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1. Abstract 

During the pandemic, there was concern that underascertainment of COVID-19 outcomes may impact 

treatment effect estimation in pharmacoepidemiologic studies. We assessed the impact of outcome 

misclassification on the association between inhaled corticosteroids (ICS) and COVID-19 hospitalisation 

and death in the UK during the first pandemic wave using probabilistic bias analysis (PBA). 

Using data from Clinical Practice Research Datalink Aurum, we defined a cohort with chronic obstructive 

pulmonary disease (COPD) on 01 Mar 2020. We compared the risk of COVID-19 hospitalisation and death 

among users of ICS/long-acting β-agonist (LABA) and users of LABA/LAMA using inverse-probability 

of treatment weighted (IPTW) logistic regression. We used PBA to assess the impact of non-differential 

outcome misclassification. We assigned beta distributions to sensitivity and specificity and sampled from 

these 100,000 times for summary-level and 10,000 times for record-level PBA. Using these values, we 

simulated outcomes and applied IPTW logistic regression to adjust for confounding and misclassification. 

Sensitivity analyses excluded ICS+LABA+LAMA (triple therapy) users. 

Among 161,411 patients with COPD, ICS users had increased odds of COVID-19 hospitalisations and 

death compared with LABA/LAMA users (OR for COVID-19 hospitalisation 1.59 (95% CI 1.31 – 1.92), 

OR for COVID-19 death 1.63, 95% CI 1.26 – 2.11). After IPTW and exclusion of people using triple 

therapy, ORs moved towards null. All implementations of QBA, both record and summary-level PBA, 

modestly shifted ORs away from the null and increased uncertainty.  

The results provide reassurance that outcome misclassification was unlikely to change the conclusions of 

the study but confounding by indication remains a concern. 
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2. Introduction 

At the beginning of the pandemic, there was concern that people with chronic respiratory diseases may be 

at increased risk of severe COVID-19 outcomes. However, early data suggested that patients with asthma 

or chronic obstructive pulmonary disease (COPD) were not substantially overrepresented among COVID-

19 deaths or hospitalisations[1]. 

Inhaled corticosteroids (ICS), anti-inflammatory drugs widely used as maintenance medications in 

COPD[2], were investigated as a potential repurposed drug treatment for COVID-19, as it was unclear 

whether ICS were associated with COVID-19 outcomes due to their immunosuppressant effects[1,3]. 

These effects may have different consequences at different stages of infection[4]. Several observational 

studies investigated the impact of ICS on COVID-19 outcomes but found inconsistent results that may be 

affected by biases[5–9]. RCTs consequently suggested a strong protective effect of one inhaled ICS, 

budesonide, on severe COVID-19 outcomes in patients with mild COVID-19[10,11]. 

Many observational studies considered the role of potential measured and unmeasured confounding in 

detail[5–8], but the potential role of misclassification has received less attention to date. Outcome 

misclassification is likely to have occurred during the rollout and use of new ICD-10 codes denoting 

COVID-19 diagnoses particularly in the first wave of the pandemic[12,13]. In particular, there was concern 

that COVID-19 mortality would be underestimated by about one third when considering official reports 

of deaths registered as due to COVID-19 as opposed to excess all-cause mortality[13]. 

This study aims to assess the impact of ICS/LABA (long-acting β-agonist) use compared with 

LABA/LAMA (long-acting muscarinic antagonist) use on the risk of hospitalisation or death due to 

COVID-19 during the first wave of COVID-19 in the UK (March 2020 – August 2020). We conducted 

quantitative bias analysis (QBA) to measure the potential impact of outcome misclassification on the effect 

estimates.  
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3. Methods 

The study protocol was registered on ENCEPP EU PAS (register number 47885), and we completed the 

RECORD-PE checklist (S1.1)[14]. 

Study design 

Data source 

This study used data routinely collected patient data from primary care in the UK recorded in the Clinical 

Practice Research Datalink (CPRD) Aurum. CPRD Aurum includes data on 41 million patients (May 2022 

build), with over 13 million patients currently registered (20% of the UK population)[15] from over 1,300 

GP practices which use EMIS GP patient management software[15]. CPRD Aurum has been shown to be 

broadly representative of the English population in terms of age, gender, geographical spread and 

deprivation[16].  

 CPRD Aurum was linked to Hospital Episode Statistics (HES) Admitted Patient Care (APC) and Office 

for National Statistics (ONS) Death Registry[16,17]. HES APC holds information on all in-patient contacts 

at NHS hospitals in England[17,18]. The ONS death registry contains information on deaths occurring in 

England and Wales, including a cause of death documented using International Classification of Disease 

10th revision (ICD-10) codes[18,19]. Data was also linked to the Index of Multiple Deprivation (IMD), a 

postcode-level indicator of socioeconomic status. 

