 0.4	

where	𝑓&(0) + 𝑓'(0) ≤ 1	

Observed	data	
(Table	2)	
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Table 2. Observed carriage and parameter set from four locations  
 

Location	 Sample	
characteristics	

Overall	carriage	
(age	0,	1-4,	5-17,	

18-39,	40-59,	60-84)	

Initial	
proportions	of	

VT-,	NVT-carriers	

Vaccine	
coverage	

France	[16]	
Children	3–40	

months	attending	
daycare	center	

0.59,	0.59,	0.30,		
0.10,	0.10,	0.10		

[16,23]	
0.75,	0.25	[16]	

2004-05:	61%	
2005-05:	74%	
2006-07:	86%	
2007-08:	90%	

[30]	

UK	[17]	

Children	1–5	
years	attending	
primary	care	
practices	

0.49,	0.49,	0.21,		
0.08,	0.08,	0.08		

[17]	
0.659,	0.341	[17]		 90%	[49]	

Alaska,	US	[18]	

Children	3	
months–5	years	
attending	primary	
care	practices	

0.38,	0.38,	0.30,		
0.10,	0.10,	0.10	

[18,23]	
0.53,	0.47	[18]	 60%	[18]	

Massachusetts,	
US	[19]	

Children	3	
months–7	years	
attending	primary	
care	practices	

0.28,	0.28,	0.28,	
0.10,	0.10,	0.10	

[19,23]	
0.36,	0.64	[19]	 85%	[19]	
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Figure 1. Modelled vs. observed duration of carriage with increasing age 
 

 
 
To obtain the duration of carriage, we fitted a non-linear function of age to the extracted duration of 
carriage from published longitudinal carriage studies identified through a scoping literature search 
(Data 1). We first searched for observational studies on pneumococcal carriage duration on PubMed 
and further identified relevant studies from the references of the initially included studies.  We selected 
culture-based studies to allow the inclusion of the maximum number of studies because the majority 
of the early studies relied on culture-based detection. Further, because the duration of carriage has a 
left-skewed distribution, with few individuals showing lasting carriage, we preferred median to mean 
reporting and included studies that reported median duration. A total of 8 studies were included [1–8]. 
For the model of carriage duration with age, we used the non-linear least square algorithm to estimate 
the parameters in the equation:  
 

"#$%&'() = % + (-– %) × 123	(−6 × 781)	
 
where % = 21	(standard	error:	5.8),	- = 62	(14.6), and 6 = 0.45	(0.4). 
 
Figure 1 shows the extracted data from observational studies as grey points and the modeled duration 
of carriage with a red curve.  
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Figure 2. Transforming the contact matrices from Mistry et al. 2021  
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3 

Let K = (K!") represent the original contact rate matrix calculated in [9]. By definition, K!" =	
#!"
$!

 , 
where L!" represents the numer of daily contacts between age groups ' and M , and N! the population 
size of age group '. Because of the necessary reciprocity of total contacts (i.e., L!" = L"!), the per capita 
contact matrix O!" =

%!"
$"
=

#!"
$!$"

 should be symmetric. To ensure this symmetry, one can calculate a 

contact matrix KP  corrected for reciprocity based on the population structure in the study population 
[10]: 
 

KP!" =	
1
2N!

(K!"N! +K"!N")	

As a result, the per capita contact matrix: 
 

OQ !" =	
K!"N! +K"!N"

2N!N"
	

 
is symmetric, as it should be. 
 
Finally, we multiplied the per capita matrix by 365 to obtain a per capita annual contact matrix 
because all rates were per year in the simulations. 
 
