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Abstract 
 
Elucidating the genetic architecture of DNA methylation (DNAm) is crucial for decoding the 
etiology of complex diseases. However, current epigenomic studies often suffer from incomplete 
coverage of methylation sites and the use of tissues containing heterogeneous cell populations. 
To address these challenges, we present a comprehensive human methylome atlas based on 
deep whole-genome bisulfite sequencing (WGBS) and whole-genome sequencing (WGS) of 
purified monocytes from 298 European Americans (EA) and 160 African Americans (AA) in the 
Louisiana Osteoporosis Study. Our atlas enables the analysis of over 25 million DNAm sites. We 
identified 1,383,250 and 1,721,167 methylation quantitative trait loci (meQTLs) in cis-regions for 
EA and AA populations, respectively, with 880,108 sites shared between ancestries. While cis-
meQTLs exhibited population-specific patterns, primarily due to differences in minor allele 
frequencies, shared cis-meQTLs showed high concordance across ancestries. Notably, cis-
heritability estimates revealed significantly higher mean values in the AA population (0.09) 
compared to the EA population (0.04). Furthermore, we developed population-specific DNAm 
imputation models using Elastic Net, enabling methylome-wide association studies (MWAS) for 
1,976,046 and 2,657,581 methylation sites in EA and AA, respectively. The performance of our 
MWAS models was validated through a systematic multi-ancestry analysis of 41 complex traits 
from the Million Veteran Program. Our findings bridge the gap between genomics and the 
monocyte methylome, uncovering novel methylation-phenotype associations and their 
transferability across diverse ancestries. The identified meQTLs, MWAS models, and data 
resources are freely available at www.gcbhub.org and https://osf.io/gct57/. 
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Introduction 
Unraveling the functional consequences of genetic variation on complex human diseases is a 
fundamental challenge in human genetics. While genome-wide association studies (GWAS) have 
identified more than 24,000 unique single nucleotide polymorphism (SNP)-trait associations 
across a range of complex diseases and traits,1 the molecular pathways through which these 
variations contribute to disease risk remain largely elusive2,3. This knowledge gap hinders the 
advancement of therapeutic targets4 and underscores the need for studying multi-omics 
biomarkers5. DNA methylation (DNAm), a relatively stable epigenetic mark, has emerged as a 
critical molecular biomarker in this endeavor. DNAm not only provides insights into the current 
state of human health6 but also facilitates the estimation of epigenetic age7–9 and partially captures 
the effects of lifestyle and environment exposures10 on disease pathogenesis. Recognizing its 
potential, extensive efforts have been made to collect comprehensive, population-scale datasets 
of the human genome and methylome.11–19  
 
However, these pursuits have been constrained by several key limitations. Firstly, the reliance on 
Illumina BeadChip platforms20 restricts the analysis to only 3% of the approximately 30 million 
CpG sites in the human methylome21–24, due to its focus on only 450,000 or 935,000 predefined 
CpG methylation sites. This constraint significantly limits our understanding of the methylome's 
extensive landscape. Secondly, the majority of methylation studies have examined whole blood 
samples25–28 or normal bulk tissue29–31, adjusting the estimated cell type proportions as 
covariates32,33. This approach inherently limits the examination of methylation patterns in specific 
cell types, which could be crucial for understanding disease mechanisms.34,35 Monocytes, in 
particular, play central roles in various physiological and pathological processes, including bone 
remodeling36,37, neurodegenerative disorders such as Alzheimer’s disease38,39, inflammatory 
conditions like rheumatoid arthritis40 and inflammatory bowel disease, cardiovascular diseases41, 
cancer42, and infectious diseases, making them a highly relevant cell type for investigating the 
link between genetic variation, DNAm, and complex diseases. Thirdly, DNAm and genetic 
variations could be ancestry-specific43–45, highlighting the critical need to study DNAm across 
multi-ancestry populations to fully characterize their relationships. 
 
To overcome these limitations and accurately characterize the human methylome in purified 
monocytes across European Americans (EA) and African Americans (AA) ancestry, we performed 
whole genome bisulfite sequencing (WGBS) and whole genome sequencing (WGS) on 298 
independent individuals of EA and 160 independent individuals of AA in the Louisiana 
Osteoporosis Study46. Our comprehensive approach encompassed several key analyses. For 
each ancestry group, we conducted methylation quantitative trait loci (meQTL) analyses to identify 
loci in both cis- and trans-region where genetic variations are associated with DNAm changes, 
and compared results across ancestries to explore shared and unique genetic architecture. 
Further, we calculated cis-heritability (cis-h2) of DNAm to quantify the proportion of variance in 
methylation levels that can be explained by cis-acting genetic variants. To link our findings to 
complex traits, we conducted methylome-wide association studies (MWASs) using an 
instrumental variable regression framework with two steps.47,48 First, we built DNAm prediction, 
or imputation models using penalized regression. Second, we tested the association between the 
predicted DNAm and 41 phenotypes using GWAS summary statistics from the Million Veteran 
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Program (MVP) dataset49 in both AA and EA. The results were further validated by colocalization 
and Mendelian randomization (MR) analyses. This multi-faceted approach provides new insights 
into the genetic regulation of monocyte-specific DNAm and its relationship to complex traits 
across diverse ancestries. The overview of our study design is presented in Fig.1, and the 
developed models and data resources are freely accessible at www.gcbhub.org. 
 
 
 
Results 

Data collection and processing 
We recruited 495 male subjects aged 20-51 years (185 AA and 310 EA) from the ongoing Tulane 
Louisiana Osteoporosis Study cohort46 with strict inclusion/exclusion criteria; see Method section 
and Supplementary Table 1 for details. We restricted our analyses to subjects with purified 
peripheral blood monocytes (PBMs). Sequencing reads were processed to remove adaptor 
sequences, contamination, and low-quality bases, then aligned to the human reference genome 
GRCh38/hg38. In total, methylation levels for over 25 million CpG sites across the genome were 
quantified (see Methods for details). DNAm β-values underwent rank-based inverse normal 
transformation50 to normalize the data distribution. We also implemented comprehensive quality 
control (QC) for the genetic data. Single nucleotide polymorphisms (SNPs) were excluded based 
on several criteria: deviation from Hardy-Weinberg equilibrium (𝑃𝑃 < 1 × 10−6 ), minor allele 
frequency (MAF) less than 0.01, and presence of mismatched alleles. Additionally, to mitigate 
confounding effects from population structure, we removed individuals with a degree of 
relatedness, defined as an identity by state (IBS) greater than 0.125. This resulted in a final cohort 
of 160 AA and 298 EA. For the genetic data, we extracted the top ten principal components (PCs) 
to capture the major axes of genetic variation. Similarly, principal component analysis (PCA) was 
conducted on the DNAm data, focusing on the 20,000 most variable CpG sites to obtain the top 
ten nongenetic PCs.11 Adjusting for nongenetic PCs derived from the DNAm data can significantly 
improve the power to detect true associations51, and the risk of introducing collider bias that could 
impact the results is minimal11. As a result, a total of 13,238,663 SNPs were utilized in the AA 
cohort and 8,513,381 SNPs in the EA cohort. 
 
