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Summary 56 

Genome-wide association studies (GWASs) have advanced our understanding of 57 

coronary artery disease (CAD) genetics and enabled the development of polygenic risk 58 

scores (PRSs) for estimating genetic risk based on common variant burden. However, 59 

GWASs have limitations in analyzing rare variants due to insufficient statistical power, 60 

thereby constraining PRS performance. Here, we conducted whole genome sequencing 61 

of 1,752 Japanese CAD patients and 3,019 controls, applying a machine learning-based 62 

rare variant analytic framework. This approach identified 59 CAD-related genes, 63 

including known causal genes like LDLR and those not previously captured by GWASs. 64 

A rare variant-based risk score (RVS) derived from the framework significantly 65 

predicted CAD cases and cardiovascular mortality in an independent cohort. Notably, 66 

combining the RVS with traditional PRS improved CAD prediction compared to PRS 67 

alone (area under the curve, 0.66 vs 0.61; p=0.007). Our analyses reinforce the value of 68 

incorporating rare variant information, highlighting the potential for more 69 

comprehensive genetic assessment. 70 
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Introduction 79 

 Despite advancements in treatments and medications, coronary artery disease 80 

(CAD), encompassing conditions such as angina pectoris and myocardial infarction 81 

(MI), remains a leading cause of death worldwide 1,2. CAD etiology is complex, 82 

involving a multifaceted interplay between genetic predisposition and environmental 83 

determinants. Lifestyle factors including diet, smoking, and physical activity are well-84 

established contributors to the onset and progression of CAD 3,4. Additionally, 85 

conditions such as elevated low-density lipoprotein (LDL) cholesterol, hypertension, 86 

and glucose intolerance further exacerbate the risk profile 5. The importance of genetic 87 

predisposition is also underscored by a European twin study, which estimated that 88 

genetic factors contributed to over 50% of CAD development 6,7. Therefore, 89 

understanding the genetic underpinnings of CAD and accurately estimating an 90 

individual’s lifetime genetic risk are crucial for effective prevention and management 91 

strategies.  92 

 To date, genome-wide association studies (GWASs) and their meta-analyses 93 

have identified more than 300 loci associated with CAD 8–12. Polygenic risk scores 94 

(PRSs) derived from GWAS summary statistics have enabled the estimation of 95 

individual-level CAD risk 13,14. However, despite these significant advancements, the 96 

heritability of CAD explained by GWASs remains lower than anticipated.  This gap 97 

may be partly attributed to the primary focus of GWAS on low frequency to common 98 

variants, while rare variants are often underrepresented in these analyses 5,15. Rare 99 

variants often have a large effect size on diseases and phenotypes, making them a 100 

promising target for drug development 16. Incorporating rare variants into genetic risk 101 

scores could significantly enhance the accuracy of CAD prediction. Despite this 102 
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potential, previous GWASs and aggregated rare variant association analyses have 103 

struggled even in large-scale sequencing studies, identifying only a few genes at exome-104 

wide significance per trait 17,18. Furthermore, calculating a genetic risk score based on 105 

rare variants is challenging because gene-level effect sizes are not estimated by 106 

conventional gene-based analysis methods.  107 

 Recently, advancements in machine learning have led to the development of 108 

novel methods for genetic analysis, one of which is the HEAL (Hierarchical Estimate 109 

from Agnostic Learning) method, a machine learning-based framework for 110 

comprehensive rare variant analysis. This approach has been successful in identifying 111 

disease-associated genes and creating genetic risk scores in patients with abdominal 112 

aortic aneurysm 19. In the current study, we conducted whole genome sequencing 113 

(WGS) of Japanese CAD patients and applied a modified version of the HEAL 114 

framework tailored for CAD to analyze rare variants and systematically prioritize 115 

disease-associated genes. Furthermore, we developed a rare variant-based genetic risk 116 

score (RVS) using this framework and validated the performance with an independent 117 

cohort. We then explored the relationship between the RVS and GWAS-based PRS to 118 

elucidate the characteristics of rare variants in CAD, bridging the gap in our 119 

understanding of CAD genetics by incorporating rare variant information, potentially 120 

uncovering novel insights into disease mechanisms and improving risk prediction 121 

models.  122 
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Results 123 

Whole genome sequencing of CAD samples in the Japanese population 124 

The overview and the design of our study are shown in Figure 1. We 125 

performed WGS on the discovery cohort comprising 1,765 Japanese CAD patients and 126 

3,148 controls. In order to enhance the genetic discovery power 20, we prioritized 127 

patients with early-onset MI, a severe form of CAD, from the BioBank Japan (BBJ) 128 

cohort. The average age of MI onset in these patients was 47.4 ± 4.1 years, indicating a 129 

relatively young population with a severe disease phenotype. After quality control of the 130 

WGS data, we retained 4,771 individuals (1752 cases and 3019 controls) with 131 

51,717,580 genetic variants. For the validation WGS cohort, we included 200 CAD 132 

cases and 824 control samples with 25,531,471 variants (Table S1 and S2). 133 

Demographic features in each cohort are summarized in Table 1. We then used the 134 

quality-controlled data for further analyses including single variant association tests to 135 

identify individual variants associated with CAD, a conventional gene-based association 136 

test to examine the cumulative effect of variants within specific genes, and a machine 137 

learning-based framework to uncover the potential contribution of rare variants (Figure 138 

S1). 139 

We first conducted a single variant association test in the discovery cohort 140 

using a logistic regression model implemented in PLINK software with covariates of 141 

age, sex and top ten ancestry principal components (PCs). The genomic inflation factor 142 

λ��  was calculated to be 1.03, indicating minimal inflation of test statistics and 143 

suggesting that the quality control applied to the samples was adequate (Figure S2). 144 