Figure 2 shows the pre- (A) and post-transformation (B) contact patterns of India, as an example, and 
the post-transformed matrices of the other six countries (C–H). 
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Figure 3. Checking model assumption: neutral null model 
 

 
 
To check if our null model fulfils the neutrality criterion, we tracked proportion of VT among all 
colonizing serotypes (!) as proposed by [11]. The quantity ! is given by: 
  

! = 	
R&
(&) + R&

($) + S(R&$
(&) + R&$

($))

R&
(&) + R&

($)+	R$
(&) + R$

($) + 2S(R&$
(&) + R&$

($))
 

 
In a neutral null model, where one serotype is not assumed to have a fitness advantage over the other, 
any level of co-existence should be permitted and the proportions of the two serotypes should not 
converge to a global equilibrium (e.g., ! = 50%) without explicit mechanism [11]. In other words, 
neutral models do not lead to a 50-50 coexistence by default. Specifically, ! should remain constant 
regardless of the initial proportions of VT and NVT under no intervention, where the intervention 
represents a mechanism that gives one serotype a fitness advantage over the other.   
 
Figure 3 left panel shows that F remained stable when a null-impact vaccine was introduced for all 
contact matrices. The right panel shows that F declined after the introduction of a vaccine with 
VE=0.6 at 90% coverage, at different rates in different contact structures.  
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Table 1. Model structure: state variables 
  

State variable Definition 

!(",$) Susceptible, vaccinated, age group ' 

""(",$) Colonized by VT, vaccinated, age group ' 

"&(",$) Colonized by NVT, vaccinated, age group ' 

""&(",$) Colonized by VT and NVT, vaccinated, age group ' 

!(&,$) Susceptible, unvaccinated, age group ' 

""(&,$) Colonized by VT, unvaccinated, age group ' 

"&(&,$) Colonized by NVT, unvaccinated, age group ' 

""&(",$) Colonized by VT and NVT, unvaccinated, age group ' 
 
The transmission dynamic is described by the following system of ordinary differential equations:  
 
Equations in (unvaccinated) newborns (' = 0) 
 
Newborns are assumed to be non-carriers and, therefore, directly enter the T($,*) compartment.  
 
U* represents the aging rate, equal to +,#, where %* represents the age span of age group 0. 
 
N = ∑ N!

-.+
!/*  is the total population size (summed across all age groups). 

 
W is the per capita birth rate. To keep the population constant, this is calculated as W.+ = % = ∑ %!! , 
where %! is the age span of age groups ' and % represents the assumed lifespan. For example, if one 
assumes a lifespan % = 80	years, then the birth rate equals W = %.+ = +

0* per year.  
 
In the model, newborns are born at the rate WN, then individuals age across the age groups, and all 
die exactly at the age of 84. This simplified demographic model is known as type-I mortality 
distribution [12]. 
 
	
#!(",')
#$ = 0	

	
#""(",')
#$ = 0	

	
#"&(",')
#$ = 0	

	
#""&(",')
#$ = 0	
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#!(&,')
#$ = 	() − (,"(') + ,&('))!(&,')	 + /'(""(&,') + "&(&,') +	""&(&,')) − 0'!(&,')	

	
#""(&,')
#$ = ,"(')(!(&,') + 1	2"""&(&,'))	 − 2&,&(')""(&,') − (/' + 0')""(&,')	

	
#"&(&,')
#$ = ,&(')(!(&,') + 1	2&""&(&,'))	 − 2","(')"&(&,') − (/' + 0')"&(&,')	

	
#""&(&,')
#$ = 2&,&(')""(&,') + 2","(')"&(&,') − 1(2&,&(') + 2","('))""&(&,') − (/' + 0')""&(&,')	

 
Equations in infants receiving vaccination (' = 1)  
 
Write Y(&) = 3& 	Z($	(& ≥ && 	), the time-varying vaccine coverage, where && represents the time 
point of PCV introduction and 3\ the proportion of infants vaccinated after PCV introduction.  
 
Vaccination is assumed to occur at age 0, that is, when the newborns age to the second age group. 
The other properties of the vaccine are its efficacy against acquisition of V-serotypes (denoted by ]&) 
and its rate of waning protection (denoted by ^&, where 1/^& represents the average duration of 
vaccine protection).  
 