Identification of cis-meQTL for whole genome DNAm sites across two populations 
We conducted cis-meQTL analyses for independent individuals of AA (n=160) and EA (n=298) 
ancestries separately for the 25,721,231 CpG sites measured by WGBS. Cis-regions were 
defined as regions extending ±1 Mb from the CpG sites. Using MatrixEQTL52, we identified cis-
region methylation quantitative trait loci (cis-meQTL) by testing the association between DNAm 
and genotype via linear regression, adjusting for confounders including age, BMI, smoking, and 
alcohol consumption. Although WGBS was performed on purified PBMs with monocytes purity 
exceeding 90% with the average proportion of monocytes was 98.8%, the proportion can vary 
across samples, ranging from 90.1% to 99.9%. To account for potential source of heterogeneity 
from monocytes and to control for any residual contamination from other cell types, we included 
the estimated proportions of the three cell types with the most variation (B cells, monocytes, and 
neutrophils) as covariates in our analysis. Furthermore, we controlled for ten genetic and ten 
nongenetic principal components. 
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We identified 58,472,084 and 127,178,161 cis-meQTL associations (𝑃𝑃 < 1 × 10−8)11 in the AA 
and EA populations, respectively. On average, each CpG site had 2.27 cis-meQTL mappings in 
the AA population and 4.94 in the EA population. In total, 1,721,167 CpG sites in the AA and 
1,383,250 in the EA population exhibited at least one cis-meQTL, representing 6.7% and 5.4% of 
all sites tested, respectively, with 880,108 (51.1% of AA and 63.6% of EA) overlapping CpG sites 
across the two populations.  
 
The analysis of cis-meQTL associations across two populations revealed a negative correlation 
between MAF and effect size (Fig. 2a). This pattern aligns with expectations based on studies in 
GWAS, where rarer genetic variants often exhibit larger effect sizes in quantitative trait loci studies 
in GWAS, despite their lower detection power due to reduced allele frequencies.53 We further 
found the AA population exhibited a stronger negative correlation (coefficient = −2.7) compared 
to the EA population (coefficient = −2.0), along with higher median effect sizes (AA: median = 
0.90, EA: median = 0.65, 𝑃𝑃 < 1 × 10−16 by Wilcoxon sum rank test). These findings extend the 
general principles observed in QTL studies53,54 to meQTL analyses and highlight notable 
differences between populations. Additionally, it shows a concentration of the associations with 
higher effect sizes clustered around the CpG sites for both AA and EA (Fig. 2b). There was also 
a strong negative correlation (AA: coefficient  = −1.2 × 10−5 , 𝑃𝑃 < 2 × 10−16 ; EA: coefficient =
−1.1 × 10−5, 𝑃𝑃 < 2 × 10−16) between p-values of cis-meQTL associations and the distance from 
the CpG site for both ancestries (Supplementary Fig. 1).   
 
We also investigated the distribution of cis-meQTLs associated with each CpG site residing in 
different annotated genomic regions using Annotatr55 Bioconductor package for AA and EA 
populations separately. Among all the CpG sites having at least one cis-meQTL, 0.9% (AA) and 
1.1% (EA) were located in CpG islands and 4.4% (AA) and 4.8% (EA) in CpG-adjacent regions 
(shores and shelves), and the rest (94.7% for AA and 94.1% for EA) were away from CpG islands 
(open seas) (Fig. 2c). Among all the CpG sites located in islands, 2.9% (AA) and 1.8% (EA) had 
at least one cis-meQTL. For those located in shores and shelves, 5.0% (AA) and 4.2% (EA) had 
at least one cis-meQTL. For those located in open seas, 6.9% (AA) and 5.6% (EA) had at least 
one cis-meQTL association. These findings align with current understanding that CpG sites with 
meQTLs are enriched in open sea regions.18 
 
Interestingly, 8% of the cis-meQTLs in the EA population were either nonexistent or rare, defined 
as two or fewer individuals carrying the variant, in the Phase-3 1000 Genome Project56 (1000G) 
African population, while 30% in the AA population were rare or nonexistent in the 1000G 
European population. For the sentinel cis-meQTLs, defined as the most significant SNP for each 
CpG, 19% in the EA were rare or nonexistent in the 1000G African population, while 49% in the 
AA were rare or nonexistent in the 1000G European population (Fig. 2d). This underscores the 
importance of leveraging data from diverse and specific ancestries to uncover ancestry-specific 
cis-meQTLs, highlighting distinct genetic variations and their specific implications in DNAm across 
populations. For cis-meQTLs identified in both ancestries, the effect sizes exhibited a high degree 
of concordance (correlation= 0.96,𝑃𝑃 < 2 × 10−16, Fig. 2e).  
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To identify the causal variants underlying significant cis-meQTL for methylation, we conducted 
population-specific fine-mapping for 1,655,943 and 1,334,508 CpG sites with at least one cis-
meQTL in AA and EA populations using SuSiE57. We found that the number of variants within the 
95% credible sets was notably smaller for the AA population, with a median of 13 and an 
interquartile range (IQR) of 8,045, as opposed to the EA population, which exhibited a median of 
27 and an IQR of 5,316 (Fig. 2f). This result is consistent with findings from a previous pQTL 
study54 for plasma proteins and may be attributed to the lower average linkage disequilibrium (LD) 
in the AA population or the smaller sample size of the AA cohort compared to the EA cohort.  
 
Cis-h2 of CpG sites and imputation models 
We estimated cis-h2, i.e., the proportion of methylation variance attributable to genetic factors of 
DNAm, using restricted maximum likelihood (REML) in GCTA58. Among all the 25,721,231 CpG 
sites in WGBS, we found that 50.5% and 57.0% CpG sites exhibited a cis-h2 greater than 0.01, 
21.1% and 33.8% CpG sites with a cis-h2 between 0.01 and 0.1, and 28.3% and 9.2% CpG sites 
with a cis-h2 greater than 0.1 for the AA and EA populations, respectively (Fig. 3a). The mean 
values for cis-h2 of AA population (0.09) is significantly higher than that of EA population (0.04) 
(𝑃𝑃 < 1 × 10−16 by a Wilcoxon sum rank test). Besides, we investigated the p-values for the cis-h2 
estimated from REML and found that among CpG sites with cis-h2 greater than 0.01, 16.4% and 
18.2% of them having p-values less than 0.05, while among CpG sites with cis-h2 greater than 
0.5, 36.8% and 55.1% of them having p-values less than 0.05, for AA and EA respectively (Fig. 
3b).  
 
For CpG sites with a cis-h2 greater than 0.1, 20% in the AA population and 42% in the EA 
population were also identified with cis-meQTLs in our study. Furthermore, the majority of CpG 
sites with a cis-h2 exceeding 0.5 showed cis-meQTL associations (86% for AA and 99% for EA) 
as illustrated in Fig. 3c. The mean value of cis-h2 in CpG sites with at least one cis-meQTLs (0.48 
for AA and 0.33 for EA) was also larger than those without cis-meQTLs (0.06 for AA and 0.02 for 
EA) (Fig. 3d). This is expected as CpG sites with higher cis-h2 are more likely to be associated 
with cis-SNPs. 
 