This initial single variant association analysis did not identify any genetic loci that 145 

reached a genome-wide significance threshold of P = 5 * 10-8. A subsequent analysis 146 
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was performed using SAIGE software designed to handle both common and rare 147 

variants, adjusted for age, sex and top ten ancestry PCs. This analysis revealed two 148 

previously reported loci on chromosome 12 that reached a genome-wide significance 149 

threshold (rs7977233; p=1.47 * 10-8, rs3782886; p=1.47 * 10-8, respectively, (Figure S3 150 

and Table S3))10,11. However, these were both common variants, emphasizing the 151 

difficulty in analyzing rare variants using current GWAS approaches. 152 

To increase the detection power of rare variant associations, gene-based tests 153 

are often used, in which variants are aggregated and analyzed together for each gene. 154 

This approach allows for the analysis of rare variants that are underpowered in single 155 

variant association tests due to their low frequency. It also increases detection power by 156 

reducing the multiple testing burden. Thus, we conducted a gene-based rare variant 157 

aggregated association analysis using the sequential kernel association test-optimal 158 

(SKAT-O). While no genomic inflation was observed (λ = 0.939) (Figure S4), the 159 

LDLR gene surpassed a suggestive threshold (p = 2.3×10-5). However, no genes reached 160 

the gene-wide significance threshold of p = 2.5×10-6 (Figure S4 and Table S4). This 161 

result also highlighted the challenges of analyzing rare variants in genetic association 162 

studies due to insufficient statistical power with a limited sample size. 163 

 164 

The machine learning-based framework prioritizes disease-associated genes and 165 

reveals molecular networks 166 

 We next conducted a machine learning-based rare variant analysis using a 167 

modified HEAL 19. In this framework, we first quantified the mutation burden for each 168 

gene in each participant defined by the cumulative effects of deleterious 169 

nonsynonymous variants within the gene. We then trained a penalized logistic 170 
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regression model to predict disease status based on these mutation burden scores. The 171 

model was trained to identify a minimal set of most distinguishing features (genes) for 172 

CAD, while also optimizing parameters for accurate disease prediction. Through robust 173 

cross-validation (Figure S5), we successfully prioritized fifty-nine candidate genes 174 

associated with CAD development (Table S5, S6 and Figure S6). 175 

 To investigate the functions of the fifty-nine HEALCAD genes, we assessed 176 

constraint scores and checked for overlaps with neighboring genes identified in previous 177 

GWASs on CAD and its risk factors. Using the Genehancer database 21, which provides 178 

information on genome-wide enhancers and their target genes, we identified prioritized 179 

genes that overlapped with the target genes of enhancers found significant in previous 180 

GWASs. We also referenced the International Mouse Phenotyping Consortium (IMPC) 181 

22 database to investigate the phenotypes associated with a gene knockout (KO) in mice 182 

and conducted gene set enrichment analysis to identify functional clusters among the 183 

HEALCAD genes. The genes were subsequently categorized into eight distinct clusters 184 

based on the hierarchical clustering of their functional annotations (Figure 2A, 2B and 185 

Table S7).  186 

 Among these clusters, cluster 3 notably included the LDLR gene, which 187 

exhibited the strongest contribution to CAD. LDLR is a well-established causal gene for 188 

familial hypercholesterolemia 23 and has been consistently associated with CAD in 189 

previous GWASs and genome sequencing studies 9,24,25, supporting the validity of our 190 

machine learning-based framework. In the IMPC database, LDLR KO mice showed 191 

increased circulating cholesterol levels 26, a known risk factor for CAD. Cluster 7 192 

contained genes related to obesity and metabolic processes, such as the RNF216 locus, 193 

which is associated with body mass index (BMI) 27 and increased glucose levels in KO 194 
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mice 22. Additionally, the VRK2 locus has been reported to be associated with BMI 28, 195 

smoking behavior and alcohol use 29, indicating its broader impact on metabolic health. 196 

Cluster 2 comprised genes identified by previous GWAS on phenotypes such as blood 197 

pressure, diabetes, and cholesterol levels. The FTO gene within this cluster was 198 

highlighted for its strong association with obesity 30,31 and related phenotypes linked to 199 

BMI 32, LDL cholesterol 33, blood pressure 34, and CAD 35. Cluster 8 encompassed 200 

genes associated with cholesterol levels, obesity and blood pressure in GWAS and 201 

GeneHancer categories, with phenotypic evidence in human and KO mice. For instance, 202 

the CYP27A1 locus is associated with diastolic blood pressure 36 and triglyceride levels 203 

37 and has connections to cholesterol levels and premature CAD according to human 204 

phenotype ontology 38. 205 

 To further determine the functions of the fifty-nine genes, we mapped them 206 

onto the human protein-protein interaction (PPI) network followed by identifying 207 

proteins that were tightly clustered with these HEALCAD genes as topological modules 208 

19. We identified 46 tightly clustered topological modules encompassing the HEALCAD 209 

genes. Gene ontology analysis confirmed the functional coherence of the proteins 210 

within each module, revealing significant enrichment for specific biological processes. 211 

For instance, module M119 was significantly enriched for lipid homeostasis with a false 212 

discovery rate (FDR) of 2.53*10-22, suggesting a critical role in regulating lipid levels 213 

(Figure 2C and Table S8). These modules included pathways known as CAD risk 214 

factors, such as lipid and glucose metabolism (M25, M31, M51, M86, M119). Notably, 215 