Study population 

We defined a cohort of people with a code for COPD before 01st March 2020 (i.e, the index date) based 

on a validated algorithm to identify COPD in CPRD[20]. Patients had to be alive, aged 35 or older, and 

registered in CPRD Aurum on 01st March 2020. Included patients needed to have 12 months’ continuous 

registration before the index date and a record of current or former smoking at any point before the index 

date. In the main analysis, we excluded people with asthma diagnoses recorded within three years before 

the index date, leukotriene receptor antagonist use within four months before the index date as this indicates 

asthma, or other chronic respiratory disease at any point before the index date. Patients were followed up 

until death (recorded in ONS or CPRD), deregistration, or 31st August 2020, whichever came first. If death 

was registered in ONS, we used that date as the date of death. If death was missing in ONS but registered 

in CPRD, we used the date recorded in CPRD as the date of death. A study diagram[21] can be found in 

S1.2. 

Exposure 

Continuous treatment episodes were generated based on the recorded prescription issue date and 

information on the intended duration, prescribed amount, and dosage (S1.3). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311341doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311341
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

We used the derived start and end dates for treatment exposures to identify people exposed to ICS/LABA 

or LABA/LAMA on the index date either as combined or separate inhalers. ICS/LABA was the exposure 

of interest and LABA/LAMA was the active comparator. People using ICS+LABA+LAMA (henceforth 

referred to as triple therapy) were included in the ICS/LABA group but were excluded in a sensitivity 

analysis.  

Outcome 

The outcomes were i) hospitalisation with a primary diagnosis code for COVID-19 as recorded in HES 

APC, and ii) death with a diagnosis code for COVID-19 as a cause of death anywhere on the death 

certificate recorded in the ONS Death Registry. Diagnostic codes for both COVID-19 hospitalisation and 

death were ICD-10 U07.1 and U07.2.  

Covariates 

Results were adjusted for the following baseline covariates: age, gender, BMI (most recent and within the 

previous 10 years, categorised as underweight (<18.5), normal weight (18.5-24.9), overweight (25-29.9), or 

obese (≥30)), smoking (current vs former), ethnicity, cancer (ever), diabetes (ever), chronic kidney disease 

(ever), cardiovascular disease (ever), hypertension (ever), asthma (not within the past 3 years), 

immunosuppression, receipt of influenza vaccine (past year), receipt of pneumococcal vaccine (past 5 

years), index of multiple deprivation quintile (IMD), and COPD exacerbation in the past 12 months. COPD 

exacerbations were identified based on a validated algorithm using a combination of codes for COPD 

exacerbations, lower respiratory tract infections, respiratory symptoms, and antibiotic or oral corticosteroid 

prescriptions[22]. 

Statistical analyses 

We summarised the characteristics of the cohort using descriptive statistics by exposure group. There were 

missing data for BMI, ethnicity and IMD. Missing BMI values were assumed to be normal BMI in line with 

previous work[23]. Missing ethnicity and IMD were treated as a separate category.  

We estimated propensity scores (PSs) and used inverse probability of treatment weighting (IPTW) to 

estimate the average treatment effect (ATE) adjusting for potential confounders. PSs were estimated using 

logistic regression including the covariates listed above. Weights were calculated as 
1

𝑝𝑠
 (ICS) and 

1

1−𝑝𝑠
 

(LABA/LAMA), where the PS is the probability of receiving ICS. Overlap of the PSs across treatment 

groups was assessed graphically and by summarising by treatment group. PSs were trimmed to the region 

of common support[24]. 

Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the 

association between exposure and the outcomes. This was done to make estimates comparable across 

analyses, as simple bias analysis (SBA) and summary-level probabilistic bias analysis (PBA) are conducted 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311341doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311341
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

based on 2x2 table, generating relative risks or ORs as relative effect estimates. Additionally, follow-up was 

short and censoring low (S1.6), so time-to-event was not taken into account in this analysis. 