Notably, a seeming contradiction arises: the cis-h2 in the AA ancestry is higher than that in the EA 
ancestry, yet fewer cis-meQTL associations are identified in the AA ancestry compared to the EA 
ancestry. We hypothesize that this discrepancy is attributed to the smaller sample size in the AA 
population. To test this hypothesis, we randomly sampled 160 individuals from the EA population 
and conducted cis-meQTL analysis. This analysis resulted in 48,086,725 associations, averaging 
1.87 cis-meQTL associations per CpG site in the EA population, which is lower than the 2.27 cis-
meQTL associations per site observed in the AA population. This finding indicates that the 
apparent contradiction is indeed a consequence of the differing sample sizes between the 
populations, highlighting the importance of collecting more data in AA.  
 
Furthermore, cis-h2 assessments were performed on WGBS DNAm, focusing on CpG sites 
covered by two platforms: the MethylationEPIC Infinium v2.059, which contains over 935,000 CpG 
sites (referred to as the 900K set), and the HumanMethylation450 Infinium assay60, 
encompassing around 450,000 sites (referred to as the 450K set). Recent update from EPIC to 
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EPIC v2 have complicated integrating new data with previous Infinium array platforms, such as 
the EPIC and the HM450K, and has been used in recent studies.61–63 The two datasets are 
provided at https://zwdzwd.github.io/InfiniumAnnotation. The mean values of cis-h2 of CpG sites 
from the 900K dataset for AA and EA ancestries were 0.08 and 0.03, respectively. Similarly, the 
450K dataset showed mean values of 0.08 for AA and 0.03 for EA ancestries. The distribution of 
cis-h2 values for CpG sites in the 450K and 900K sets closely mirrored that of the overall WGBS 
dataset, albeit with slightly lower values (Fig. 3e). This similarity indicates that these array-based 
platforms capture a representative, rather than a unique, subset of CpGs in terms of heritability 
patterns. Consequently, the primary advantage of WGBS lies in its broader coverage, which not 
only encompasses the sites captured by array-based platforms but also extends our 
understanding of methylation patterns across the entire genome. 
 
Next, to conduct MWAS for complex traits, we built imputation models for CpG sites with cis-h2 > 
0.01 using Elastic Net64 with nested cross-validation65 to obtain evaluation matrices. We selected 
SNPs within 500 kb of CpG sites for computational efficiency. We built DNAm prediction models 
(with R2 value of at least 0.01) for 2,657,581 and 1,976,046 CpG sites in AA and EA populations, 
with 1,067,816 overlapped CpG sites. The mean accuracy for models for DNAm prediction, 
measured by R2, was 0.19 and 0.17 for AA and EA populations, respectively. Notably, the median 
model accuracy for CpG sites covered by the 450K and 900K arrays was 0.11 and 0.10 in AA, 
and 0.10 and 0.09 in EA. These R2 values are lower than those obtained from WGBS, consistent 
with our heritability findings. 
 
Multi-ancestry MWAS of complex traits in MVP 
We performed a systematic multi-ancestry (EA and AA) MWAS on 41 distinct phenotypes by 
using GWAS summary statistics from the Million Veteran Program (MVP) dataset49. Similar to 
transcriptome-wide association studies (TWASs)66–68 which assesses gene expression levels and 
their associations with traits, and proteome-wide association studies (PWASs)3,54 that focus on 
the proteomic landscape to understand protein variations and their disease linkages, MWASs 
focus on the association between DNAm and complex traits, and operates through a two-step 
instrumental variable regression framework47,48. Utilizing a stringent significance threshold, 
adjusted by the Bonferroni correction across all models and phenotypes (P cutoff is 4.9×10-10 for 
AA and 6.6×10-10 for EA), we identified 34,334 significant methylation-phenotype associations 
(Supplementary Tables 2.1 and 2.2). Since the sample size of EA GWAS data (mean = 261,202) 
is much larger than that of AA (mean = 54,271), the results of EA accounted for majority of these 
associations, 31,336 to be precise, while the AA contributed 2,998 (Fig. 4a). Notably, our findings 
revealed that, for AA, 2,944 (98.1%) and 2,926 (97.6%) significant associations were not captured 
by the 450K and 900K methylation panels, respectively. Similarly, for EA, 30,835 (98.4%) and 
30,394 (97.0%) associations were beyond the coverage of these panels. This highlights our 
study’s extensive coverage, significantly encompassing a broader scope of the methylome, 
indicating a comprehensive mapping of methylation associations across ancestries. 
 
Among the identified associations, 559 unique methylation-phenotype association pairs were 
significant in both ancestries; the majority (537 out of 559) of these associations displayed 
consistent directions of effects (Fig. 4b). This consistency underscores a possible shared 
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epigenetic mechanism across ancestries. These consistent associations encompassed 433 
distinct DNAm sites and were observed across 12 phenotypes categorized into six broad groups: 
lipids, cardiovascular diseases (CVD), anthropometric measurements, metabolic conditions, renal 
traits, and addiction.  
 
Further delving into the gene annotation for these consistent associations, we found a distribution 
of the CpG sites: 529 of the 599 consistent pairs had CpG sites in the open sea regions of the 
genome, indicative of potential regulatory elements in less explored genomic territories. 
Additionally, 30 associations had CpG sites in genomic shores, 24 in shelves, and 15 in islands. 
This distribution hints at the varied genomic landscapes in which significant methylation changes 
occur and their potential implications in diverse physiological traits and conditions. 
 
We also mapped CpG sites from all associations to the genes and used Aggregated Cauchy 
Association Test (ACAT)69 to detect significant gene-phenotype associations.70 At a significant 
threshold with Bonferroni correction (P cutoff is 2.7 × 10−6 for AA and EA), we identified 8,670 
significant associations for EA population encompassing 30 traits and 7 categories 
(Supplementary Table 3.2). We also identified 1,109 significant associations for AA population 
encompassing 17 traits and 7 categories (Supplementary Table 3.1). Among these, 747 
associations are significant in both ancestries, and they encompassed 14 traits in 6 categories 
(Supplementary Table 4). By leveraging WGBS data from purified monocytes samples, our 
MWAS offers unique opportunities to unravel the epigenetic landscape of monocytes and 
provides insights into the immune-mediated mechanisms driving immune-related diseases. Below 
we highlight several findings from two immune-related diseases.  
 