M119 included lipid metabolism-related genes such as LDLR, PCSK9, LIPA, and 216 

ANGPTL3 (Figure 2D), which are well-known targets for medications treating 217 

dyslipidemia and CAD 39 40. Other modules were associated with different biological 218 
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processes, including platelet volume (e.g., M13), immune system function (M1), blood 219 

vessel and heart development (e.g., M47, M328), and RNA metabolism and translation 220 

processes (e.g., M3, M34). While recent studies have indicated the contribution of 221 

common variants identified by CAD-GWAS to the disease through various pathways 222 

such as plaque formation, inflammation, transcriptional regulation, and angiogenesis 41, 223 

our findings suggest that diverse biological processes are also implicated in CAD, even 224 

in the context of rare variants. This underscores the complexity of CAD pathogenesis, 225 

involving a wide array of biological pathways and molecular mechanisms. 226 

 227 

Rare variant risk-based risk score and its clinical impact 228 

 In conjunction with the prioritization of disease-related genes, the modified 229 

HEAL enabled us to develop a prediction model for CAD based on genetic information. 230 

Using the optimized machine learning model, we computed a rare variant-based risk 231 

score (RVS) for each individual. The RVS demonstrated a significant predictive 232 

capability for CAD,  with an area under the receiver operating characteristics curve 233 

(AUROC) of 0.574, as validated through a nested cross-validation approach in the 234 

discovery cohort. When applied to an independent validation cohort, the RVS also 235 

identified CAD cases with an AUROC of 0.581 (p = 0.002), indicating its ability to 236 

discriminate CAD cases. 237 

 To further understand the characteristics of RVS in terms of clinical aspects, 238 

we explored the association of RVS with clinically relevant parameters.  The RVS 239 

showed significant correlations with several key clinical measurements, including low-240 

density-lipoprotein cholesterol (LDLC), total bilirubin (TBil), alanine aminotransferase 241 

(ALT), prothrombin time (PT-INR), total cholesterol levels, neutrophil count, and 242 
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potassium levels (Figure 3A and Table S9). These correlations are noteworthy since 243 

elevated cholesterol levels and coagulation abnormalities are established risk factors for 244 

CAD 42–44. Moreover, alterations of total bilirubin and AST were also reported to be 245 

associated with cardiovascular risk 45,46, reinforcing the clinical relevance of the RVS in 246 

the context of CAD.  247 

 We extended our analysis to assess the impact of the RVS on long-term 248 

cardiovascular mortality. In the validation cohort, a higher RVS was significantly 249 

associated with increased cardiovascular mortality (P = 0.01, log-rank test) (Figure 3B). 250 

When exclusively analyzing CAD patients, those with higher RVS also exhibited a 251 

significantly worse cardiovascular mortality rate (p = 0.03, log-rank test) (Figure 3C). 252 

These findings suggest that RVS not only predicts CAD occurrence but also correlates 253 

with the disease severity and its long-term prognosis, highlighting its potential clinical 254 

utility in risk stratification and prognosis estimation for CAD patients. 255 

 256 

The integration of RVS and PRS improves the performance of the genomic risk 257 

score 258 

Many GWASs have been conducted for CAD, leading to the development of 259 

PRS that primarily comprise common variants to predict the risk of CAD. Multiple 260 

studies have reported that PRS can serve as an important indicator for predicting and 261 

assessing the severity of CAD. Whereas these scores typically focus on common 262 

variants and do not account for rare variants, which can also significantly contribute to 263 

disease risk, our RVS encompasses rare variants not included in PRS. Thus, to compare 264 

the properties between RVS and PRS, we first calculated individual PRS based on 265 

CAD-GWAS 11 in the validation cohort. The PRS also significantly predicted CAD with 266 
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an AUROC of 0.61 (p = 0.001; 95% confidence interval (C.I.), 0.565-0.653). 267 

Interestingly, there was no significant correlation between PRS and RVS (r = -0.01, p = 268 

0.73) (Figure 4A), indicating that RVS provides a different genomic perspective on 269 

CAD risk. 270 

When examining CAD cases specifically, RVS showed a negative correlation 271 

with PRS (r = -0.17, p = 0.015) (Figure 4A). Additionally, PRS was associated with 272 

different clinical measurements compared to RVS, such as triglycerides, uric acid, body 273 

mass index (BMI), and activated partial thromboplastin time (APTT) and it was 274 

negatively associated with HDL cholesterol (HDLC), which is considered protective 275 

against CAD (Figure 3A, Figure S7 and Table S10) 47. These data support the notion 276 

that PRS and RVS may have complementary rather than redundant roles in predicting 277 

CAD, as they were associated with different clinical parameters and did not show a 278 

positive correlation. 279 

Given these distinct properties, we integrated PRS and RVS to develop a 280 

combined risk score (CRS) aiming at enhancement of the performance of the 281 

framework in predicting CAD. The CRS showed positive correlations with several 282 

clinical measures, including serum urinary acid, coagulation functions, LDLC, and 283 

triglycerides (TG), while negatively correlating with HDLC levels (Figure 4B and 284 

Table S11).  Focusing on lipid metrics, CRS demonstrated correlations with LDLC, TC, 285 

TG, and HDLC, suggesting that it combines the unique predictive elements of both RVS 286 

and PRS (Figure 4C). Finally, we evaluated the predictive performance of CRS and 287 

observed a significant improvement in CAD prediction compared to PRS alone in the 288 

validation cohort (AUROC 0.66 vs 0.61, p=0.007; Pseudo R2 0.093 vs 0.040, p = 289 

0.0018; AUPRC 0.35 vs 0.29, p = 0.0154) (Figure 5 and Table S12). These results 290 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.13.24311909doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311909
http://creativecommons.org/licenses/by-nd/4.0/


 
 