3.1. Quantitative bias analysis 

Quantitative bias analysis for outcome misclassification 

We used SBA and PBA[25] to investigate the potential impact of outcome misclassification using methods 

based on Fox et al[26]. We used estimates of sensitivity and specificity as bias parameters to describe our 

assumptions about the accuracy of COVID-19 hospitalisation as recorded in HES, and COVID-19 death 

as recorded in the ONS death registry. We assumed that outcome misclassification was non-differential 

with respect to the exposure, as hospitalisations and deaths would have been coded without knowledge of 

the exposure. This also implies that exposure is not associated with characteristics that may predict outcome 

validity. We assumed the occurrence and dates recorded in HES and ONS to be correct, and corrected only 

for misclassification of recorded causes of hospitalisations and deaths. Therefore, correction for outcome 

misclassification was conducted only among people who were hospitalised or died of any cause. This was 

done by conducting the QBA steps in a reduced dataset including only patients hospitalised or who died; 

patients without a hospitalisation or death were consequently added back in to calculate the effect estimates 

in the entire population. Code illustrating these steps is available on our GitHub repository.  

Initially, we conducted SBA using available tools[27] and bias formulas using best estimates of sensitivity 

and specificity. We then performed both summary-level and record-level PBA that involved Monte-Carlo 

sampling of the bias parameter values from prespecified distributions for both outcomes. PBA, while more 

analytically and computationally complex than SBA, offers several advantages, including the ability to 

incorporate uncertainty regarding the values of bias parameters, and analytical flexibility. The simulation 

interval (SI) generated during PBA incorporates the systematic error arising from the modelled bias, the 

random error arising from the misclassification process, and the conventional random error. A full 

description of the method is available in S4.4 and S4.5. 

Bias parameter values and distributions 

Hospitalisations 

In the absence of direct evidence from UK, values for sensitivity and specificity of hospital diagnoses were 

estimated based on validation studies conducted in North America and bounds given by the data[28,29]. 

Kadri et al. estimated a sensitivity of 98.01% (97.63% – 98.39%), and a specificity of 99.04% (98.95% - 

99.13%) in an administrative database in the US during April and May 2020. The reference was SARS-CoV-

2 PCR test results[28]. A validation study conducted in Alberta, Canada using hospital admissions between 

March 2020 and February 2021 estimated a sensitivity of ICD-10 code U07.1 of 82.5% (81.8% - 83.2%) 

when using SARS-CoV-2 PCR test results as the gold-standard[29]. Based on these validation studies, we 

estimated that sensitivity would have a median of 0.90 and lie between 0.80 and 0.96. The 2x2 table indicated 
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that specificity had a lower bound of 95%, as only 5% of patients with a hospitalisation had a COVID-19 

hospitalisation, so the proportion of false-positive COVID-19 hospitalisations could not exceed 5%. We 

assigned parameter values to beta distributions based on the mean and variance of the target 

distributions[30]. For sensitivity, we parameterised a beta distribution with median = 0.90, 2.5th percentile 

= 0.80 and 97.5th percentile = 0.96 (α = 47.7, β = 5.5). For specificity, we used a beta distribution with 

median = 0.98, 2.5th percentile = 0.95, 97.5th percentile = 0.999 (α = 1, β = 1, transformed to have a lower 

bound of 0.95). These distributions resulted in negative cell counts in the 2x2 table in approximately 28% 

of iterations, indicating incompatibility with the data[30]. As the negative cell counts were driven by false-

positive COVID-19 hospitalisations (i.e., specificity), we subsequently increased the lower bound of the 

specificity distribution to 0.97 in order to obtain plausible results.   

Deaths 

For COVID-19 deaths, data on excess deaths[31] and reported COVID-19 deaths in England and 

Wales[32] was used to inform estimates of sensitivity and specificity. Assuming that all excess deaths in the 

UK between 01 March 2020 and 07 May 2020 were true COVID-19 deaths, we estimated a sensitivity of 

72.2% and a specificity of 96.6% among those who died of any cause, as recorded in ONS or CPRD. The 

calculations of the parameter values can be found in S4.2. We assumed that the sensitivity and specificity 

estimates would be within a 10% range of the point estimate, and we parameterised a beta distribution for 

sensitivity with values median = 0.72, 92.5th percentile = 0.60, 97.5th percentile = 0.83 (α = 39.6, β = 15.4). 

For specificity, we used a beta distribution with median = 0.96, 2.5th percentile = 0.91, 97.5th percentile = 

0.99 (α = 91.2, β = 3.9). Graphs of all bias parameter distributions can be found in S4.3. 

Table 1 Decisions related to the implementation of quantitative bias analysis 

 Hospitalisation Death 

Bias parameters Sensitivity and Specificity Sensitivity and Specificity 

Simple Bias Analysis 

Values  Se = 90.5%, Sp = 96.0% Se = 72.2%, Sp = 96.6% 

Source/rationale Validation studies from the US and 
Canada[28,29,33] Bounds given by 
data. 

Data on excess deaths in the UK (March 
– May 2020)[31,32] 

Differential with respect to 
exposure status? 