For Type 2 Diabetes (T2D), we identified 13 overlapped genes associated with T2D in both 
ancestries (Supplementary Table 4). We pinpointed the most significant genes with smallest p-
values: transcription factor 7 like 2 (TCF7L2), ankyrin 1 (ANK1), fat mass and obesity associated 
alpha-ketoglutarate dependent dioxygenase (FTO), NK6 homeobox 3 (NKX6-3), and tyrosin 
hydroxylase (TH). TCF7L2 association with T2D has been consistently replicated in multiple 
populations with diverse genetic origins71 and experimentally validated72. Genome-wide 
association studies have identified ANK1 as a common T2D susceptibility locus.73 The other 
finding suggests that certain variants in ANK1 could contribute to insulin resistance, a key feature 
in the development of T2D.74 FTO were reported to be associated with T2D, primarily through 
their impact on BMI and obesity.75 NKX6-3, along with other specific pancreatic islet β-cell 
transcription factors, is sensitive to oxidative stress, a condition associated with β-cell dysfunction 
in both Type 1 and Type 2 diabetes.76 Some GWAS studies suggest that TH gene may play a 
role in T2D susceptibility and insulin resistance. 77,78  
 
Additionally, we identified seven genes associated with T2D uniquely in the AA ancestry 
population (Supplementary Table 3.1). Specifically, we identified BCKDHA, which encodes the 
branched-chain alpha-keto acid (BCAA) dehydrogenase (BCKD) Subunit. BCAA was reported to 
be elevated in both human and animal model of obesity.79,80 At the same time, obesity-associated 
suppression of BCKD complex in liver and adipose tissue was observed.81 Due to the widespread 
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expression of BCKD in different tissues including monocytes, it’s worth to study the specific role 
of BCKD in immune systems in T2D patients. 
 
Coronary Artery Disease (CAD) is a severe cardiovascular condition characterized by the buildup 
of atherosclerotic plaques in the coronary arteries, leading to reduced blood flow and increased 
risk of heart attacks.82 While traditional risk factors contribute to CAD development, emerging 
evidence suggests a crucial role for the immune system, particularly monocytes.83 Studies have 
shown associations between CAD and elevated levels of CD14+CD16+ monocytes, a pro-
inflammatory monocyte subtype with potential as a biomarker.84 In our MWAS results, we 
identified 130 genes that are associated with CAD in EA ancestry. We pinpointed several genes 
that are either well-known or act in inflammatory pathway of CAD. The CDKN2A/B locus encodes 
cyclin-dependent kinase inhibitors (p16INK4a and p15INK4b) that regulate cellular senescence 
and cell cycle progression.85 Dysregulation of these genes can contribute to aberrant vascular 
smooth muscle cell proliferation and inflammation, promoting the development and progression 
of atherosclerotic lesions, a key underlying mechanism in CAD pathogenesis.86 We also identified 
CXCL12 (stromal cell-derived factor-1), which is a chemokine that regulates the migration and 
homing of various cell types, including inflammatory cells and progenitor cells, through 
interactions with its cognate receptor, CXCR4.87,88 Dysregulation of the CXCL12/CXCR4 axis can 
contribute to the pathogenesis of CAD by modulating monocyte recruitment89, endothelial 
progenitor cell function, and neovascularization processes implicated in atherosclerotic plaque 
formation and vascular remodeling.88 We also identified IL6R (Interleukin 6 Receptor) which 
mediates the interleukin-6 signaling pathway, is a critical pathway in inflammation and has been 
implicated in the pathogenesis of CAD.90 SMAD3 involved in the TGF-beta signaling pathway, 
which has roles in both immune response and tissue homeostasis.91 It has been linked to 
mechanisms that could contribute to atherogenesis.  
 
Notably, our WGBS approach identified substantially more gene-phenotype associations 
compared to analyses restricted to CpG sites covered by conventional methylation arrays. For 
the EA population, using only 450K array sites yielded 1,354 associations, with 1,105 overlapping 
those found in WGBS. Similarly, the 900K array identified 1,929 associations, with 1,644 overlaps. 
In the AA population, the 450K array detected 136 associations (102 overlaps with WGBS), while 
the 900K array found 200 associations (153 overlaps). These results underscore the superior 
coverage of WGBS, revealing numerous associations missed by array-based approaches. For 
instance, in T2D analysis, array-based methods only identified associations with three genes 
(TCF7L2, FTO, and KCNC2), whereas our WGBS approach uncovered several additional genes, 
as discussed earlier.  
 
In summary, the application of our MWAS has been proven consistent and reliable for studying 
complex traits. The insights gleaned from our research reveal novel associations between DNAm 
patterns and phenotype expressions, which are not covered by traditional methylation arrays, 
highlighting important biological linkages. Specifically, our findings are invaluable for 
understanding inflammatory diseases in monocytes.  These discoveries pave the way for the 
identification of therapeutic targets that are specific to particular ancestries, with implications for 
a multitude of complex conditions. 
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Concordance with colocalization and MR analysis 
We aligned our MWAS findings with insights from Mendelian Randomization (MR)92 and Bayesian 
colocalization analyses93 for AA and EA ancestries separately. We identified 36,292 CpG-
phenotype pairs in the EA group and 1,804 in the AA group that exhibited causal relationships as 
determined by MR, using a stringent Bonferroni-corrected significance threshold of 1.2 × 10-9. 
Remarkably, 68.6% (21,483 of 31,334) of MWAS-identified associations for EA and 42.3% (1,270 
of 2,998) for AA supported by MR. Specifically, out of the 537 MWAS associations consistently 
identified across both African and European ancestries, 89.9% (483) supported by MR.  
 
For the Bayesian colocalization analyses, we found that 36.8% of MWAS-identified associations 
(11,517 out of 31,336) in EA and 9.4% in AA (281 out of 2,998) exhibited strong evidence for 
colocalization, indicated by a posterior probability (PPH4) exceeding 0.7, suggesting a shared 
causal variant. Among MWAS associations that are consistently identified across both ancestries, 
42.8% (230 out of 537) presented evidence for colocalization, indicating that a substantial 
proportion of these associations are likely driven by the same causal variants in both populations. 
(Supplementary Table 2.1 and 2.2) 
 
Identification of trans-meQTL for whole genome DNAm sites across two populations 
The study identified a substantial number of trans-meQTL associations in both the AA and EA     
populations, using a conservative threshold of 1 × 10−14. In the AA population, 1,664,615 trans-
meQTL associations were detected, involving 159,053 CpG sites (0.6% of all sites tested). In 
the EA population, 2,484,481 trans-meQTL associations were identified, involving 103,768 CpG 
sites (0.4% of all sites tested). Interestingly, only 1,952 CpG sites with trans-meQTL 
associations overlapped between the two populations and the vast majority of CpG sites with 
trans-meQTL associations were unique to each population, with 98.8% (157,101) of the sites 
being specific to the AA population and 98.1% (101,816) being specific to the EA population, 
highlighting the population-specific nature of these associations. On average, each CpG site 
had 0.06 trans-meQTL mappings in the AA population and 0.10 in the EA population, 
suggesting a slightly higher number of trans-meQTL associations per CpG site in the EA 
population compared to the AA population. 
 