14

suggest that RVS can complement PRS and that incorporating rare variant information 291 

as an RVS into PRS significantly enhances the ability to predict CAD, thereby 292 

addressing some of the unexplained heritability in the disease. 293 

 294 

295 
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Discussion 296 

 In this study, we developed a machine learning-based analytical framework to 297 

investigate the genetics of CAD pathogenesis with a focus on rare variants. We 298 

leveraged this framework together with whole-genome sequencing (WGS) data from 299 

the Japanese population to enhance our understanding of the complex CAD genetic 300 

architecture. Our findings indicated that the modified HEAL, a machine learning-based 301 

framework, effectively prioritized genes associated with CAD, including the well-302 

established LDLR gene, while also uncovering intricate molecular networks involved in 303 

the disease. The rare variant-based risk score (RVS) generated through this framework 304 

demonstrated significant predictive power for CAD and long-term cardiovascular 305 

mortality Furthermore, the RVS showed different characteristics from conventional 306 

common variant-based PRS, and combining the rare variant-based RVS with the PRS 307 

substantially improved CAD prediction. 308 

 Identifying disease-associated rare variants remains a significant challenge, 309 

not only in single variant association analyses but also in aggregated rare variant 310 

association analyses 48,49. While some studies have adopted a targeted resequencing 311 

approach by selecting specific genes based on prior knowledge 25,50; previous attempts 312 

at genome-wide or exome-wide analyses have often suffered from insufficient statistical 313 

power, leading to limited success in identifying previously uncharacterized genes 314 

associated with complex traits like CAD 20. Also in this study, the single variant 315 

association analysis and the gene-based rare variant association analysis failed to reveal 316 

genome-wide significant rare variants linked to CAD. Even in previous studies 317 

involving more than 450,000 exome sequencing data from the UK biobank, only a 318 

single gene, LDLR, reached a significance level in the gene-based test for CAD 17. 319 
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These persistent challenges highlight the difficulties in rare variant analyses. 320 

 To address these challenges, we utilized a machine learning-based framework 321 

to analyze rare variants, building on the HEAL model in a prior study, where Li et al. 322 

successfully uncovered the genetic architecture of rare variants in abdominal aortic 323 

aneurysm 19. We adapted and optimized the model for CAD patients, marking the first 324 

application of the technique in this disease context. Unlike the previous HEAL model 325 

that focused only on missense single nucleotide variants (SNVs), our approach casts a 326 

wider net as it incorporates insertion, deletion and putative loss-of-function (pLOF) 327 

variants. This comprehensive inclusion of variant types allows for a more holistic 328 

examination of the genetic landscape underlying CAD, potentially capturing a broader 329 

spectrum of disease-associated genetic alterations. Furthermore, the robustness of our 330 

model was enhanced by hyperparameter tuning through a grid search to avoid 331 

overfitting and we evaluated its predictive performance using both internal cross-332 

validation and an independent validation cohort 51. 333 

  Through this improved framework, we successfully prioritized CAD-334 

associated genes, extending beyond previously reported genes such as LDLR, FTO, and 335 

CYP27A1. By mapping these genes onto the human protein-protein interaction network, 336 

we uncovered 46 tightly clustered topological modules, providing insights into their 337 

functional roles in CAD pathogenesis. Beyond lipid metabolism, the analysis revealed 338 

modules associated with other relevant biological processes, including platelet function, 339 

immune system regulation, blood vessel and heart development, and RNA metabolism. 340 

Interestingly, while previous GWASs have highlighted the role of common variants in 341 

CAD development through various pathways, our findings suggest that rare variants 342 

also contribute to the disease through a wide spectrum of biological processes. 343 
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 We also utilized our framework to develop an RVS and demonstrated its 344 

discriminative capacity between CAD cases and controls in the validation cohort. The 345 

distinctive feature of RVS lies in its utilization of rare nonsynonymous variants as input 346 

data, setting it apart from conventional PRS that primarily focus on common variants. 347 

This approach allows RVS to tap into a different spectrum of genomic information, 348 

involving risk factors uncaptured by PRS. The independence of RVS from PRS is 349 

further substantiated by the absence of a significant positive correlation between these 350 

two scoring systems and the complementary relationships with clinical risk parameters. 351 

This lack of correlation suggests that the RVS and PRS are capturing distinct aspects of 352 

genetic risk for CAD, each contributing unique information to the overall risk 353 

assessment. Importantly, the integration of RVS and PRS resulted in improved 354 

predictive performance, demonstrating a synergistic effect that enhanced the ability to 355 

accurately assess CAD risk. While methods combining information from one or a few 356 

genetic mutations with PRS have been reported 52, our study presented a more 357 

comprehensive approach to combine rare and common variant information. 358 

Furthermore, these findings reinforce the recognition that rare variants, despite their low 359 

frequency, contribute significantly to the genetic architecture of CAD and can help 360 

explain a portion of its missing heritability that common variants alone cannot account 361 

for. 362 

 There are several limitations in the study. First, there was a difference in age 363 

distribution between cases and controls. This discrepancy arose because we specifically 364 

selected early-onset CAD patients for the case group, resulting in a younger average age. 365 

As in previous rare variant studies, we prioritized selecting early-onset CAD cases to 366 

enrich genetic contributions 20. Second, some of the prioritized genes for CAD in this 367 
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study have unknown functions, especially in cluster 6. However, many loci and genes 368 

identified in GWAS on CAD remain functionally uncharacterized, as well 41,53. 369 

Therefore, future research is necessary to investigate the gene function and biological 370 

pathways to CAD development. Third, this study used WGS data from the Japanese 371 

population, so it is not certain whether the RVS created in this study can be applied to 372 

other populations since a PRS derived from GWAS in one population is reported to be 373 

less accurate in other populations 11,54. These results need to be validated in other 374 

populations and prospective cohorts. 375 

 Taken together, our study underscores the important role of rare variants in the 376 

genetic landscape of CAD. By leveraging a machine learning-based framework, we 377 

have revealed CAD-associated genes and pathways influenced by rare variants. Our 378 

results demonstrate the distinct and complementary value of RVS compared to 379 

conventional PRS, highlighting the enhanced predictive power achieved through their 380 

integration. This comprehensive approach offers new insights into the pathogenesis of 381 