No No 

Probabilistic Bias Analysis 

Type of distribution Beta Beta 

Values (distribution) 
Se ~ beta(47.7, 5.5) 

1. Sp = 0.95 + 0.05X, where X 

~ beta(1, 1) 

2. Sp = 0.97 + 0.03X, where X 

~ beta(1,1) 

Se ~ beta(39.6, 15.4) 

Sp ~ beta(91.2, 3.9) 

Source/rationale Assumed Se would lie within ca. 10% 
either side of the point estimate. Our 

Assumed Se would lie within ca. 10% 
either side of the point estimate. 
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Quantitative bias analysis 

For QBA, we constructed 2x2 tables for the relevant population by restricting to people who were 

hospitalised or died of any cause. Using available tools[27], we applied the best estimates of the bias 

parameters (Se = 90.5%, Sp = 96.0% for COVID-19 hospitalisations, Se = 72.2%, Sp = 96.6% for COVID-

19 deaths) to conduct SBA. For summary-level PBA, we then sampled from the specified distributions 

100,000 times, applied the sampled values to correct the 2x2 tables, and calculated the bias-adjusted effect 

estimate and the 95% SI. Patients with multiple hospitalisations during the follow-up period were counted 

as having a COVID-19 hospitalisation if any of those hospitalisations were recorded as being due to 

COVID-19. If none of the hospitalisations were recorded as due to COVID-19, we only counted that 

patient once. Therefore, the 2x2 table contained individual patients rather than individual hospitalisations. 

For record-level correction, we sampled from each distribution 10,000 times and corrected the outcome 

for each individual record following the steps described in Fox et al[26]. 

After each iteration within the simple, summary and record-level correction that was conducted on a dataset 

restricted to people who were hospitalised or died of any cause, we added back in patients without 

hospitalisations or deaths to conduct both unweighted and IPT-weighted logistic regression on the entire 

population, generating bias-adjusted ORs with 95% SIs. As patients could have multiple hospitalisations 

during the study period, we simulated the potential outcome misclassification for each hospitalisation, and 

selected the first one that was simulated as being due to COVID-19 to determine the outcomes. 

Sensitivity analyses 

To improve comparability of the treatment groups, we excluded people using triple therapy, as we expected 

they would be sicker than those using dual therapy. To assess the robustness of the results with respect to 

the definition of exposure, we changed the definition of the discontinuation date to 6 months after the last 

prescription issue date, not taking into account estimated treatment duration. We included people who met 

some of the exclusion criteria, i.e., people with COPD who also had asthma or other respiratory diseases, 

to increase the power of the analyses. 

There were some deaths registered in CPRD that were not registered in ONS (~10% of deaths). CPRD 

does not record a cause of death. Therefore, we performed an analysis where we classed those missing 

causes of death as recorded as due to COVID-19 to assess whether the classification of those deaths would 

have affected our results. 

data suggested Sp had a lower bound 
of 95%. 

Assumed Sp would lie roughly 4% 
either side of the point estimate. 

Number of samples 
(summary-level) 

100,000 100,000 

Number of samples (record-
level) 

10,000 10,000 

Correlations of distributions none none 
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We repeated the summary-level PBA to simulate differential misclassification of COVID-19 deaths by 

varying the sensitivity among the treatment groups between 0.6 and 1, assuming that causes of death were 

more likely to be misclassified among people using triple therapy if they were more likely to die outside of 

hospital, e.g., in care homes. If the misclassification were differential, we assumed this would affect 

sensitivity more than specificity (i.e., some cases may be missed), so we used a fixed specificity of 0.97 and 

varied the sensitivity.  

Data was managed using Stata version 17.0[34] and analysis carried out using R (version 4.3.3)[35]. Code 

lists and data management and analysis code can be found on our GitHub repository 

(https://github.com/bokern/ics_covid). 
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4. Results 

Description of the study population 

The cohort included 161,411 patients with COPD (flowchart in S1.4). Of those, 56,059 (35.37%) were 

using ICS/LABA at baseline, and 22,319 (13.81%) were using LABA/LAMA. For both outcomes and 

treatment groups, the median follow-up time was 183 days, the length of the study period. The proportion 

of patients censored for any reason was 6.45% for COVID-19 hospitalisations and 6.06% for COVID-19 

deaths (S1.6). 

Cohorts were similar in all measured covariates apart from proportion of people with a history of asthma, 

and COPD exacerbations in the past year, both of which were higher in the ICS group than the 

LABA/LAMA group (Table 2). After applying IPTWs, treatment groups were balanced on all covariates.  