Our analysis of trans-meQTL associations across two populations revealed a general negative 
correlation between MAF and effect size when MAF is greater than 0.05 (AA: coefficient = −3.0,
𝑃𝑃 < 2 × 10−16 , EA: coefficient = −2.5, 𝑃𝑃 < 2 × 10−16 ). Interestingly, we also observed that 
variants with extremely low MAFs, around 0.01, exhibited small effect sizes (Fig. 5a). This 
unexpected pattern may be confounded by the genomic distance between meQTL and CpG sites 
and warrants further investigation to understand the underlying mechanisms. Further 
investigation into the relationship between effect size and genomic distance revealed that effect 
sizes diminish as the distance from the CpG sites increases. Notably, this inverse relationship 
appears to be more pronounced in the trans-meQTL context compared to the cis-meQTL findings 
(Fig. 5b). For trans-meQTLs identified in both ancestries, the effect sizes also showed a high 
degree of concordance (correlation = 0.97,𝑃𝑃 < 2 × 10−16, Fig. 5c). 
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Discussion 
We performed whole genome bisulfite sequencing and whole genome sequencing in purified 
monocytes across 160 and 298 individuals in AA and EA ancestry. We then present a 
comprehensive analysis of cis-genetic regulation of DNAm based on a large discovery study 
across ancestries. Our study has almost ten times the number of genes with identified cis-meQTL 
associations compared with previous reports11 and led to understanding of common as well as 
unique genetic architecture of DNAm in the AA and EA population respectively. We developed 
models for DNAm imputation separately for the two populations and make them publicly available 
to facilitate future MWAS. Using large-scale GWAS summary statistics from 41 complex traits in 
MVP dataset, we illustrate how MWAS can complement GWAS for the identification of causal 
genes and DNAm and inform potential drug targets. 
 
Our research highlights the importance of considering ancestry when studying the cis-genetic 
regulation of DNAm, as we have discovered significant differences between populations. We 
observe that cis-h2 of DNAm levels in AA ancestry is higher than that of EA ancestry (Fig. 3a, d). 
Further, the CpG sites with higher cis-h2 values tend to correspond to more cis-meQTL 
associations (Fig. 3c). Importantly, we found nearly 30% of the cis-meQTL detected in the AA 
population were nonexistent or rare in the EA population, but the converse proportion was much 
more modest (~8%). Fine-mapping analysis, conducted separately for each population, revealed 
that the number of genetic variants potentially responsible for regulating DNAm at CpG sites was 
considerably lower in the AA population compared to the EA population. Taken together, our 
analysis demonstrates that there are distinct advantages of including samples from diverse 
ancestries in genetic studies of DNAm.  
 
Furthermore, we have built comprehensive MWAS models and uncovered new biological insights 
regarding the influence of DNAm on a spectrum of complex traits and diseases. Notably, many of 
the identified methylation marker regions were not covered by the conventional 450K/EPIC 
BeadChip arrays, underlining the pioneering nature of our approach. By mapping these novel 
marker regions to adjacent genes, we discovered that a number of them play a crucial role in 
disease pathogenesis through the modulation of protein expression, immune system interactions, 
and other biological processes. For instance, genes like TCF7L2 and FTO, identified in our study, 
have established links to Type 2 Diabetes and obesity, aligning with previous genetic and 
epigenetic research. We have also identified key genes that play crucial roles in the inflammatory 
pathways involved in coronary artery disease. Furthermore, our analysis highlighted genes like 
BCKDHA that are unique to the African ancestry cohort, presenting opportunities for the 
development of ancestry-specific treatments and interventions. 
 
A recent study94 has established that the DNAm landscape is predominantly shaped by cell types 
and cell-type-specific regulatory programs. Extending beyond these findings, our study 
demonstrates that at least some DNAm is also tightly influenced by genetic factors, even within a 
homogeneous cell type such as monocytes. These two findings are not contradictory but 
complementary, as they highlight different layers of DNAm regulation: cell-type-specific programs 
provide the broad framework, while genetic factors fine-tune DNAm patterns within that framework. 
This discovery significantly expands our understanding of the genetic architecture of DNAm, 
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suggesting a complex interplay between genetic inheritance and epigenetic regulation within 
monocytes. In the future, it would be interesting to investigate how nongenetic factors shape the 
DNAm landscape and relate to phenotypes. Additionally, future studies should consider jointly 
analyzing the transcriptome and methylome to gain a more comprehensive understanding of the 
complex regulatory mechanisms at play.  
 
We conclude by discussing several limitations in our study. First, the current sample size is 
relatively small, particularly for the AA cohort, which consisted of only 160 individuals, compared 
to 298 in the EA group. However, it is important to note that our study is still one of the largest 
studies to date, especially for the comparison of EA and AA populations. This disparity in sample 
sizes has implications for the robustness and interpretability of our findings. As previously 
discussed, the smaller sample size in the AA population may have led to an underestimation of 
the number of cis-meQTL associations. Also, the trans-regional effects of DNAm, which involve 
interactions between genetic variations and CpG sites across different genomic regions, require 
large sample sizes to detect due to their typically smaller effect sizes and the complex nature of 
their interactions.95 Second, our samples come from Tulane cohort are exclusively males and the 
samples in MVP are approximately 90% males. While DNAm patterns have been shown to be 
relatively consistent between genders96, subtle differences may still exist.97 Third, our study 
focused on WGBS sequencing in purified monocytes, providing a valuable starting point for 
exploring epigenetic mechanisms in a specific cell type. By focusing on monocytes, we have laid 
a foundation for future studies to expand upon and explore DNAm patterns in other cell types. 
This approach will enable a more comprehensive understanding of the epigenetic landscape 
across various tissues and cell populations, ultimately contributing to a holistic view of the role of 
DNAm in health and disease. 
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Figures 

 
Fig.1 Overview of the data collection, preparation, and analysis pipeline.  
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Fig.2 cis-meQTL and fine-mapping analysis across AA and EA populations. a, Effect sizes 
of cis-SNPs of meQTL versus minor allele frequencies (MAF(1-MAF)). The orange regression line 
indicates the trend across the dataset. b, shows the effect size in relation to the distance from 
SNP to DNAm site for the AA (left) and EA (right) groups. The distance are measured in base 
pairs (bp). c, Distribution of CpG sites by number of associated cis-meQTLs in AA and EA 
ancestries. The bar chart categorizes CpG sites based on the number of cis-meQTLs identified, 
with annotations for four genomic regions: CpG islands, which are regions with a high CpG density; 
CpG shores, located within 2 kb of islands; CpG shelves, extending an additional 2 kb from shores; 
and Open Sea, which represents areas more distal to the islands, shores, and shelves. Each 
region is color-coded. d, Percentage of nonexistent or rare cis-meQTLs across ancestries. It 
displays the proportion of identified cis-meQTLs that are absent or rare within the contrasting 
population from the 1000 Genomes Project. The four bars represent cis-meQTL associations for 
AA, EA, sentinel cis-meQTLs for AA and EA, respectively. Sentinel cis-meQTL is defined as the 
most significant SNPs for each CpG site. e, illustrates the effect size of cis-meQTL in AA ancestry 
compared to EA ancestry. f, Distributions of size of credible sets in SuSIE across CpG sites that 
have at least one significant cis-meQTL in both AA and EA ancestries. Boxes are drawn from first 
and third quartiles, with the median at the center, and the whiskers extending to 1.5 times the 
interquartile range from the box boundaries. The width of the violin at a particular point represents 
the density of data points at that value. 
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Fig.3 cis-h2. a, The distribution of cis-heritability estimates for CpG sites with cis-h2> 0.01. b, 
illustrates the proportions of having p-values smaller than 0.05 among the CpG sites with cis-h2 
greater than a cutoff. c, Relationship between cis-heritability and the percentage of CpG sites with 
cis-meQTL associations in AA and EA ancestries. d, displays the distribution of cis-heritability 
estimates for all CpG sites, CpG sites with at least one cis-meQTL, and CpG sites without cis-
meQTL associations in AA and EA ancestries. e, displays the distribution of cis-h2 for all CpG 
sites, CpG sites contains in EPIC850K and CpG sites contains in HM450K. Boxes in c and d are 
drawn from dirst and third quartiles, with the median at the center, and the whiskers extending to 
1.5 times the interquartile range from the quartiles. 
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Fig.4 MWAS results for 41 phenotypes in the MVP dataset. a, demonstrates the significant 
MWAS associations after Bonferroni correction (P cutoff is 4.9×10-10 for AA and 6.6×10-10 for EA). 
Different categories of traits are labeled with different colors. b, illustrates the consistency of Z-
scores for associations that were significant in both AA and EA ancestries. Each dot represents 
a CpG-phenotype pair that was found significant in both ancestries. CpG-phenotype pairs with 
inconsistent directions are marked in grey and those with consistent directions are marked in 
colors for different categories. 
 