CAD, potentially leading to the accurate assessment and management of individual 382 

CAD risk. 383 

384 
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Figure legends 479 

Figure 1. Overview of the current study. 480 

We studied the genetic factors of coronary artery disease (CAD) combining whole-481 

genome sequencing data and a machine learning-based framework named the modified 482 

HEAL method in patients with MI, one of the most severe forms of CAD, and controls. 483 

We sequenced the whole genomes of Japanese CAD patients and controls and applied 484 

the modified HEAL method framework. The framework was based on a sparse 485 

modeling devised to distinguish diseased individuals from controls. After the 486 

hyperparameter tuning and training of the model by the cross-validation method, the 487 

model outputted a list of genes related to CAD, which were subsequently analyzed by a 488 

clustering-based method and mapped on the protein-protein interaction network to 489 

reveal the CAD-associated modules. The function of the identified genes was also 490 

confirmed by the human phenotype and knockout mouse phenotype databases. The 491 

learned (optimized) machine learning model was applied to derive rare variant-based 492 

genetic risk scores (RVS) to predict CAD outcomes in an independent validation cohort. 493 

We also tested the relationship of the RVS with clinical features and common variant-494 

based polygenic risk score (PRS). RVS was combined with PRS to improve the 495 

prediction performance of CAD disease status in the independent validation cohort. BBJ, 496 

BioBank Japan; MI, myocardial infarction; CRS, combined risk score 497 

 498 

499 
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Figure 2. Functional analysis of HEALCAD genes 500 

(A) Fifty-nine genes identified by the machine learning-based framework were 501 

annotated using six different criteria; 1) The constraint score (pLI) from the gnomAD 502 

database 2) Overlap with GWAS on CAD and its risk factor (lipids, diabetes, obesity, 503 

blood pressure, coagulation, smoking) phenotypes, 3) Overlap with the genes in which 504 

GWAS-significant variants act as enhancers, 4) Knock-out mouse phenotype with blood 505 

pressure, diabetes, and lipid traits, 5) Human phenotype ontology and 6) Gene ontology. 506 

Then the fifty-nine genes were grouped into eight clusters by hierarchical clustering 507 

based on functional annotations. For GWAS and Genehancer, red indicates a significant 508 

association and light red denotes suggestive significance. (B) Gene ontology (GO) and 509 

human phenotype ontology (HPO) term enrichment analysis. The GO and HPO 510 

annotation results were based on 59 genes. Gene ontology categories included 511 

molecular function, cellular components and biological process. GO and HPO 512 

categories for each function were sorted by decreasing order of evidence based on the 513 

GO enrichment test P-value. Only the significant categories after multiple test 514 

corrections are shown. (C) The forty-six modules were identified in the protein-protein-515 

interaction network using diffusion component analysis seeded by the 59 HEALCAD 516 

genes. (D) Visualization of the module 119 network of the protein-protein interactions. 517 

The module included important genes involved in cholesterol metabolism, including 518 

LDLR, PCSK9, ANGPTL3, ANGPTL4, and LIPA. GWAS, genome-wide association 519 

study; CAD, coronary artery disease; DM, diabetes mellitus; BP, blood pressure; IMPC, 520 

International Mouse Phenotyping Consortium; HP, human phenotype; GOMF, gene 521 

ontology molecular function; GOBP, gene ontology biological pathway; GOCC, gene 522 

ontology cellular component. 523 
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Figure 3. Rare variant risk score (RVS) and its clinical impact 525 

(A) Correlation between RVS and continuous clinical indices. Data are presented as 526 

Pearson’s correlation coefficients and their 95% confidence intervals (CIs). Exact P 527 

values are shown in Table S9. (B) Kaplan-Meier curves for cardiovascular mortality 528 

among total participants stratified into two groups based on RVS. Participants with high 529 

RVS died significantly earlier than those with low RVS. (C) Kaplan-Meier curves for 530 

cardiovascular mortality among CAD patients (n=200) stratified into two groups based 531 

on RVS. CAD patients with high RVS (top 5%) showed significantly worse 532 

cardiovascular prognosis. LDLC, low-density lipoprotein cholesterol; Tbil, total 533 

bilirubin; ALT, alanine aminotransferase; PTINR, prothrombin time international 534 

normalized ratio; TC, total cholesterol; K, potassium; Hb, hemoglobin; UA, uric acid; 535 

APTT, activated partial thromboplastin time; Alb, albumin; RBC, red blood cell; AST, 536 

aspartate aminotransferase; WBC, white blood cell; CK, creatine kinase; TP, total 537 

protein; Cre, creatinine; DBP, diastolic blood pressure; SBP, systolic blood pressure; 538 

BUN, blood urea nitrogen; TG, triglycerides; CRP, C-reactive protein; PLT, platelet; P, 539 

Phosphorus; γGTP, gamma-glutamyl transpeptidase; BS, blood sugar; LDH, Lactate 540 

dehydrogenase.  541 

 542 

543 
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Figure 4. The Relationship between RVS, PRS, CRS, and clinical indices. 544 

(A) A scatter plot illustrating the relationship between RVS and PRS, with cases (red) 545 

and controls (gray) color-coded. The overall (gray) and case-only (pink) regression lines 546 

and correlation coefficients are shown. A significant negative correlation was observed 547 

in the CAD cases. (B) Correlation between combined risk score (CRS), defined by the 548 

average of RVS and PRS, and continuous clinical indices. Data are presented as 549 

