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Abstract 

Background 

Recent advancements of large language models (LLMs) like Generative Pre-trained 

Transformer 4 (GPT-4) have generated significant interest among the scientific community. Yet, 

the potential of these models to be utilized in clinical settings remains largely unexplored. This 

study investigated the abilities of multiple LLMs and traditional machine learning models to 

analyze emergency department (ED) reports and determine if the corresponding visits were 

caused by symptomatic kidney stones. 

 

Methods 

Leveraging a dataset of manually annotated ED reports, we developed strategies to enhance 

the performance of GPT-4, GPT-3.5, and Llama-2 including prompt optimization, zero- and few-

shot prompting, fine-tuning, and prompt augmentation. Further, we implemented fairness 

assessment and bias mitigation methods to investigate the potential disparities by these LLMs 

with respect to race and gender. A clinical expert manually assessed the explanations 

generated by GPT-4 for its predictions to determine if they were sound, factually correct, 

unrelated to the input prompt, or potentially harmful. The evaluation includes a comparison 

between LLMs, traditional machine learning models (logistic regression, extreme gradient 

boosting, and light gradient boosting machine), and a baseline system utilizing International 

Classification of Diseases (ICD) codes for kidney stones. 

 

Results 

The best results were achieved by GPT-4 (macro-F1=0.833, 95% confidence interval 

[CI]=0.826–0.841) and GPT-3.5 (macro-F1=0.796, 95% CI=0.796–0.796), both being 

statistically significantly better than the ICD-based baseline result (macro-F1=0.71). Ablation 

studies revealed that the initial pre-trained GPT-3.5 model benefits from fine-tuning when using 
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the same parameter configuration. Adding demographic information and prior disease history to 

the prompts allows LLMs to make more accurate decisions. The evaluation of bias found that 

GPT-4 exhibited no racial or gender disparities, in contrast to GPT-3.5, which failed to 

effectively model racial diversity. The analysis of explanations provided by GPT-4 demonstrates 

advanced capabilities of this model in understanding clinical text and reasoning with medical 

knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.24311870doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.12.24311870


 4 

1. INTRODUCTION 

Recent progress in generative artificial intelligence (AI) has garnered considerable attention in 

medical research. AI technologies based on large language models (LLMs) have already 

demonstrated remarkable capabilities in various clinical applications such as answering 

questions from simulated medical examinations,1,2 complex diagnosis reasoning,3 postpartum 

hemorrhage phenotyping,4 and assessing clinical acuity of adults in the emergency department 

(ED).5 However, the potential of integrating generative AI technologies into medical practice 

remains largely unexplored. There is notable interest from the scientific community not only in 

further assessing the utility of LLMs for a wide range of clinical applications, but also in studying 

(1) the mechanisms by which these models reason with medical knowledge, (2) methods to 

improve LLMs through exposure to medical records during self-supervised training or fine-tuning 

for specific clinical tasks, (3) strategies to detect and prevent the generation of ‘hallucinations’ 

that could lead to adverse outcomes in clinical care, and (4) ways to identify and mitigate 

demographic biases in results generated by LLMs.6,7   

In this study, we explored the capabilities of three LLMs (Generative Pre-trained 

Transformer 4 [GPT-4], and GPT-3.5, Llama-2)8,9 in analyzing ED reports with the specific goal 

of identifying ED visits due to symptomatic kidney stones. Correct classification of a 

symptomatic stone event versus one that is not is critically important for understanding disease 

burden and epidemiology,10,11 since acute symptomatic stones are often managed in the ED 

setting.12 In addition, at the patient-level, correct classification of a symptomatic stone event has 

implications for follow-up care and long-term treatment.13 Automatic identification of this 

phenotype leveraging electronic health record (EHR) data is especially challenging because 

patients visiting the ED for reasons unrelated to kidney stones often undergo imaging tests such 

as CT scans and ultrasounds,10 which can incidentally reveal kidney stones and may result in a 

diagnosis of kidney stone disease.14,15 Thus, exclusively relying on structured format data for 

this task, like International Classification of Diseases, 9th/10th Revision, Clinical Modification 
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(ICD-9/10-CM) codes during the ED visit-which do not differentiate between symptomatic and 

asymptomatic kidney stones-may lead to a significant number of false positives. The benefits of 

solving this task go beyond better phenotyping kidney stone disease for various downstream 

analyses,16,17 as there are many other analogous situations where patients receive secondary 

diagnoses in critical care settings. Additionally, this research, in conjunction with other related 

LLM-based phenotyping approaches,5,18,19 could be potentially deployed as clinical decision 

support tools to improve patient triage in the ED. 