 
 
Fig.5 Trans-meQTL analysis. a, Effect sizes of trans-SNPs of meQTL versus minor allele 
frequencies (MAF(1-MAF)). The orange regression line indicates the trend across the dataset. b, 
shows the effect size in relation to the distance from SNP to DNAm site for the AA (left) and EA 
(right) groups. The distance is measured in base pairs (bp). c, illustrates the effect size of trans-
meQTL in AA ancestry compared to EA ancestry. 
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Methods 
Study subjects 
We recruited a total of 495 male subjects, aged 37.2 ± 8.8 years (mean ± SD), from our ongoing 
Tulane Louisiana Osteoporosis Study cohort. The study population consisted of 310 (62.6%) self-
identified EA and 185 (37.4%) AA. The mean height and weight of the subjects were 175.8 ± 7.1 
cm and 83.4 ± 16.2 kg, respectively. Within the cohort, 355 (71.7%) subjects reported smoking, 
342 (69.1%) reported alcohol consumption, and 368 (74.3%) reported regular exercise. The 
racial/ethnic composition and lifestyle factors were representative of the general population in the 
study area (Supplementary Table 1). 
 
We excluded individuals with preexisting conditions relevant to bone mass development and 
immune system, including: (1) cerebral vascular disease, (2) diabetes mellitus, except for easily 
controlled, noninsulin dependent cases, (3) chronic renal or liver failure, (4) chronic lung disease, 
(5) chronic obstructive pulmonary disease, (6) any metabolic or inherited bone diseases (e.g., 
hyper/hypoparathyroidism, Paget’s disease, osteomalacia, osteogenesis imperfecta, and 
hypochondrogenesis), (7) collagen disorder (e.g., rheumatoid arthritis, except for minor cases that 
involve only hand joint and wrist), (8) chronic gastrointestinal disease, (9) alcohol abuses, (10) 
treatment with corticosteroid or anticonvulsant therapy for more than 6 months duration, (11) 
antibiotic usage, (12) gastroenteritis, (13) major surgeries, (14) intercontinental travel in the past 
3 months, (15) autoimmune or autoimmune-related diseases (e.g., multiple sclerosis), (16) 
immune-deficiency conditions (e.g., HIV infection), (17) haematopoietic and lymphoreticular 
malignancies (e.g., leukaemias), (18) active periods of asthma, or (19) influenza, infected within 
one week of recruitment. All qualified individuals signed an informed consent document before 
any data and biosample collection. The study was approved by the Tulane University Institutional 
Review Board (IRB #: 10-184088).  
 
Whole Genome Sequencing (WGS) 
DNA for WGS was extracted from the blood using the Gentra Puregene Blood Kit (Qiagen, USA). 
Concentration and quality of all the extracted DNA were assessed using Nanodrop 1000 and the 
samples were kept at -80 °C until further use. Briefly, 300 ng genomic DNA was used as input. 
The workflow for library preparation consists of DNA Nanoballs (DNBs) generation through 
ligation-mediated polymerase chain reaction (LM-PCR), single-strand separation, cyclization, and 
rolling circle amplification procedures. Two sequencing depths were utilized for this study: 130 
samples were sequenced to an average depth of 22x, while another subset was sequenced 
to an average depth of 15x. The WGS was conducted using DNBSEQ-500TM sequencing 
technology platform (BGI Americans Corporation, Cambridge, MA, USA), with 350 bp paired-end 
reads in length.  Each sample's cleaned and aligned data was mapped to the human reference 
genome (GRCh38/hg38) using Burrows-Wheeler Aligner (BWA, v0.7.12) software98. For accurate 
variant calling, we adhered to the recommended Best Practices ,for variant analysis using the 
Genome Analysis Toolkit (GATK, v4.0.3)99,100. HaplotypeCaller of GATK was employed to identify 
genomic variations, and the variant quality score recalibration (VQSR) was applied to obtain high-
confident variant calls.99,100 
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Isolation of Monocytes, their Genomic DNA, and Total RNA 
In the present study, we focused specifically on peripheral blood monocytes (PBMs), which can 
act as osteoclast precursors and play important roles in regulating bone metabolism.101 Briefly, 
peripheral blood mononuclear cells (PBMCs) were firstly separated from ~60 ml freshly collected 
peripheral blood, by a density gradient centrifugation method using Histopaque-1077 (Sigma-
Aldrich, USA). The PBMCs were washed repeatedly with 2 mM EDTA in PBS, before being 
dissolved in 0.5% BSA and 2 mM EDTA in PBS. PBMs were then isolated from the PBMCs with 
a Monocyte Isolation Kit II (Miltenyi Biotec Gmbh, Bergisch Glagbach, Germany) according to the 
manufacturer's protocol. The kit depleted unwanted cells (such as T and B cells) from PBMCs, 
leaving PBMs free of the surface-bound antibody and beads with minimum disturbance. The 
isolated PBMs were visually checked for purity and counted under microscope. The genomic DNA 
used for WGBS and total RNA used for RNA-seq were extracted from the freshly isolated PBMs 
with the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen, USA) following the manufacturer’s 
protocol and kept at -80 °C until further use. 
 
Whole Genome Bisulfite Sequencing (WGBS) 
DNAm profiles were determined by WGBS according to previously published protocols.102 Briefly, 
100 ng genomic DNA isolated from PBMs was fragmented by sonication using a Bioruptor 
(Diagenode, Belgium) to a mean size of approximately 250 bp, followed by the blunt-ending, dA 
addition to 3'-end, and adaptor ligation. The ligated libraries were bisulfite converted using the EZ 
DNA Methylation-Gold kit (Zymo Research Corp, USA). The WGBS was conducted on DNAs 
extracted from isolated PBMs at an average read depth of 20x using HighSeq 4000 Illumina 
platform (BGI Americans Corporation, Cambridge, MA, USA).  
 
Data filtering includes removing adaptor sequences, contamination, and low-quality reads from 
raw reads. Raw reads were also excluded if the number of unknown bases exceeded 10% or if 
the ratio of bases with a quality score less than 20 exceeded 10%, in order to obtain high-quality 
and cleaned data. The cleaned and aligned data was mapped to the human reference genome 
(GRCh37/hg19) using BSMAP103, which was later converted to GRCh38/hg38 using UCSC 
LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). The methylation level of a CpG 
dinucleotide was determined by the ratio of the number of methylated reads to the total number 
of reads covering a particular cytosine site.   
 