Pearson’s correlation coefficients and their 95% CIs. Exact P values are shown in Table 550 

S11. (C) Correlation between clinical measurements and different genetic risk scores 551 

(RVS, PRS and CRS). Only significant correlations are displayed with a circle. Blue, 552 

positive correlation; red, negative correlation. Larger circles correspond to a stronger 553 

correlation. LDLC, low density lipoprotein cholesterol; Tbil, total bilirubin; ALT, 554 

alanine aminotransferase; PTINR, prothrombin time international normalized ratio; TC, 555 

total cholesterol; K, potassium; Hb, hemoglobin; UA, uric acid; APTT, activated partial 556 

thromboplastin time; Alb, albumin; RBC, red blood cell; AST, aspartate 557 

aminotransferase; WBC, white blood cell; CK, creatine kinase; TP, total protein; Cre, 558 

creatinine; DBP, diastolic blood pressure; SBP, systolic blood pressure; BUN, blood 559 

urea nitrogen; TG, triglycerides; CRP, C-reactive protein; PLT, platelet; P, Phosphorus; 560 

γGTP, gamma-glutamyl transpeptidase; BS, blood sugar; LDH, Lactate dehydrogenase 561 

562 
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Figure 5. The combined RVS and PRS risk score improved CAD prediction 563 

(A) Receiver operating characteristic (ROC) curve for RVS, PRS and CRS (Combined 564 

Risk Score). The curve plots the true positive rate (sensitivity) against the false positive 565 

rate (1-specificity) for different threshold values of the predictive score. The area under 566 

the curve (AUC) is indicated, representing the score's accuracy in predicting the 567 

outcome. The dotted line represents a reference line of no discrimination (AUC = 0.5). 568 

Points on the curve closer to the top-left corner indicate higher diagnostic accuracy. (B) 569 

Precision-recall curve (PRC) for RVS, PRS and CRS. The curve shows the trade-off 570 

between precision (positive predictive value) and recall (sensitivity) at various threshold 571 

levels. The confidence interval for the area under the PRC was estimated from the 572 

20,000 times bootstrap replication method. (C) Boxplot of Pseudo R2 for CAD 573 

prediction performance. This box plot displays the pseudo-R2 values comparing the 574 

CAD prediction performance of RVS, PRS and CRS. The distribution of pseudo-R2 was 575 

estimated from 20,000 times bootstrapping. The box plot center line represents the 576 

median, the bounds represent the first and third quartile, and the whiskers reach to 1.5 577 

times the interquartile range.  578 
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Tables 579 

Table 1. Demographic features of participants 580 

Data Disease 

status 

Total 

N 

Males Age (years) BMI (kg/m2) Age at MI onset (years) 

N % Mean SD Mean SD Mean SD 

Discovery 

cohort 

Case 1,752 1,617 92.29 60.1 13.7 25.0 3.4 47.4 4.1 

Control 3,019 1,205 39.91 55.3 8.0 23.9 4.0 - - 

Validation 

cohort 

Case 200 183 91.50 43.8 9.8 26.5 4.3 36.0 3.9 

Control 824 420 50.97 49.3 13.0 22.9 3.8 - - 

SD, standard deviation; BMI, body mass index; MI, myocardial infarction 581 
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STAR Methods 583 

Code availability 584 

 The code of the modified HEAL framework is available on 585 

https://github.com/pirocv/HEAL. 586 

Study cohort 587 

 Two previously described cohorts were used in the current study. BioBank 588 

Japan (BBJ) is a hospital-based Japanese biobank project including clinical and genetic 589 

data from a variety of patients 55,56. Participants were recruited from 12 hospitals 590 

throughout Japan. The Nagahama Prospective Genome Cohort (Nagahama study) is the 591 

genome cohort conducted in Shiga, Japan. Participants aged 30–74 years were recruited 592 

from the general population in Nagahama city from 2007 to 2010 57. 593 

 594 

Whole genome sequencing and quality control 595 

 We sequenced 1,765 CAD patients and 3,148 controls from the cohort. Whole 596 

genome sequence (WGS) was performed on Illumina’s HiSeqX aiming at 15x depth, 597 

using 150-base pair-end reads. We also sequenced an additional 200 CAD cases and 836 598 

controls aiming at 30x depth using 150-base paired-end reads. In order to enrich for a 599 

genetic contribution to disease 20, we prioritized patients with early-onset MI, one of the 600 

most severe forms of CAD, within the BBJ cohort for WGS (age of MI onset in 15x and 601 

30x WGS cohort: 47.4 ± 4.1 years and 36.0 ± 3.9 years, respectively). Sequenced reads 602 

were aligned to the hs37d5 reference genome using BWA software 58. The genotypes of 603 

the samples were called using the HaplotypeCaller implemented in GATK v3.8. Per-604 

sample Genomic Variant Call Format (gVCF) genotype data were merged and jointly 605 

called using GenotypeGVCFs. We defined exclusion filters for genotypes as follows. 606 
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(1) For 15x depth data, filtered depth (DP) < 2, quality of the assigned genotype 607 

(genotype quality; GQ) < 20. (2) For 30x depth data, DP < 5, GQ < 20, DP > 60 and GQ 608 

< 95. We set these genotypes as missing and excluded variants with call rates < 90% 609 

before variant quality score recalibration. For sample quality control, the following 610 

samples were excluded: (1) age < 20 years old, (2) excess missing genotypes (> 10%), 611 

(3) samples whose genetically inferred sex did not match the self-reported sex, (4) 612 

closely related samples estimated by identity-by-descent and identity-by-state analysis 613 

(Pi-hat > 0.1875) and (5) excess heterozygosity. We also excluded non-Japanese 614 

participants estimated from Principal component analysis (PCA) calculated using 615 