In our analysis, we implemented several strategies to optimize the performance of LLMs 

including zero- and few-shot prompting, fine-tuning, and prompt augmentation. We also 

investigated potential disparities by LLMs with respect to race and gender by implementing 

fairness assessment and bias mitigation methods for the above-mentioned task. We validated 

the models using a dataset of ED reports manually reviewed by clinical experts. Based on the 

explanations provided by the best performing LLM, we further conducted error analysis and 

assessed its reasoning capabilities in predicting accurate results. Finally, our evaluation 

includes a comparison between LLMs, traditional machine learning models, and a baseline 

system utilizing ICD codes for kidney stones. 

 

2. METHODS 

Figure 1 depicts an overview of the study workflow. First, we describe the process of creating a 

manually reviewed dataset of ED reports. Next, we explain how we leveraged this dataset to 

train traditional machine learning models and optimize LLMs for automatically detecting ED 

reports that indicate kidney stones as the primary reason for the associated ED visit. Finally, 

during evaluation, we compared these models against a simple baseline system that solves the 

above-mentioned task using kidney stone-related ICD codes at the time of ED visit. The 

institutional review board at Vanderbilt University Medical Center (VUMC) approved this study.  
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2.1 Dataset 

We retrospectively sampled 500 reports from ~3.9 million ED reports available in the Synthetic 

Derivative, a de-identified version of the VUMC’s EHR. Of these, 400 (90%) were randomly 

sampled from the ED reports associated with a diagnosis of kidney stones as indicated by ICD 

codes at the time of visit (Figure 1, Tables S1 and S2). Three clinical experts (RSH, AMR, and 

MM) manually reviewed all the selected patient reports and labeled them as positive or negative 

based on whether they described kidney stones as the primary cause for their ED visit. This 

process was unbiased as the reviewers were not provided information about which reports were 

linked to ICD codes for kidney stones. Double annotation was performed on 100 reports and 

inter-reviewer agreement was measured using Cohen’s kappa statistic. Following the chart 

review, we divided the reports into training (80%) and test (20%) sets using a stratified random 

split to maintain the same proportions of positive and negative labels in each set. 

 

2.2 Traditional machine learning models 

We developed a binary text classification framework using three traditional machine learning 

algorithms: logistic regression (LR), extreme gradient boosting (XGBoost), and light gradient 

boosting machine (LightGBM). First, we preprocessed the ED reports using tokenization, 

lowercasing, and lemmatization, as well as removal of punctuations, numbers, stop words, and 

tokens of length 1. For the conversion of the preprocessed clinical text into numerical feature 

vectors, we leveraged the term frequency-inverse document frequency (TF-IDF) weighting 

scheme. Then, we optimized the hyperparameters for each model using a grid search approach 

with stratified ten-fold cross validation over the training set. Table S3 lists all the 

hyperparameters and their range values selected for optimization. Finally, we retrained the 

models over the entire training set using the best performing hyperparameter values and 

conducted the evaluation of these retrained models on the test set. The Python packages used 
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to implement this framework include spaCy (version 3.7.2), scikit-learn (version 1.4.1), xgboost 

(version 2.0.3) and lightgbm (version 4.3.0).  

 

2.3 Large language models 

We conducted experiments with three LLMs, namely GPT-4 (version 1106-Preview) and GPT-

3.5 (gpt-35-turbo-16k, version 0613) via Azure OpenAI Service, and Llama-2 (Llama 2 70B 

Chat) through Azure Databricks Model Serving, and assessed their capabilities across four main 

objectives.  The first objective was to evaluate the ability of these models in classifying ED 

reports (i.e., as either positive or negative for describing kidney stones as the main reason of 

the ED visit) when provided with prompts of varying specificity in a zero-shot setting. For this, 

we crafted nine zero-shot prompts that contain a description of the classification task, specific 

instructions of the output format (e.g., “The only answer choices are 'Yes' or 'No'”), additional 

phenotypic information (e.g., “the stone is in the kidney or ureter”), and the ED report to be 

tested (Table S4). Like hyperparameter optimization for the traditional machine learning 

algorithms, we determined the best performing prompt for each LLM using stratified ten-fold 

cross validation over the training set. 