Bulk transcriptomics (RNA-seq) and cell deconvolution 
For the RNA sequencing experiment, RNA integrity was assessed using the Agilent Technologies 
2100 Bioanalyzer. Libraries for RNA-seq were prepared following Illumina’s TruSeq-stranded-
total-RNA-sample preparation. Briefly, 500 ng RNA was used as input. The workflow consists of 
rRNA removal, cDNA generation, and end repair to generate blunt ends, A-tailing, adaptor ligation 
and PCR amplification. The libraries were pooled and diluted to 2 nM in EB buffer and then 
denatured using the Illumina protocol. The denatured libraries were diluted to 10 pM by pre-chilled 
hybridization buffer and loaded onto Illumina NovaSeq 6000 sequencing system (LC Sciences, 
Hangzhou, China) using a paired-read recipe according to the manufacturer's instructions. 
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Quality control analysis and quantification of the sequencing library were performed using Agilent 
Technologies 2100 Bioanalyzer High Sensitivity DNA Chip. Paired-ended sequencing was 
performed. Cutadapt104 was used to remove the reads that contained adaptor contamination, low 
quality bases, and undetermined bases. The sequence quality was verified using FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Bowtie2105  and HISAT2106  were 
used to map read to the genome of Homo sapiens (v96; GRCh38/hg38). The mapped reads of 
each sample were assembled using StringTie107. Then, all transcriptomes from the samples were 
merged to reconstruct a comprehensive transcriptome using perl scripts and gffcompare 
(https://github.com/gpertea/gffcompare/). After the final transcriptome was generated, StringTie 
was used to estimate the expression levels of all transcripts in transcripts per million (TPM).107 
 
Cell deconvolution analysis was conducted using the Estimated the Proportion of Immune and 
Cancer (EPIC v1.1.7)108, which utilized its embedded circulating immune cells (BRef) as the 
reference profile to estimate the fraction of mRNA contribution to the bulk by each cell type. The 
reference profile, purified from PBMs or whole blood, includes B cells, CD4+ T cells, CD8+ T cells, 
monocytes, neutrophils, and natural killer cells. In addition to the default list of signature genes, 
10 additional user-selected cell marker genes were incorporated to enhance the deconvolution of 
cell proportions by EPIC. These added cell marker genes are CD3D/E/G, CD4, CD8A, CD14, 
CD19, CD86, and FCGR3A/B. 
 
Data preparation 
Genotype data 
We followed the GoDMC pipeline109 for the genotype data processing. Each study performed 
quality control on genotype data for chromosomes 1-22. SNPs that failed the Hardy-Weinburg 
equilibrium (𝑃𝑃 < 10−6), and had an MAF < 0.01 were removed. Then we removed the duplicated 
SNPs and SNPs with mismatched alleles and recoded indel alleles to I and D. Next, we calculated 
the first 10 genetic PCs on the SNPs extracted from HapMap3 SNPs without long-range linkage 
disequilibrium (LD) (MAF > 0.2). Ancestry outliers that deviated by 7 s.d. from the mean were 
removed. After outlier removal, we recalculated genetic PCs for use in subsequent analyses. To 
identify relatedness in unrelated datasets, we calculated genome-wide average identity by state 
using PLINK1.90. Participants with identity by state > 0.125 were removed. As a result, we had 
160 and 298 samples left in AA and EA, respectively. 
 
DNAm data normalization 
To transform our DNAm data into a distribution that more closely approximates a Gaussian 
distribution, we applied a rank-based inverse normal transformation (INT)50. This method 
comprised two steps. In the first, the observations are transformed onto the probability scale using 
the empirical cumulative distribution function (ECDF). In the second, the observations are 
transformed onto the real line, as Z-scores, using the probit function. 
 
Co-variates 
We used age, BMI, smoking, alcohol consumption, proportion of blood cells with most variation 
(B cells, monocytes, neutrophils), and 10 genetic PCs as well as 10 nongenetic PCs to adjust for 
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possible confounding. To achieve the nongenetic principal components, we performed a PCA on 
the 20,000 most variable DNAm sites and selected the first 10 PCs. 
 
meQTL analyses 
We performed a comprehensive analysis of all cis- and trans-meQTL mappings using the 
MatrixEQTL52 package in R on 25 million normalized DNAm sites in African (n = 160) and 
European (n = 298) ancestries, separately. We defined the cis-regions to be within ±1 Mb of the 
CpG sites. The DNAm data was firstly regressed out the covariates defined in the previous section. 
Then, for each DNAm CpG sites 𝑗𝑗, the residual value, 𝑦𝑦𝑗𝑗𝑗𝑗, was regressed against each SNP 𝑘𝑘: 

𝑦𝑦𝑗𝑗𝑗𝑗 = 𝛼𝛼𝑗𝑗𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑗𝑗𝑥𝑥𝑘𝑘𝑘𝑘 + 𝜖𝜖𝑗𝑗𝑗𝑗𝑗𝑗 
where genotype values 𝑥𝑥𝑘𝑘𝑘𝑘 were standardized to have a mean of zero and a standard deviation 
of one, 𝛼𝛼𝑗𝑗𝑗𝑗  was the intercept term, and 𝛽𝛽𝑗𝑗𝑗𝑗  was the effect estimate of each SNP 𝑘𝑘  on each 
residualized CpG site 𝑗𝑗. We used 1 × 10−8 as the p-value cutoff for identification of significant cis-
meQTL mappings and used 1 × 10−14 for trans-meQTL mappings.  
 
Fine-mapping  
To ascertain the potentially causal variants influencing DNAm, we conducted fine-mapping on cis-
SNPs associated with each CpG site. This was specifically focused on 12,706,905 and 
11,041,146 CpG sites linked with at least one cis-meQTL in AA and EA populations, respectively. 
Utilizing SuSiE57 from susieR package in R for this analysis, we were able to deduce single effect 
components or credible sets for each CpG site and its corresponding variants. These credible 
sets carry a 95% likelihood of encompassing at least one variant exerting a nonzero causal impact. 
We limited the number of credible sets to a maximum of ten (L = 10), which is based on the 
hypothesis that up to ten variants could potentially regulate a single CpG site. 
 
Cis-h2 
We employed Genome-wide Complex Trait Analysis58 (GCTA, version 15) to estimate the h2 – 
the proportion of phenotypic variance attributable to genetic factors – for each CpG site among 
the total of 25 million analyzed. This estimation was performed using SNPs exclusively from cis-
regions. GCTA operates by constructing a genetic relationship matrix (GRM) from SNP data, 
which encapsulates the degree of genetic similarity between pairs of individuals in the study. We 
then utilized this GRM within a restricted maximum likelihood (REML) analysis framework to 
estimate h2. This approach allows for the separation of the phenotypic variance into components 
attributed to genetic variance (captured by the SNPs in the cis-regions) and residual variance. By 
focusing on cis-regional SNPs, our analysis specifically targets the genetic contribution to DNAm 
variance at each CpG site, providing insights into the genetic underpinnings of epigenetic 
modifications. To validate and enhance the robustness of our results, we also conducted a 
comparative analysis of the cis-h2 of CpG sites within our WGBS dataset against those listed from 
two platforms: MethylationEPIC Infinium v2.0 that covers over 935,000 CpG methylation sites59 
(900K) and Infinium HumanMethylation450 Beadchip60 (450K). 
 