PLINK 2.0 59. The total number of genomes that failed data quality control is 616 

summarized in Table S13. After the sample quality control, we retained 1,752 CAD 617 

case samples and 3019 non-CAD control samples for 15x depth data and 200 case 618 

samples and 824 control samples for 30x depth. Then, the variant quality control was 619 

performed excluding (1) high missingness (5% for 15x depth and 1% for 30x depth), (2) 620 

Hardy-Weinberg equilibrium (P < 1 *10-6), (3) variants in the low complexity region. 621 

WGS data with 15x depth data was used as a discovery cohort and the 30x depth data 622 

was used as the validation cohort in the machine learning-based analysis. 623 

 624 

Single variant association analysis 625 

The single variant association test was performed by logistic regression 626 

implemented in PLINK 2.0 60 with adjustment for age, sex, and the first 10 principal 627 

components of ancestry. Principal components of ancestry were calculated using PLINK 628 

2.0 59. The inclusion of principal components as covariates in the logistic regression 629 

analysis increases the power to detect true genetic associations and minimizes 630 
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confounding by population stratification 61. Variants with a missing rate of less than 631 

0.01 were included in the analysis. Genomic inflation factor (λ��) was calculated using 632 

variants with MAF ≥ 0.001. Single variant association analysis was also performed 633 

using SAIGE 62 with adjustment for age, sex, and the first 10 principal components of 634 

ancestry. SAIGE is widely used in GWASs for binary traits to account for population 635 

structure and relatedness while correcting for the type I error rates 62. The genome-wide 636 

significance threshold was set at P = 5 * 10-8. To define a locus, we added 500 kb to 637 

both sides of each genome-wide significant SNP and merged overlapping regions. To 638 

determine whether each locus was novel, a literature search was conducted to ascertain 639 

if any of the regions contained SNPs had been previously reported as significant for 640 

CAD. 641 

 642 

Aggregated rare variant association analysis 643 

 We also performed gene-based association analysis using SAIGE-GENE+ 644 

software, which accounts for the relatedness among the study samples 63,64. We first 645 

calculated sparse GRM using the WGS data and fit the null model in the SAIGE-646 

GENE+ algorithm step1. For the gene-based association analysis, we extracted rare 647 

(MAF < 0.001) nonsynonymous variants including (nonsynonymous single nucleotide 648 

variations (SNV), nonframeshift insertion, nonframeshift deletion, frameshift insertion, 649 

frameshift deletion, stopgain, stoploss, and splice site variants). Splice-site variants, 650 

pLOF variants and damaging missense variants defined by a REVEL score > 0.5 65 were 651 

included in the analysis. SKAT-O test implemented in SAIGE-GENE+ software was 652 

performed with adjustment for age, sex and first 10 principal components of ancestry. 653 

Gene-wide significance threshold and suggestive threshold were set at P = 2.5 * 10-6 654 
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and P = 5 * 10-4, respectively. Statistical inflation was estimated by Q-Q plot. 655 

 656 

Machine learning-based analysis (modified HEAL) 657 

 We employed a recently developed machine learning-based rare variant 658 

analysis method called HEAL (hierarchical estimate from agnostic learning). A detailed 659 

HEAL method is described in the original paper 19. In this framework (Figure S8), we 660 

first annotated each variant using ANNOVAR software 66 and extracted rare 661 

nonsynonymous variants (nonsynonymous SNV, nonframeshift insertion, nonframeshift 662 

deletion, frameshift insertion, frameshift deletion, stopgain, stoploss, and splice site 663 

variants) that were not present in the East-Asian populations analyzed in the 1000 664 

Genomes Project 67. Variants with high frequency in the WGS data and gnomAD East 665 

Asian database 68 (MAF > 0.1) were also filtered. To estimate the mutation burden for 666 

each gene based on the rare variants, we used the REVEL score (ranges from 0 to 1 with 667 

a higher score indicating a damaging variant), which was internally computed by 668 

ANNOVAR software. The deleteriousness score of the putative loss of function (pLOF) 669 

variants, such as stopgain and splice site variants, was set as 1. Next, we calculated the 670 

cumulative effects of rare nonsynonymous variants for each gene as  671 

��� � � ����
���

���

 

, where ��� is the mutation burden of the gene i of nth sample, ��� is the number of rare 672 

nonsynonymous variants, ���� is the deleteriousness score for variant j of gene i. Using 673 

the above formula, we obtained a matrix of estimated mutation burden for each gene per 674 

sample (�	 � ���� , �
� , … , ���� , where m is the number of the total genes). The 675 

mutation burden was standardized (Z-score normalization). We trained a regularized 676 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.13.24311909doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311909
http://creativecommons.org/licenses/by-nd/4.0/


 
 

34

logistic regression model for a genome-based CAD prediction model. The input of the 677 

model is the calculated mutation burden and the output is the probability of CAD as 678 

shown in the following equation. 679 

��
 � ���� � 1|�	� � σ����	� � 1
1 � ��������	� 

, where �� is the label for CAD case (1) or control (0), ��
 is the probability of being 680 

CAD positive given the mutation burden �	  for the nth sample, σ  is the sigmoid 681 

function and � is the weight vector. To identify the optimal coefficient vector  � that 682 

achieve the maximum consistency between the model probabilities ( ��
 ) and the 683 

observations for the cohort (���, we solved the following optimization problem. 684 