 

2.3.1 Ablation studies 

The second objective was to conduct ablation studies that could potentially improve the zero-

shot prompting results. For the first ablation study, we performed experiments using few-shot 

prompting based on stratified ten-fold cross-validation on the training set. Particularly, we 

constructed N-shot prompts (N=1..5) by including randomly sampled ED reports and their 

manually assigned labels into the zero-shot prompts. In our validation framework, the ED report 

to be tested was selected from the test fold, while the reports and their labels used as examples 

in few-shot prompts were sampled from the remaining nine training folds. The second ablation 

study consisted of augmenting the zero-shot prompts with demographics data and previous 
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history of kidney stone information. This information was extracted from the EHR record 

associated with the patient at the time of ED visit. Table S5, row 1, lists the specific text that 

was used to augment the zero-shot prompts for this experiment. Finally, for the last ablation 

study, we tested the potential of achieving better results by exploring LLM fine-tuning 

capabilities. Specifically, we (1) randomly selected a 9:1 fold split from the same ten-fold cross 

validation framework over the training set, (2) used the dataset from the nine folds to further 

train (fine-tune) the GPT-3.5 model for our task, and (3) compared the performance of the fine-

tuned model against the initial pre-trained GPT-3.5 model on the reports from the tenth fold. The 

GPT-3.5 was fine-tuned for 15 epochs using a learning rate multiplier of 0.3. Notably, there were 

no GPT-4 models available for fine-tuning in our dedicated Azure OpenAI environment. 

 

2.3.2 Bias assessment and mitigation 

While recent advancements in generative AI technologies offer promising results for improving 

clinical care, there is a growing concern that these technologies might introduce and perpetuate 

biases, possibly resulting in significant harm to various patient categories.20-24 To address this 

concern, our third objective was to investigate the potential racial and gender biases produced 

by LLMs for our task. The privileged group for studying racial bias consisted of White patients 

(as opposed to non-White patients), while for studying gender bias, this group was assigned to 

males (as opposed to females). We conducted bias assessment using two common fairness 

metrics: disparate impact (DI)25 and equal opportunity difference (EOD).26 Briefly, DI measures 

the ratio of positive label predictions between unprivileged and privileged patient groups. A DI 

value of 1 indicates no disparity observed in LLM outcomes (with respect to race or gender in 

our case) while a DI value less than 0.8 suggests potential bias against the unprotected patient 

group as specified by the ‘80% rule’ of disparate impact.25 EOD measures the difference in true 

positive rate (also known as recall or sensitivity) values between unprivileged and privileged 

patient groups. An EOD value of 0 indicates fairness. To mitigate bias, we used a debiasing 
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technique called fairness through unawareness.27,28 This approach excludes the explicit use of 

protected characteristics such as race or gender in the decision-making process.22,29,30 In our 

LLM-based experiments, we applied this technique by omitting race and gender information 

from prompts, as shown in Table S5. 

 

2.3.3 Explainability analysis 

The last objective was to gain insights into the reasoning capabilities of LLMs for analyzing ED 

reports and justifying the classification decisions in solving our task. Specifically, this experiment 

involved a local explainability analysis, where a clinical expert (RSH) reviewed explanations 

generated in natural language by GPT-4 for each ED report from the test set. To generate the 

GPT-4 explanations, we removed the instruction from the prompt that directed the model to give 

a Yes/No response (e.g., "Instruction: Choose either 'Yes' or 'No'"). For the reports where GPT-

4 generated correct responses, the review focused on whether its explanations were sound, 

factually correct, or capable of causing harm. An error analysis was also conducted based on 

explanations corresponding to false positive and false negative results. 