#!(",()
#$ = 	3($)0'!(&,') − [,"(()(1 − ]1) + ,&(()]!(",()	 + /((""(",() + "&(",() +	""&(",()) − (7" + 0()!(",()	

		
#""(",()
#$ = 3($)0'""(&,') + 	,"(()(1 − ]1)(!(",() + 1	2"""&(",())	 − 2&,&(()""(",() − (7" + /( + 0()""(",()	

		
#"&(",()
#$ = 3($)0'"&(&,') + ,&(()(!(",() + 1	2&""&(",())	 − 2","(()(1 − ]1)"&(",() − (7" + /( + 0()"&(",()	

		
#""&(",()
#$ = 3($)0'""&(&,') + 2&,&(()""(",() + 2","(()(1 − ]1)"&(",() − 1[2&,&(() + 2","(()(1 − ]1)]""&(",() − (7" + /( + 0()""&(",()	

	
#!(&,()
#$ = 	[1 − 3($)]0'!(&,') − (,"(() + ,&(())!(&,()	 + /( 8""(&,() + "&(&,() +	""&(&,()9 + 7"!(",() − 0(!(&,()	

		
#""(&,()
#$ = [1 − 3($)]0'""(&,') + 	,"(()(!(&,() + 1	2"""&(&,())	 − 2&,&(()""(&,() + 7"""(",() − (/( + 0()""(&,()	

		
#"&(&,()
#$ = [1 − 3($)]0'"&(&,') + ,&(()(!(&,() + 1	2&""&(&,())	 − 2","(()"&(&,() + 7""&(",() − (/( + 0()"&(&,()	

		
#""&(&,()
#$ = [1 − 3($)]0'""&(&,') + 2&,&(()""(&,() + 2","(()"&(&,() − 1(2&,&(() + 2","(())""&(&,() + 7"""&(",() − (/( + 0()""&(&,()	

	
 
Equations in older age groups (' = 2,… , 7 − 1)  
 
In the older age groups, no more vaccination is assumed, and the dynamic is described by the following 
system of ordinary differential equations:  
 
#!(",$)
#$ = 	0$)(!(",$)() − [,"($)(1 − ]1) + ,&($)]!(",$)	 + /$(""(",$) + "&(",$) +	""&(",$)) − (7" + 0$)!(",$)	

		
#""(",$)
#$ = 0$)(""(",$)() + 	,"($)(1 − ]1)(!(",$) + 1	2"""&(",$))	 − 2&,&($)""(",$) − (7" + /$ + 0$)""(",$)	
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#"&(",$)
#$ = 0$)("&(",$)() + ,&($)(!(",$) + 1	2&""&(",$))	 − 2","($)(1 − ]1)"&(",$) − (7" + /$ + 0$)"&(",$)	

		
#""&(",$)
#$ = 0$)(""&(",$)() + 2&,&($)""(",$) + 2","($)(1 − ]1)"&(",$) − 1[2&,&($) + 2","($)(1 − ]1)]""&(",$) − (7" + /$ + 0$)""&(",$)	

	
#!(&,$)
#$ = 	0$)(!(&,$)() − (,"($) + ,&($))!(&,$)	 + /$ 8""(&,$) + "&(&,$) +	""&(&,$)9 + 7"!(",$) − 0$!(&,$)	

		
#""(&,$)
#$ = 0$)(""(&,$)() + 	,"($)(!(&,$) + 1	2"""&(&,$))	 − 2&,&($)""(&,$) + 7"""(",$) − (/$ + 0$)""(&,$)	

		
#"&(&,$)
#$ = 0$)("&(&,$)() + ,&($)(!(&,$) + 1	2&""&(&,$))	 − 2","($)"&(&,$) + 7""&(",$) − (/$ + 0$)"&(&,$)	

		
#""&(&,$)
#$ = 0$)(""&(&,$)() + 2&,&($)""(&,$) + 2","($)"&(&,$) − 1(2&,&($) + 2","($))""&(&,$) + 7"""&(",$) − (/$ + 0$)""&(&,$)	