���
�

� 1
� � �� ��� ��





���

� �1 � ��� ����1 � ��
� � λ�|�|�
�
 

In this regularized logistic regression, regularization strength is determined by 685 

parameter λ, and it is a hyperparameter of the machine learning model, which was 686 

determined by the cross-validation method (Figure S5). By training the model to 687 

predict disease status, it outputs the minimal set of most distinguishing features (genes) 688 

for CAD. The trained model can be used to estimate the rare variant-based disease risk 689 

score (RVS) from the genomic data. We have named this the modified HEAL because 690 

our approach differs from the original method in that we included not only missense 691 

variants but also pLOF variants. We determined the hyperparameters using grid search 692 

and estimated the performance in the independent cohort to avoid bias and 693 

overestimation of the model’s performance, while the performance was estimated using 694 

internal cross-validation in the original method. 695 

 696 
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Interpretation of genes identified by modified HEAL 697 

To investigate the functions of the 59 identified genes, we first annotated each 698 

one using various databases and then conducted clustering analysis to categorize the 699 

groups of genes to obtain the eight functional groups. Annotations included checking 700 

the constraint score (pLI) from the gnomAD database 68, identifying whether the genes 701 

were reported in previous GWAS on CAD and its risk factors (lipids, diabetes, obesity, 702 

blood pressure, coagulation function, and smoking-related phenotypes) using the 703 

GWAS Catalog, and checking for the overlap with target genes of enhancers that were 704 

significant in previous GWAS on CAD and its risk factors (same as above) using the 705 

GeneHancer database, which includes genome-wide enhancers and their target genes 21. 706 

Further analysis involved examining the International Mouse Phenotyping Consortium 707 

(IMPC) database to determine if the corresponding genes in knock-out mice are 708 

significantly related to phenotypes such as blood pressure, blood glucose and lipid traits. 709 

Enrichment analysis for Gene Ontology and Human Phenotype Ontology was 710 

performed using g:Profiler 69 to gain insights into the biological processes and human 711 

phenotypic abnormalities associated with these genes 22. We considered statistical 712 

significance for the enrichment analysis with a false discovery rate under 0.1. 713 

To analyze the functional modules in CAD, we downloaded the human 714 

protein-protein interactions (PPIs) from STRING v12.0, comprising 19,622 proteins and 715 

6,857,702 interactions. High-confidence PPIs (combined score >700) were extracted for 716 

downstream analysis, including 16,185 proteins and 236,000 interactions. To remove 717 

bias from hub proteins, we applied the random walk with restart (RWR) algorithm with 718 

a restart probability of 0.5. This produced a smoothed network after retaining the top 719 

5% predicted edges (n = 6,243,766). We employed the Louvain method 70 to decompose 720 
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the network into different modules. Following algorithm convergence, we obtained 721 

1,261 modules with an average size of 13 nodes. Among the 1,261 PPI modules, 46 722 

encompassed at least one gene identified by the machine learning analysis. We used 723 

g:profiler to determine functional enrichment for each module. Cytoscape software 71 724 

was used to visualize the PPI modules. 725 

 726 

Genetic risk scores 727 

By optimizing the machine learning-based model, the modified HEAL 728 

framework can also make a prediction of disease based on the input genome. We call it 729 

rare variant-based genetic risk score (RVS) because it only leverages information on 730 

rare variants. Using the trained model, we estimated the RVS prediction performance in 731 

the validation cohort. We also analyzed the association between RVS and clinical 732 

parameters such as vital signs and blood test data in the BBJ data using Pearson’s 733 

correlation. To investigate the prognostic impact of RVS, we divided the patients into 734 

those in the top 5% and those below, then compared their outcome using Kaplan-Meier 735 

analysis and a log-rank test. To compare the properties between RVS and the common 736 

variant-based polygenic risk score (PRS), GWAS of CAD in BBJ (case 25,668 vs 737 

control 141,667) was performed. The individuals included in the GWAS were 738 

genotyped using the HumanOmniExpressExome v.1.0/v.1.2 platform (Illumina) or in 739 

combination with HumanOmniExpress v.1.0 and Human Exome BeadChip v.1.0/v.1.1 740 

(Illumina). For genotype quality control, variants with (1) SNP call rate < 99%, (2) 741 

Hardy–Weinberg equilibrium (P < 1 *10-6) and (3) heterozygous counts <5 were 742 

excluded. We performed pre-phasing using Eagle software. Phased haplotypes were 743 

imputed to the in-house reference panel from BBJ 11 by minimac3 72. Variants with low 744 
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imputation quality (R2<0.3) were excluded. GWAS was performed by logistic 745 

regression implemented in PLINK 2.0 60 with adjustment for age, age2, sex and first 10 746 

principal components of ancestry. Then PRS of ith sample was calculated as follows 747 

� !� � � "�,�
�

���

β� 

, where M is the number of variants in GWAS, "�,� is the number of effect allele of jth 748 

variant in ith sample, and β�  is the effect size of jth variant estimated by GWAS. The 749 

number of variants included in the PRS calculation was determined by the pruning and 750 

thresholding method 13. The relationship between RVS and PRS was examined by 751 

Pearson’s correlation coefficient, both in cases only and across the validation cohort. We 752 

then integrated both RVS and PRS by normalizing (mean 0, standard deviation 1) and 753 

adding them together to obtain combined risk score (CRS). The predictive performance 754 

of each genetic score was estimated on the validation cohort, which was not used in the 755 

derivation of the RVS, PRS, or CRS. We used receiver operating characteristics (ROC) 756 

to evaluate the predictive performance. To examine whether CRS improves predictive 757 

performance compared to conventional PRS, we compared AUROC of PRS and CRS 758 

by DeLong’s test. We also calculated the area under precision-recall curve (AUPRC) 759 

and Nagelkerke's pseudo R2 metrics. The P values were derived using a 20000 times 760 

bootstrap replication method. In all statistical analyses, R software was used and a two-761 

sided P < 0.05 was considered statistically significant. 762 

 763 

764 
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