 

2.4. Evaluation setup 

We compared the manual annotations against the results extracted by each model and reported 

performance metrics including precision (positive predictive value), recall (sensitivity), 

specificity, and F1 score. Because the extraction of positive outcomes was more desirable for 

our task, we chose F1 as the primary measure in all the optimization experiments during 

validation (hence, each optimization strategy and ablation study aimed at maximizing the F1 

score) and when comparing the models on the test set. Due to the stochastic nature of LLMs,31 

we repeated all LLM-based experiments ten times and reported the macro-averaged results and 

their 95% confidence intervals (CIs). To generate predictions with the highest degree of 

confidence, each LLM was run with the temperature parameter set to 0. We also reported the 
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answer rate for each experiment due to content filters and prompt length limits imposed by 

LLMs. We evaluated the models with the optimal validated configuration (i.e., the best 

performing hyperparameter values or prompts) on the test set and compared them to the ICD 

baseline. To determine whether the differences in F1 values between each model and the ICD 

baseline are statistically significant, we employed an approximate randomization test based on 

stratified shuffling32 with Bonferroni correction for multiple testing. The python code with all the 

prompts used in our study is available at https://github.com/bejanlab/LLMs4KS-ED.git. 

 

3. RESULTS 

3.1. Dataset description 

From the 500 ED reports (and their corresponding patients), the manual review resulted in 

identifying 260 (52%) ED visits due to kidney stones and the remaining 240 (48%) visits due to 

other reasons (Table 1). The double-manual review achieved a substantial interrater agreement 

(Cohen’s 𝜅 = 0.78). The patients with ED visits due to kidney stones were younger than the 

patients with visits due to other reasons (41±17 vs 48±20 years, P=1.58E-05) and had similar 

gender and race distributions across the two groups. While kidney stone-related ICD codes 

were assigned to most of the patients with symptomatic kidney stone visits (98.8%), these 

codes were also assigned to a significant proportion of patients who presented for other reasons 

(80.4%). 

 

3.2. Hyperparameter optimization  

Zero-shot prompt optimization identified prompts #9, #7, and #2 as the best performing prompts 

over the training set for Llama-2 (macro-F1=0.75, 95% CI=0.74-0.76), GPT-3.5 (macro-

F1=0.85, 95% CI=0.84-0.87) and GPT-4 (macro-F1=0.86, 95% CI=0.84-0.87), respectively 

(Figure 2A, Table S6). Llama-2 had an 86%–92.5% answer rate due to the model restriction on 
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processing prompts with 4,096 tokens or more, which impacted more ED reports associated 

with visits due to other reasons (Table 1). The answer rate of 99.5% for the GPT models was 

mainly caused by content filtering policies for self-harm, violence, and sexual content in ED 

reports (e.g., report mentioning the patient being sexually assaulted). Table S7 lists the best 

results obtained by hyperparameter optimization of the traditional machine learning models. 

 

3.3. Few-shot prompting 

Following prompt optimization, we conducted the ablation study based on few-shot prompting 

by leveraging the highest performing LLMs, GPT-3.5 and GPT-4, and their best zero-shot 

prompts, #7 and #2, respectively. As shown in Figure 2B and Table S8, none of the few-shot 

experiments outperformed the zero-shot experiments. 

 

3.4. LLM fine-tuning 

The fine-tuned GPT-3.5 model achieved a macro-F1 of 0.82, substantially higher than the initial 

pre-trained GPT-3.5 model's macro-F1 of 0.79 (Figure 2C and Table S9). The evaluation was 

performed on a random fold of the ten-fold cross-validation framework over the training set 

using the zero-shot prompt #7 (i.e., the best prompt determined by prompt optimization for GPT-

3.5). Notably, the GPT-3.5 results for this ablation study are different from the ones obtained 

during prompt optimization (Table S6) because the evaluation was performed under different 

settings and on different datasets. 

 

3.5. Prompt augmentation 

The prompt augmentation strategy based on demographic information and kidney stone 

diagnosis prior to ED visit improved the performance of both GPT-3.5 and GPT-4 models 

(Figure 3D and Table S10). Like the few-shot prompting experiment, this ablation study used 

the highest performing LLMs and their best zero-shot prompts. 
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3.6. Model evaluation 

Table 2 lists the primary evaluation results for all models on the test dataset, using the optimal 

parameters derived from hyperparameter tuning, prompt optimization, and ablation studies. 

Overall, all models achieved superior results when compared to the baseline (Figure 2F). The 

best results, which were also statistically significantly better than the baseline result, were 

obtained by GPT-4 (macro-F1=0.833, 95% CI=0.826-0.841, P=7.00E-07), GPT-3.5 (macro-

F1=0.796, 95% CI=0.796-0.796, P=1.40E-06), and fine-tuned GPT-3.5 (macro-F1=0.791, 95% 

CI=0.787-0.795, P=3.50E-06). The P-values, which correspond to approximate randomization 

tests that compare the difference in F1 scores between each model and the ICD baseline, were 

adjusted using the Bonferroni correction method. Noteworthy, we evaluated the fine-tuned GPT-

3.5 model based on the same prompt configuration we used for fine-tuning (i.e., without prompt 

augmentation). 