Table 2 Baseline demographic and clinical characteristics of patients in the cohort before and after inverse probability of treatment 
weighting. 

 Before weighting After inverse probability of treatment 
weighting 

 ICS   
N = 56,059 

LABA/LAMA   
N = 22,319 

SMD ICS   
N = 56051 

LABA/LAMA   
N = 22324 

SMD 

Age       

Mean (SD) 71.3 (10.5) 70.8 (10.2) 0.0480 71.18 (10.46) 71.19 (10.30) -0.00170 

Median   
 (25%-75%) 

71.7   
(64.7-78.7) 

71.7   
(63.7-77.7) 

 71.67   
(63.67-78.67) 

71.67   
(64.67-78.67) 

 

Gender       

Male 29,830 (53%) 12,245 (55%)  30,094 (54%) 12,036 (54%)  

Female 26,229 (47%) 10,074 (45%) 0.0166 25,957 (46%) 10,287 (46%) 0.00226 

BMI       

Underweight 
(<18.5) 

3,142 (5.6%) 970 (4.3%) 0.0126 17,928 (32%) 7,112 (32%) 0.000344 

Normal (18.5-
24.9) 

18,163 (32%) 6,926 (31%) 0.0136 2,936 (5.2%) 1,162 (5.2%) 0.00126 

Overweight (25-
29.9) 

17,349 (31%) 7,172 (32%) -0.0118 17,529 (31%) 6,979 (31%) 9.41E-05 

Obese (>=30) 17,405 (31%) 7,251 (32%) -0.0144 17,658 (32%) 7,071 (32%) -0.00170 

Ethnicity       

White 49,390 (88%) 19,584 (88%) 0.00370 49,334 (88%) 19,648 (88%) 3.14E-05 

South Asian 742 (1.3%) 197 (0.9%) 0.00423 665 (1.2%) 280 (1.3%) -0.000678 

Black 351 (0.6%) 130 (0.6%) 0.000438 345 (0.6%) 140 (0.6%) -9.71E-05 

Mixed 142 (0.3%) 49 (0.2%) 0.000338 138 (0.2%) 61 (0.3%) -0.000276 

Unknown 5,434 (9.7%) 2,359 (11%) -0.00870 5,569 (9.9%) 2,195 (9.8%) 0.00102 

Smoking       

Current 
smoking 

22,763 (41%) 10,073 (45%)  23,489 (42%) 9,335 (42%)  

Former 
smoking 

33,296 (59%) 12,246 (55%) 0.0452 32,562 (58%) 12,989 (58%) -0.000910 

Index of Multiple 
Deprivation 

      

1 7,178 (13%) 3,048 (14%) -0.00846 7,310 (13%) 2,891 (13%) 0.000934 

2 9,213 (16%) 3,813 (17%) -0.00649 9,321 (17%) 3,730 (17%) -0.000787 

3 9,971 (18%) 4,077 (18%) -0.00480 10,051 (18%) 4,022 (18%) -0.000835 

4 12,722 (23%) 5,012 (22%) 0.00235 12,680 (23%) 5,061 (23%) -0.000502 

5 16,945 (30%) 6,357 (28%) 0.0174 16,659 (30%) 6,609 (30%) 0.00114 

Missing 30 (<0.1%) 12 (<0.1%) -2.44E-06 29 (<0.1%) 11 (<0.1%) 5.40E-05 

Diabetes 14,081 (25%) 5,517 (25%) 0.00397 14,021 (25%) 5,617 (25%) -0.00146 

Hypertension 28,603 (51%) 11,319 (51%) 0.00311 28,563 (51%) 11,415 (51%) -0.00173 

Cardiovascular 
disease 

16,772 (30%) 6,540 (29%) 0.00618 16,682 (30%) 6,665 (30%) -0.000911 

Cancer 10,543 (19%) 4,416 (20%) -0.00974 10,697 (19%) 4,270 (19%) -0.000435 

Past asthma 15,346 (27%) 2,665 (12%) 0.154 12,875 (23%) 5,141 (23%) -0.000602 

Kidney impairment 16,724 (30%) 6,738 (30%) -0.00352 16,800 (30%) 6,758 (30%) -0.00300 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 14, 2024. ; https://doi.org/10.1101/2024.08.13.24311341doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.13.24311341
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Immunosuppressi
on 

665 (1.2%) 277 (1.2%) -0.000547 674 (1.2%) 268 (1.2%) 1.33E-06 

Influenza vaccine 44,905 (80%) 17,962 (80%) -0.00373 44,954 (80%) 17,898 (80%) 0.000252 