 
Initial conditions  
 
The model was first run to simulate the pre-vaccine era, so all corresponding initial conditions were 
set to 0 = (a(&,!) = 0)	. For the initial conditions in the non-vaccinated groups, we defined the 
following parameters: 
 
Z2
(!)(0)    : initial prevalence of carriers in age group ' 
Z&(0)    : proportion of VT carriers / all carriers 
Z$(0)    : proportion of NVT carriers / all carriers 
Z&$(0) = 1 − Z&(0) − Z$(0) : proportion of dual carriers/all carriers  
 
With these parameters, the state variables were initialized as follows: 
 

T($,!)(0) = 	N! 	× 	 [1 − Z2
(!)(0)]	

R&
($,!)(0) = 	N! 	× 	Z2

(!)(0) ×	Z&(0)	
R$
($,!)(0) = 	N! 	× 	Z2

(!)(0) ×	Z$(0)	

R&$
($,!)(0) = 	N! 	× 	Z2

(!)(0) ×	[1 − Z&(0) − Z$(0)]	
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Figure 4. Assumed vs. observed carriage prevalences and different susceuptibility distributions 
over age 
 

 
 
In Figure 4 left panels, the points show the observed carriage prevalence by age extracted from 
published observational studies (Data 2) conducted in high-income countries (HIC) (panel A,C) and 
low-income countries (LMIC) (panel E); the blue lines mark the assumed initial prevalence of carriers 
in the main analysis (A) and the sensitivity analyses (C, E). The right panels show the age-specific 
susceptibility parameter values used in the main analysis (B) and the sensitivity analyses (D, F). 
 
 
In the main analysis, we assumed the initial overall carriage prevalence to be 50% in age 0-4, 20% in 
age 5-19, and 10% in age 20-84, based on a review [13], reflecting the carriage prevalence in the 
settings of high-income countries (panel A). We fixed the age-specific susceptibility parameter d(!)	
for	low,	medium,	and	high	population	susceptibility	(panel B)	when	quantifying	the	influence	of	
this	parameter	to	time-to-elimination	(results	in	main	text	Figure	6B). 
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As sensitivity analyses, we used different susceuptibility distributions over age considering two 
scenarios based on a scoping literature review. 
 
We searched for observational studies on pneumococcal carriage prevalence on PubMed and further 
identified relevant studies from the references of the initially included studies.  We included culture-
based studies conducted in the pre-PCV era that reported either overall (including both VT and NVT) 
or VT carriage prevalence because VT-carriers accounted for most of the carriage in the pre-PCV era. 
After excluding publications that were based on the same sample, a total of 17 studies were included 
(HIC: n=11 [14–24], LMIC: n=6 [1,3,4,6,25,26]). We observed that the carriage prevalence at age 0 
was lower that in children aged 1–4, and that carriage prevalence was higher at all ages in LMIC 
compared with HIC. The income group of countries were based on the World Development Indicators 
2008 [27].  
 
Based on these observations, we considered a lower prevalence of carriers at age 0 (10% instead of 
50%) due to the time lag from birth to first pneumococcal acquisition (panel C) and optimized d(!)	
(panel	D).	The	resulted	time-to-elimination	ranged	from	4.2–7.1	years. 
 
We then considered higher carriage prevalences for all ages (70% in age 0-4, 40% in age 5-19, and 
20% in age 20-84) to mimic settings with higher pneumococcal burden (panel E), which is commonly 
observed in low-income countries (LIC) [13,28], and optimized d(!)	(panel	F).	The	resulted	time-to-
elimination	ranged	from	4.4–6.9	years.	
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Figure 5. Effect of changing vaccine efficacy and coverage on time-to-elimination 
 

 
 
 
The change in time-to-elimination due to vaccine efficacy was larger when vaccine coverage was 
lower.  At 50% coverage, switching from a less efficacious vaccine (VE=33%) to a highly efficacious 
vaccine (77%) resulted in 2.5–3.5 years shorter time-to-elimination (left panel). When vaccine 
coverage reached 90%, using a highly efficacious vaccine led to a 1.9–2.6-year reduction in time-to-
elimination compared with a less efficacious vaccine (right panel, same as main text Figure 6A).   
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Figure 6. Effect of initial proportions of VT, NVT and Co-carriers on time-to-elimination, with 
changing initial proportion of VT among all colonizing serotypes (y) 
  