 

3.7 Bias evaluation 

We conducted bias assessment and mitigation of the GPT models on the test dataset, which 

consisted of 100 ED reports corresponding to 81% White and 51% female patients (Figure 2E). 

The results from Table 3 and Figures 2G-2J show that there were no significant differences in 

DI and EOD values in either model before and after debiasing (i.e., prompt augmentation with 

and without race and gender information), nor in model performance. Overall, GPT-4 

demonstrated improved DI and EOD values compared to GPT-3.5. However, according to the 

80% rule of disparate impact, GPT-3.5 exhibits potential bias against non-White patients 

(DI=0.64, EOD=-0.26), which remains unresolved despite debiasing efforts. 
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3.8 Assessment of GPT-4 explanations 

Most of explanations for GPT-4 predictions were assessed as sound and correct. No 

explanations were found to be factually incorrect, nonsensical, unrelated to the input prompt, or 

to cause harm. The explanations conveying uncertainty were properly justified (e.g., “the 

definitive diagnosis would depend on the results of the CT scan and urinalysis, which are 

pending at the time of this report”). Generally, the disagreements in classification were caused 

by ED visits for which not enough information was presented in their corresponding reports 

(e.g., GPT-4 presenting a correct reasoning for a non-kidney stone visit based on the 

information available in the report, while the clinical expert assessing there is a possibility for 

kidney stone diagnosis). Two disagreements were identified when the clinical expert assessed 

kidney stone as the main reason for ED visit while the GPT-4 explanation described a different 

reason but highly related to kidney stones: (1) dislodged nephrostomy tube, which was 

previously placed for kidney stones; (2) postoperative complications (constipation and pain) 

related to a recent kidney stone procedure. 

 

4. DISCUSSION 

This study explores the abilities of LLMs and traditional machine learning models to analyze ED 

reports and identify if their corresponding ED visits are due to symptomatic kidney stones. To 

the best of our knowledge, this is the first study leveraging LLMs for kidney stone phenotyping 

or for identifying reasons for ED visits. Our evaluation showed that GPT-4 was the best 

performing model with a macro-F1 of 0.83. The second-best performing results were achieved 

by GPT-3.5 (macro-F1=0.80). In contrast, Llama-2-70b's performance (macro-F1=0.74) was 

inferior to all the models, but remained above the ICD-based baseline (macro-F1=0.71). 

 The strengths of this study derive from multiple significant findings. First, prompt 

optimization results confirmed previously reported findings that LLMs are highly sensitive to how 

prompts are formulated,23,33,34 implying that prompt engineering strategies are critical in 
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enhancing LLM-based methods for clinical phenotyping. Even when prompts are semantically 

similar (e.g., prompt #3 is derived from prompt #2 by substituting ‘emergency department’ with 

‘emergency room’), the corresponding performance values achieved by the LLMs vary. Second, 

no single prompt consistently yields the best results across all models. Our experiments 

revealed that GPT models performed best with simple and concise prompts (prompts #2 and 

#7), whereas Llama-2 achieved optimal results with the most specific and complex prompt 

(prompt #9). Third, despite one of our ablation studies indicated no improvement of few-shot 

over zero-shot prompting, we believe this study warrants further investigation. One future 

experiment based on few-shot prompting is to assess all nine prompts instead of only the best 

zero-shot prompt for each LLM. Another experiment worth considering is applying a similar 

strategy with retrieval-augmented generation (RAG)35 and selecting as examples for few-shot 

prompts those ED reports that are similar in the embedding space to the ED report being tested. 