DNAm imputation model 
In our study, we focused on CpG sites exhibiting a cis-h2 threshold above 0.01 and associated 
with a minimum of 10 cis-SNPs. A 500-kp window was adopted around each target CpG site to 
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enhance computational efficiency during model training. For the genotype data, following 
others68,110, we omitted SNPs with a MAF under 1%, SNPs with ambiguous strand orientation, 
those containing insertions or deletions, and SNPs absent in the LD reference panel derived from 
the 1000 Genomes Project56. Our DNAm imputation model was constructed using a penalized 
regression approach, integrating methylation and genotype data within the defined cis-regions. 
Let 𝑌𝑌 be the n-dimensional vector representing the methylation data for a particular CpG site, and 
let 𝑿𝑿 be the 𝑛𝑛 × 𝑘𝑘 matrix representing the genotype data for k cis-SNPs associated with this CpG 
site: 

𝑌𝑌 = 𝑿𝑿𝑤𝑤 + 𝜀𝜀 
where 𝑤𝑤 is a 𝑘𝑘 × 1 vector of effect size to be estimated, and 𝜀𝜀 is the random noise with a mean 
of zero. The objective function 𝑓𝑓(𝑤𝑤) for a penalized regression to estimate 𝑤𝑤 is: 

𝑓𝑓(𝑤𝑤) =
(𝑌𝑌 − 𝑿𝑿𝑤𝑤)′(𝑌𝑌 − 𝑿𝑿𝑤𝑤)

𝑁𝑁
+ 𝐽𝐽𝜆𝜆(𝑤𝑤) 

where  𝐽𝐽𝜆𝜆(𝑤𝑤) represents a penalty term that regularizes the coefficients to prevent overfitting. 
Here, we used Elastic-net64 penalty, which combined both L1 and L2 regularization terms: 

𝐽𝐽𝜆𝜆(𝑤𝑤) = 𝜆𝜆(𝛼𝛼��𝑤𝑤𝑗𝑗� +
1 − 𝛼𝛼

2
�𝑤𝑤𝑗𝑗2) 

where 𝜆𝜆 is the tuning parameter that controls the overall strength of the penalty, 𝛼𝛼 is the elastic-
net mixing parameter, which is 0.5 in this study, that determines the trade-off between L1 penalty 
(lasso) and L2 penalty (ridge). 𝜆𝜆 is chosen via cross-validation. 
The performance of the imputation models was evaluated by predictive 𝑅𝑅2, the squared Pearson 
correlation coefficient between genetically predicted and directly measured DNAm data in nested 
cross validation111. We only considered models with 𝑅𝑅2  greater than 0.01 and had a 
corresponding set of more than 10 cis-acting SNPs in the subsequent analysis47. 
 
MWAS association testing in MVP database 
In this section we would like to test the association between predicted methylation levels and trait 
of interest. In our study, when only summary-level GWAS data of phenotypes were available, we 
adopted the methodology outlined in existing studies112,113 to mitigate the discrepancies that often 
arise from employing LD matrices from reference panels, which may not accurately reflect the LD 
structure inherent in the GWAS data. In our MWAS association test, we estimated the effect size 
𝛾𝛾� and its variance between the DNAm and phenotype by: 

𝛾𝛾� = 𝑤𝑤�′𝑍𝑍/�𝑛𝑛𝑠𝑠
𝜎𝜎𝑟𝑟

 and 𝑉𝑉𝑉𝑉𝑉𝑉� (𝛾𝛾�) = � 1
𝑛𝑛𝑠𝑠

+ 1
𝑛𝑛𝑟𝑟
� 𝛾𝛾�2 + 𝜁𝜁2

𝑛𝑛𝑠𝑠𝜎𝜎𝑟𝑟
 

Where 𝑍𝑍 is the vectors of z-scores from GWAS, 𝑤𝑤�  is the estimated weights from the DNAm 

imputation model, 𝑛𝑛𝑠𝑠 is the sample size of the GWAS data, 𝜎𝜎𝑟𝑟 = (𝐺𝐺𝑟𝑟𝑤𝑤�)′(𝐺𝐺𝑟𝑟𝑤𝑤�)
𝑛𝑛𝑟𝑟

, 𝜁𝜁2 = 1 − 2𝑤𝑤�′𝑍𝑍𝛾𝛾�
�𝑛𝑛𝑠𝑠

+ 𝜎𝜎𝑟𝑟𝛾𝛾�2, 

𝐺𝐺𝑟𝑟 is the standardized genotype matrix of the population reference panel, and 𝑛𝑛𝑟𝑟 is the sample 
size. 
 
We performed this MWAS analysis to 41 phenotypes in the MVP49 database where GWAS 
summary statistics were available for both African and European ancestries. Supplementary 
Table 5 summarized the information of these GWAS summary statistics. In summary, the MVP 
GWAS summary statistics were obtained from dbGaP (study accession: phs001672.v3.p1). Prior 
to conducting association tests, we implemented quality control on GWAS summary statistics. 
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These included the exclusion of duplicate records, verification and correction of strand orientation 
for alleles, and the removal of ambiguous alleles, ensuring the integrity and reliability of our 
association analysis. We also excluded the CpG sites with the number of non-zero weights from 
DNAm imputation models smaller than 10 to ensure the reliability of the study. 
 
Post-MWAS analyses 
We compared our MWAS results with MR analysis in line with the methodology outlined by Zhao, 
et al.114. We selected a set of cis-meQTLs as the MR instrumental variables. We first restricted 
our analysis to the common set of variants that were shared by cis-meQTLs and GWAS summary 
statistics. To avoid the potential issue of collinearity, we removed cis-meQTLs strongly correlated 
with index genetic variants (r2 > 0.001) by applying LD clumping. Then we excluded those who 
are not significant (𝑃𝑃 > 10−8) cis-meQTLs. Second, we applied the Steiger filter115 to exclude 
instrumental variables with potential reverse causality. After selecting the instrumental variables, 
we applied either the Wald ratio (when only one instrumental variable was available) or inverse 
variance weighting116 to test the causal link between DNAm and phenotype. 
 
We also conducted Bayesian colocalization analyses93 on the significant CpG sites identified in 
our MWAS and MR analysis to estimate the posterior probability that the protein and phenotype 
shared the same causal variant, using summary-level cis-pQTLs and GWAS data. Specifically, 
we used the coloc R package (v5.2.2), with its default setups in the coloc function, to estimate the 
posterior probability of both protein and phenotype being influenced by the same causal variant 
(i.e., the PPH4). We chose PPH4 > 0.7 as the threshold. DNAm satisfying this threshold would 
suggest a shared causal variant for the cis-meQTLs and GWAS associations. 
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