Pneumococcal 
vaccine 

5,985 (11%) 3,237 (15%) -0.0382 6,598 (12%) 2,636 (12%) -0.000376 

COPD 
exacerbation in 
past 12 months 

22,809 (41%) 6,222 (28%) 0.128 20,759 (37%) 8,290 (37%) -0.00100 

BMI = Body Mass Index, ICS = Inhaled corticosteroid, LABA = Long-acting β-agonist SD = Standard Deviation, SMD = 
Standardised Mean Difference 

 

Table 3 Observed outcomes by treatment group 

 ICS   
N = 56059 

LABA/LAMA   
N = 22319 

COVID-19 hospitalisation 529 (0.9%) 133 (0.6%) 

COVID-19 death 294 (0.5%) 72 (0.3%) 

All-cause mortality 1,969 (3.5%) 574 (2.6%) 

 

Association between ICS and clinical outcomes 

662 COVID-19 hospitalisations and 366 COVID-19 deaths occurred in the study period Table 3). In 

unadjusted models, people using ICS were at increased risk of all outcomes compared with people using 

LABA/LAMA (OR for COVID-19 hospitalisation 1.59 (95% CI 1.31 – 1.92), OR for COVID-19 death 

1.63 (95% CI 1.26 – 2.11)) (Fig. 1). After IPTW, ORs shifted slightly towards the null (OR for COVID-19 

hospitalisation 1.46 (95% CI 1.21 – 1.76), OR for COVID-19 death 1.42 (95% CI 1.11 – 1.82)). We also 

observed an increased risk of all-cause death among ICS users (OR 1.38 (95% CI 1.26 – 1.52)), which 

attenuated towards the null after IPTW (OR 1.23 (95% CI (1.12 – 1.34)) (results not shown). 

 

Fig. 1 Forest plot of odds ratios and 95% confidence or simulation intervals for COVID-19 hospitalisations and deaths, comparing 
ICS/LABA (+/- LAMA) users to LABA/LAMA users. Effect estimates >1 indicate an increased risk in the ICS group. 
Conventional analysis refers to logistic regression without quantitative bias analysis. IPTW = Inverse probability of treatment 
weighting, PBA = probabilistic bias analysis. * Simple bias analysis only results in a point estimate 

 

QBA results for hospitalisations 

SBA resulted in an OR = 1.75. Summary-level PBA shifted ORs away from the null (OR 2.20 (95% SI 1.45 

– 7.38)). Record-level PBA with subsequent logistic regression gave a median adjusted OR of 1.88 (95% SI 

1.39 – 3.79), and an IPT-weighted OR 1.74 (95% SI 1.27 – 3.56). No iterations were discarded due to 

negative cell counts. 
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QBA results for deaths 

SBA for outcome misclassification of deaths gave an OR = 1.63. Summary-level PBA of deaths resulted in 

an OR of 1.83 (95% SI 1.35 – 3.28). Record-level PBA with subsequent logistic regression gave a median 

unweighted OR of 1.76 (95% SI 1.28 – 2.84) and IPT-weighted OR of 1.55 (95% SI 1.10 – 2.55). 0.13% of 

the iterations resulted in negative cell counts and were therefore discarded.  

Analysis excluding people using triple therapy 

Excluding people using triple therapy from the ICS group gave ORs of 1.21 (95% CI 0.93 – 1.56) for 

COVID-19 hospitalisations and 1.29 (95% CI 0.92 – 1.81) for COVID-19 deaths. IPTW shifted the results 

towards the null (OR 1.19 (95% CI 0.92 – 1.53) for COVID-19 hospitalisations, OR 1.24 (95% CI 0.88 – 

1.74) for COVID-19 deaths). Summary-level QBA for COVID-19 hospitalisations resulted in an OR 1.44 

(95% SI 0.95 – 4.00). Record-level PBA with subsequent logistic regression resulted in an unweighted OR 

1.88 (95% SI 0.82 – 2.17) and a IPT-weighted OR 1.26 (95% SI 0.78 – 2.10). 

Summary level QBA for COVID-19 deaths resulted in an OR 1.33 (95% SI 0.84 – 2.26). Record-level PBA 

with subsequent logistic regression resulted in an unweighted OR 1.32 (95% SI 0.82 – 2.17) and a IPT-

weighted OR 1.26 (95% SI 0.78 – 2.10). 