Forth, the fine-tuned GPT-3.5 model outperformed the initial pre-trained GPT-3.5 model when 

using the same parameter configuration. This finding supports the hypothesis that adapting a 

pre-trained LLM with clinical data can enhance clinical phenotyping. Fifth, we demonstrated that 

augmenting the prompts with demographic information and prior disease history helps LLMs 

make more accurate decisions. We believe this strategy can be applied to a wide range of 

clinical phenotyping tasks since the patient data used for prompt augmentation can be easily 

accessed from EHR. Sixth, the bias evaluation revealed that GPT-4 showed no racial or gender 

disparities whereas GPT-3.5 did not adequately model racial diversity for our task. The overall 

results suggest that GPT-4 exhibits better fairness measures than GPT-3.5. However, further 

investigation needs to be conducted on bias mitigation as demographic information may still be 

encoded in ED reports and, consequently, in their corresponding prompts. Finally, the analysis 

of explanations provided by GPT-4 indicate advanced capabilities of this model to understand 

clinical text and reason with medical knowledge. To increase the trustworthiness of using LLMs 
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in clinical settings, we advocate for this type of explainability analysis to become standard 

practice. 

 We believe this study achieves progress in understanding the capabilities of LLMs for 

identifying reasons for ED visits and better phenotyping symptomatic kidney stones. However, 

efforts towards this goal should persist to ensure the deployment of effective, transparent, and 

equitable LLM approaches in medicine. For example, the generalizability of our approach 

should be demonstrated through external validation on larger datasets and with a more 

heterogeneous study population. Further, additional bias mitigation methods should be 

implemented to better assess fairness and equity of LLMs for our task. 
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Figure 1 Overview of the study workflow. 
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Figure 2 LLM results under various settings. 2A: Prompt optimization results using zero-shot prompts. 
Prompts #9, #7, and #2 achieved the best macro-averaged F1 scores for Llama-2, GPT-3.5, and GPT-4, 
respectively. 2B: Ablation study results leveraging few-shot prompting (N=1..5). 3C: Ablation study 
comparing a fine-tuned GPT-3.5 model against the initial pre-trained GPT-3.5 model. The evaluation was 
performed on a random fold of a ten-fold cross-validation framework over the training set. 3D: Ablation 
study assessing the impact of prompt augmentation with demographic information and previous history of 
kidney stone. 3E: Race and gender distribution over the test dataset (N=100). 3F: Macro-averaged F1 
scores achieved by all the models implemented to identify ED visits for symptomatic kidney stones over 
the test set. 3G-3J: Racial and gender bias assessment on the test set before and after prompt 
augmentation with race and gender information. The fairness reference values for disparate impact (DI) 
and equal opportunity difference (EOD) are 1 and 0, respectively. 
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Table 1 Selected characteristics of study participants and their corresponding ED reports. 

  
ED visit due to 
symptomatic 
kidney stones 

ED visit due to other 
reasons 

Significance 
testing* 

  (n=260, 52%) (n=240, 48%)  

Age at ED visit, mean (SD**), years 41 (17) 48 (20) 1.58E-05 
Gender, n (%)    

 Female 126 (48.5%) 117 (48.7%) 0.948 
 Male 134 (51.5%) 123 (51.2%) 0.948 

Race and ethnicity, n (%)    
 White 214 (82.3%) 198 (82.5%) 0.955 
 Black 21 (8.1%) 32 (13.3%) 0.056 
 Hispanic 15 (5.8%) 5 (2.1%) 0.035 
 Asian 1 (0.4%) 2 (0.8%) 0.516 
 Other/Unknown 9 (3.5%) 3 (1.2%) 0.106 

Kidney stone diagnoses by ICD codes, n (%)    
 During ED visit 257 (98.8%) 193 (80.4%) 6.75E-12 
 Before ED visit 95 (36.5%) 73 (30.4%) 0.147 

ED reports tokenization (Llama-2 tokenizer)    
 Number of tokens, mean (SD**) 1622 (860) 1992 (1128) 4.03E-05 
 Median 1356 1671  
 IQR*** 1064 - 1851 1222 - 2517  
 Min-Max 302 - 4877 105 - 4932  

ED reports tokenization (Tiktoken)    
 Number of tokens, mean (SD**) 1274 (672) 1565 (879) 3.35E-05 
 Median 1080 1307  
 IQR*** 837 - 1426 981 - 2000  
 Min-Max 239 - 3710 79 - 3820  

* Significance testing: t-test for quantitative values and 2 proportions Z-test for categorical variables. 
** SD, standard deviation. 

*** IQR, interquartile range. 
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Table 2 Model evaluation on the test set. 