Z&(0) Z$(0) Z23(0) ! 
0.2 0.2 0.6 0.5 
0.4 0.2 0.4 0.6 
0.4 0.4 0.2 0.5 
0.6 0.2 0.2 0.7 
0.6 0.4 0 0.6 
0.8 0.2 0 0.8 

 
 
We varied the initial proportion of VT-carriers (Z&(0)) between 0.2 and 0.8, and the initial proportion 
of NVT-carriers (Z$(0)) between 0.2 and 0.4, with the proportion of co-carriers (Z23(0)) implicitly 
determined (1− Z&(0) − Z$(0)). The combinations of initial VT:NVT:Co-carriers ratio were 
restricted to two conditions: (1) Z&(0) + Z$(0) ≤ 	1	because the sum of proportions cannot exceed 
one , and (2) Z&(0) ≥ Z$(0)	because VT-carriers tended to be more prevalence than NVT carriers in 
the pre-PCV era (main text Table 2). 
  
When Z$(0) was fixed at 0.2, increasing	Z&(0) from 0.2 to 0.8 resulted in an increase in the initial 
proportion of VT among all colonizing serotypes (!) from 0.5 to 0.8, leading to a slightly longer time-
to-elimination (left panel, same as main text Figure 6C). 
  
This effect remained when Z$(0) was fixed at 0.4 and Z&(0)  increased from 0.4 to 0.6, which resulted 
in an increase in initial ! from 0.5 to 0.6.  
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Figure 7. Effect of initial proportions of VT, NVT and Co-carriers on time-to-elimination, with 
fixed proportion of VT among all colonizing serotypes (y) 
  

Z&(0) Z$(0) Z23(0) ! 
0.60 0.30 0.1 0.65 
0.65 0.35 0 0.65 
0.50 0.20 0.3 0.65 
0.40 0.10 0.5 0.65 

 
We varied the initial proportion of VT-carriers (Z&(0)), of NVT-carriers (Z$(0)), and implicitly, the 
initial proportion of co-carriers (1− Z&(0) − Z$(0)), such that the initial proportion of VT among all 
colonizing serotypes (!) remained fixed at 0.65. The combinations of initial VT:NVT:Co-carriers ratio 
were restricted to two conditions: (1) Z&(0) + Z$(0) ≤ 	1	 because the sum of proportions cannot 
exceed one , and (2) Z&(0) ≥ Z$(0)	because VT-carriers tended to be more prevalence than NVT 
carriers in the pre-PCV era (main text Table 2). 
 
With initial ! fixed at 0.65, the time-to-elimination remained constant regardless of the initial 
VT:NVT:Co-carriers ratio.  
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Figure 8. Association of time-to-elimination and features of contact patterns in all age groups   

  
 
After simulating the transmission using the contact matrices from 34 countries in [1], we explored the 
relationship between contact features and time-to-elimination in each age group.  
 
The time-to-elimination was measured for each age group. We then calculated the total number of 
daily contacts in an age group, divided by the age group width, such that this measure would not be 
inflated in the age groups of wider bands. For example, for age group 0–4y, the total number of daily 
contacts was divided by 5; for age group 20–39y, the total number of daily contacts was divided by 
20. We defined assortativity as the average fraction of contacts from within the age group out of total 
contact for each age in the age group. We standardized both measures of contact features for easier 
comparison. 
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Figure 8 shows time-to-elimination’ correlation with standardized contact rate (x-axis) and 
standardized assortativity (colour scale) for all age groups, revealing a strong trend in children under 
5. The R-squared value in each panel indicates the variability in time-to-elimination explained by 
standardized contact rate and assortativity as covariates in a generalized linear model (GLM) for each 
respective age group.   
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