 

Fig. 2 Forest plot of odds ratios and 95% confidence or simulation intervals for COVID-19 hospitalisations and deaths, comparing 
ICS/LABA users to LABA/LAMA users, excluding triple therapy users. Effect estimates >1 indicate an increased risk in the ICS 
group. Conventional analysis refers to logistic regression without quantitative bias analysis. IPTW = Inverse probability of 
treatment weighting, PBA = probabilistic bias analysis. *Simple bias analysis only results in a point estimate 

Other Sensitivity Analyses 

Including people with asthma or other chronic respiratory diseases in the cohort resulted in more than 

doubling in size of the ICS group, whereas the LABA/LAMA comparator group only increased in size by 

23%. The effect estimates were closer to the null (OR for COVID-19 hospitalisation 1.55 (95% CI 1.32-

1.81), OR for COVID-19 death 1.40 (95% CI 1.13-1.73), IPT-weighted OR for COVID-19 hospitalisation 

1.42 (95% CI 1.22-1.65), IPT-weighted OR for COVID-19 death 1.17 (95% CI 0.96-1.42)) (S6.1). 

We repeated the analysis using an exposure period defined as 6 months after the last prescription issue date. 

The results of the logistic regression did not change substantially compared to the analysis using an exposure 

defined as 60 days after the calculated end of the exposure period (S6.2). Coding all deaths missing in ONS 

as COVID-19 resulted in effect estimates closer to the null (S6.3). 
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Simulation of differential sensitivities of the classification of COVID-19 deaths between the treatment 

groups showed that sensitivity among the ICS group would have had to have been considerably higher than 

in the LABA/LAMA group in order to shift the effect estimates in such a way that the SI crosses 1 (S6.4) 

5. Discussion 

We found that among people using ICS, the risk of being hospitalised or dying with a record of COVID-

19 was higher than among those using LABA/LAMA. However, the effect estimates attenuated towards 

the null after IPTW and after excluding people using triple therapy at baseline. This is likely explained by 

the fact that the ICS group included people using triple therapy who have more severe COPD and may be 

generally sicker than people using LABA/LAMA. Accounting for outcome misclassification using QBA 

shifted the effect estimates away from the null and increased the uncertainty around the point estimates, 

but did not change the conclusions of the analyses. 

Comparison to other studies 

Two studies published early in the pandemic used UK population-level EHR data and the ONS death 

registry to investigate the association between ICS and COVID-19 deaths and hospitalisations. The adjusted 

estimate in our study for COVID-19 death is almost identical to the effect estimate in the OpenSAFELY 

study (aHR for COVID-19 death 1.39 (1.10–1.76)), possibly due to similarities in study design[5]. A study 

using the QResearch database[8] found a more modest risk of severe COVID-19 and COVID-19 death 

associated with ICS use, independent of underlying respiratory disease (COVID-19 

hospitalisation aHR 1.13 (1.03-1.23), COVID-19 death aHR 1.15 (1.01-1.31)). Both studies addressed 

confounding as a potential source of bias and discussed potential exposure misclassification. There were 

several other studies that investigated inhaled corticosteroids and COVID-19 outcomes, but in different 

populations, e.g., in patients with COVID-19 infection or patients hospitalised with COVID-19[6,7,9]. 

Despite concerns that COVID-19 outcomes may have been misclassified, we are not aware of any other 

pharmacoepidemiological studies which have attempted to quantitatively correct for such outcome 

misclassification of COVID-19 outcomes.  

Correcting for potential outcome misclassification 

All implementations of QBA shifted the effect estimates away from the null, in line with the heuristic that 

non-differential misclassification biases results towards the null on average. This suggests that conventional 

estimates underestimate the association between ICS and severe COVID-19. However, what our 

assessment adds is confirmation that a realistic extent of misclassification would not have resulted in a shift 

away from the null substantial enough to have warranted a change in conclusions of the study. Additionally, 

the uncertainty around the point estimates increased in PBA because the SI takes into account more sources 

of random error than the conventional CI[36]. As expected, the QBA methods which additionally allowed 

us to control for confounding gave ORs closer to the null. In sensitivity analyses looking at differential 

misclassification, we found that differential misclassification would have had to have been substantial, with 
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sensitivity of >90% in the ICS arm and <60% in the LABA/LAMA arm, to have concealed a protective 

effect. We also found that even relatively small decreases in specificity resulted in substantial shifts in the 

effect estimate, while changes in sensitivity were less consequential. 

One challenge we encountered was negative cell values, with the initially specified distributions for 

hospitalisations resulting in a large proportion of simulations with negative cell values, driven by false-

positives (i.e., low specificity) in the LABA/LAMA group. This indicated that the chosen distributions, and 

consequently sampled combinations of sensitivity and specificity, were incompatible with the data, and has 

been known to happen when outcomes are very rare[36]. As a result, we increased the lower bound of the 

specificity distribution to 0.97 to obtain plausible cell counts.  