A Baseline classifier Optimized hyperparameters  P R S F1 AR, % Significance* 

 ICD    0.5604 0.9807 0.1667 0.7133 100 - 

B Traditional machine learning algorithms       

 Logistic regression penalty: l2, C: 1438.45,  
solver: liblinear 

0.8085 0.7308 0.8125 0.7677 100 2.81E-03 

 XGBoost 
n_estimators: 500, max_depth: 4, 
learning_rate: 0.1, subsample: 0.8, 

colsample_bytree:1  
0.8182 0.6923 0.8333 0.7500 100 0.1078 

 LightGBM 
n_estimators: 200, max_depth: 5, 
learning_rate: 0.1, num_leaves: 5 0.8444 0.7308 0.8542 0.7835 100 6.44E-05 

C LLMs Optimal 
prompt N-shot Prompt 

augmentation 
Macro-P 
(95% CI) 

Macro-R 
(95% CI) 

Macro-S 
(95% CI) 

Macro-F1 
(95% CI) 

AR, mean 
(95% CI) Significance* 

 Llama-2 9 0 no 
0.6164 

(0.616-0.616) 
0.9184 

(0.918-0.918) 
0.3333 

(0.333-0.333) 
0.7377 

(0.738-0.738) 
0.91 

(0.91-0.91) 1 

 GPT-3.5 7 0 yes 0.8478 
(0.848-0.848) 

0.7500 
(0.750-0.750) 

0.8542 
(0.854-0.854) 

0.7959 
(0.796-0.796) 

1.00 
(1.00-1.00) 1.40E-06 

 GPT-3.5 
(fine-tuned) 

7 0 no 0.8465 
(0.845-0.848) 

0.7423 
(0.736-0.748) 

0.8542 
(0.854-0.854) 

0.7910 
(0.787-0.795) 

1.00 
(1.00-1.00) 

3.50E-06 

 GPT-4 2 0 yes 
0.8961 

(0.888-0.904) 
0.7788 

(0.769-0.788) 
0.9000 

(0.892-0.908) 
0.8333 

(0.826-0.841) 
0.99 

(0.99-0.99) 7.00E-07 

 

* Significance testing: the approximate randomization based on stratified shuffling method was computed to test the difference between 
the F1 performance values of each classifier and the baseline’s F1 score. P-values were adjusted using the Bonferroni correction method. 
Macro-P, macro-averaged precision (positive predictive value); Macro-R, macro-averaged recall (sensitivity); Macro-S, macro-averaged 
specificity; Macro-F1, macro-averaged F1-measure; AR, answer rate; CI, confidence interval. 

 
 
 
 
Table 3 Racial and gender bias assessment of GPT-3.5 w/ prompt #7 and GPT-4 w/ prompt #2 before 
and after prompt augmentation with race and gender information. The fairness reference values for 
disparate impact and equal opportunity difference are 1 and 0, respectively. 

 LLM Prompt augmentation DI (95% CI) EOD (95% CI) Macro F1 (95% CI) 
A Racial bias assessment before and after debiasing* 
 GPT-3.5 + race 0.6395 (0.639, 0.639) -0.2594 (-0.259, -0.259) 0.7959 (0.796, 0.796) 
  - race 0.6395 (0.639, 0.639) -0.2594 (-0.259, -0.259) 0.7959 (0.796, 0.796) 
 GPT-4 + race 0.8921 (0.869, 0.915) -0.0769 (-0.094, -0.060) 0.8333 (0.826, 0.841) 
  - race 0.8281 (0.805, 0.851) -0.1370 (-0.161, -0.113) 0.8369 (0.830, 0.844) 

B Gender bias assessment before and after debiasing* 
 GPT-3.5 + gender 1.1438 (1.144, 1.144) 0.0385 (0.038, 0.038) 0.7959 (0.796, 0.796) 
  - gender 1.0980 (1.098, 1.098) 0.0385 (0.038, 0.038) 0.8041 (0.804, 0.804) 
 GPT-4 + gender 0.8818 (0.859, 0.905) -0.0038 (-0.021, 0.013) 0.8333 (0.826, 0.841) 
  - gender 0.8751 (0.846, 0.904) -0.0231 (-0.039, -0.007) 0.8419 (0.833, 0.851) 

 
* Each experiment was repeated 10 times. All the experiments were conducted on the test dataset. 
DI, disparate impact; EOD, equal opportunity difference; Macro F1, macro-averaged F1-measure; CI, 
confidence interval. 
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