There are many different tutorials and guides to the different forms of QBA used here[36,37], and each 

method has strengths and limitations. SBA, while easily implemented using available tools[38], is limited in 

its value as it requires the bias parameters to be known with relative certainty and does not give a measure 

of uncertainty of the results. Summary-level PBA is more time-intensive to implement but offers the 

advantage of generating a SI around the point estimate. Both approaches are limited in their analysis, 

however, as the calculation of the effect estimates is based on 2x2 tables rather than individual records. 

Record-level PBA is more sophisticated in this respect. As each row of data is corrected for 

misclassification, the analyst has the same amount of analytical flexibility, e.g., regarding methods to account 

for confounding, as in a conventional analysis without QBA. However, record-level PBA requires 

substantial computational power which may limit its application to large datasets. All methods of QBA 

performed similarly in this setting, but ultimately, the choice of QBA method depends on the degree of 

concern around severity and impact of outcome misclassification and the analytical and computational 

resources available. 

Strengths and limitations 

Strengths of this study include the size of CPRD Aurum, which has been shown to be representative of the 

UK population. HES data captured the majority of COVID-19 hospitalisations in England[39,40], and 

ONS death data is the most reliable source of data on deaths in the UK. We used sensitivity analyses to 

assess different definitions of exposure, potential residual confounding by underlying disease and the impact 

of exclusion criteria.  

Due to the short follow-up period, we could not use a new-user design, and assumed that any causal effect 

of ICS on the outcomes would be independent of treatment history and length. Therefore, the study 

population is potentially heterogeneous in terms of disease stage and treatment history. By excluding people 

using triple therapy in a sensitivity analysis, we made the treatment groups more comparable. This resulted 

in effect estimates closer to the null, and the CI indicated weak evidence of an increased risk in people using 

ICS. Even after excluding patients using triple therapy, patients in the ICS group may be different to those 

using LABA/LAMA, as ICS are recommended for patients with high eosinophil counts and frequent 

exacerbations.[41] The covariates did not include symptoms of COPD or measures of lung function, which 
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could have additionally controlled for confounding by disease severity. The analysis excluding triple therapy 

users may have been underpowered to detect an increased risk in the ICS users, but suggests their inclusion 

in the study led to confounding, highlighting the trade-off of power and improved comparability of the 

treatment groups.  

Although outcome misclassification was thought to be the most impactful source of misclassification in 

this study and was therefore the focus of the QBA, exposure misclassification may also have affected this 

study. Previous work has shown a spike in prescriptions in the UK in March 2020, meaning that estimated 

exposure durations may be less reliable than in non-pandemic times[42]. Additionally, this study did not 

capture in-hospital prescriptions as HES does not hold this information.  

Our approach to QBA required several strong assumptions, which are largely untestable and likely 

imperfect. However, the alternative of not doing QBA assumes that outcome sensitivity and specificity 

were both 100%, which is an even stronger and less plausible position.  

Particularly in the early months of the pandemic, treatments and the healthcare system’s response to 

COVID-19 were rapidly evolving, and it is therefore likely that sensitivity and specificity of recording of 

COVID-19 outcomes changed over time. The values and distributions chosen in this analysis represent 

best estimates. For excess deaths, the chosen values were based on an assumption that all excess deaths 

were true COVID-19 deaths. While this is a strong assumption, we made it based on data on deaths and 

excess deaths reported by the ONS and COVID-19 death counts reported to the UK government[31,32]. 

The values for excess deaths were based on available data from March to May 2020[31]. It is likely that 

sensitivity increased with time, but there were few COVID-19 deaths in the summer months of 2020 (June-

August). For hospitalisations, we informed our estimates of sensitivity and specificity using validation 

studies conducted in North America, and the bounds given by the data. While coding practices between 

countries and healthcare systems may differ, studies from the UK were not available at the time of writing, 

so these values were taken as the best available estimates.  

As methods of QBA are not yet well established for time-to-event outcomes, we assumed the recorded 

dates and the occurrence of hospitalisations and deaths to be accurate, and only attempted to correct for 

misclassified causes.  

Conclusions 

In conclusion, we observed increased risks of COVID-19 hospitalisation and death among ICS-users 

compared to LABA/LAMA users. However, taken together with the results of the analysis excluding triple 

therapy users, the observed increase in risk may be attributed to residual confounding, even after IPTW. 

Quantitative bias analysis showed that outcome misclassification was unlikely to have substantially changed 

the results of the analysis, despite concerns around the classification of COVID-19 deaths early during the 

pandemic.  
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